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In the study of idealizer rings in [14], the global dimensions of certain subrings were
calculated. This work was extended by Goodearl [9]. Here it is shown, in Section 1, that
the techniques involved can be used rather more generally than was apparent there. The
results concern a ring S with a right ideal A such that SA — S, and a subring R of S
containing A. They describe gl dim R in terms of gl dim S and the projective dimensions
of simple subfactors of S/R or R/A, provided that these R -modules are sufficiently well
conditioned.

This is applied in Section 2, to construct examples of Noetherian semiprime rings of
finite global dimension which are not direct sums of prime rings. These examples, which
provide yet another contrast with the commutative theory, are of interest in the light of
results of Brown, Hajarnavis and MacEacharn [1, 2, 3]. In fact, this paper, to some extent,
is a response to a question by Hajarnavis in this context.

In Section 3, the technique is used to calculate global dimensions of generalizations of
certain 'tiled' rings of the form studied by Fields [7], Tarsy [17,18] and V. A. Jategaonkar
[10, 11, 12], and a variant used by Stafford and Warfield [16].

Some of the results in this paper were obtained during an SERC supported Ring
Theory Symposium at the University of Warwick. This support, and the hospitality of the
Mathematics Institute, are gratefully acknowledged.

1. Basic Techniques. Throughout this section, let S be a ring (with 1), A a right
ideal of S such that SA = S and R a proper subring of S containing A. The results below
aim to measure the right global dimension of R in terms of rt gl dim S and the behaviour
of S/A as an J?-module.

Note that RA is a two-sided ideal of R, and is also a right ideal of S. Moreover,
S(RA) = S. Thus, in effect, we can always choose A to be an ideal of R—and then I? is a
subidealizer of A in S. However, these considerations are not required for what follows.

LEMMA 1.1. (i) 1/ M is any right S-module then p.d. MR = p.d. Ms.
(ii) rt gl dim R 3* sup{rt gl dim S, 1}.
(iii) p.d.(R/A)R=p.d.(S/A)s.

Proof, (i) See [14, Lemma 2.8].
(ii) From (i), rtgldim JRssrtgldimS. Suppose that rt gl dim R = 0, and so R is

semisimple. Now RA is an ideal of R, with rt ann RA = 0 since SA = S. Therefore
R = RA = RAS = RS = S, a contradiction.

(iii) It is easy to check that AR has an idempotent generator if and only if As has. In
other words, the short exact sequence of right R -modules, 0 —*• A —> R -* R/A —*• 0, splits
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2 J. C. ROBSON

if and only if the sequence of right S-modules, 0 —» A —> S —» SI A -» 0, splits. By (i),
p.d. AR = p.d. As, and so p.d.(R/A)R = p.d. (SIA)S.

THEOREM 1.2. Suppose that (S/R)R has a finite series given by S = B o => Bj =>...=> Bfc =
R such that /or each i, BJBi+1 is a semisimple R-module. Then

rt gl dim R = sup{rt gl dim S, 1, m}

where m = sup{p.d. U \ U any simple sub)"actor module of SIR}.

Proof. (Following [14, Proposition 2.11]). Let rt gl dim S = n. It is clear from Lemma
l.l(ii) that rt gl dim R s=sup{n, 1, m}.

Next, let D<iRR; then DS<\SS and DS/D is a homomorphic image of a direct sum
(SIR)a) for some index set I. Let a:(SIR)a)-*DSID be the epimorphism, and let
Di/D = a((Bi/J?)(n) with A = D a submodule of SR. Thus

DS = D 0 2 D 1 2 . . . 2 D k = D .

We make the induction hypothesis that p.d. D(^sup{n-1,0, m-1} and will verify the
corresponding result for Di+1. Note, however, that the result is true for Do, by Lemma

1.1(0.
Since B;/Bi+i is semisimple, so too is Di/Dj+1. Hence p.d. DJDi+l *s m. This, together

with the induction hypothesis, applied to the short exact sequence

0 -* Di+1 -* Df -» A/Di + 1 -> 0

shows that p.d. Di+1=£sup{n-l, 0, m-1} as required. The result follows immediately.

The next, less precise, result relies on knowledge of (R/A)R.

THEOREM 1.3. Suppose that R/A has a finite series given by

with each factor BJBi+1 being a semisimple right R-module. Then

sup{rt gl dim S, m} =£ rt gl dim JR =£ sup{rt gl dim S, m +1}

where m = sup{p.d. U\U a simple subfactor module of R / A } .

Proof. Let D < RR; so DA <3 Ss and DA £ D. There exists an epimorphism
a : (JR/A)a) -»• DID A for some index set I. Let Df 2 DA be such that DJDA =
a((Bj/A)a)). This gives the series

D = Do => Dx =>...=> Dk = DA.

We make the induction hypothesis that p.d. Dj+1*£sup{n-l, m} where n = rtgldimS.
Now p.d. Dk =p.d. D A s ^ s u p ( n - l , 0), using Lemma l.l(i). So the induction is well
based. In the short exact sequence

0 -+ Di+1 -^ A ^ A/A+ 1 -* 0
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p.d. Dj+]=£sup{n-l, m} and p.d. DJDi+1*£m. Hence, p.d. Dt =£sup{n- 1, m}. This ap-
plies to D and shows that rt gl dim R =£sup{n, m +1}.

COROLLARY 1.4 [9, Theorem 2.2]. Suppose that (R/A)R is semisimple. Then

rt gl dim S =£rt gl dim R =£rt gl dim S +1 .

Proof. In this case m =p.d. (.R/A)R. Therefore by Lemma l.l(iii), m =p.d. (S/A)s^
rt gl dim S. The corollary now follows.

The next theorem, which is a small extension of [14, Proposition 2.3 and 2.6], deals
with chain conditions in this setting.

THEOREM 1.5. Suppose that S is right Noetherian with Kdim S = a, and that (S/A)R is
Noetherian with Kdim(S/A)R = /3. Then R is right Noetherian with sup{a, |3}=£Kdim R =£
/3 + a.

Proof. [14, Proposition 2.3] shows that R is right Noetherian. Moreover, since SR is
finitely generated, it is clear that K dim RR = K dim SR s= K dim Ss = a; and it is obvious
that K dim R s= 0.

For the other inequality, we need to show, for any finitely generated right S-module
N, that K dim NR =£ |3 + K dim Ns. This we demonstrate by induction on K dim Ns = y say.
If y = 0, then Ns has a finite composition series each factor of which has Krull dimension
(over R) less than or equal to /3, by [14, Proposition 1.4(a)(ii)]; and so K dim NR =£/3 =
/3 + Y. If ? > 0 , consider any descending chain {Nk} of submodules of NR. There are
corresponding chains {NkS} and {NfcA} of submodules of Ns; and so, for large k,
Kdim(NkS/Nk+xS)s<y and Kd\m(NkA/Nk+-lA)s<y. By the induction hypothesis, for
each of these modules, K dimR <(3 + y. The lattice in Fig. 1 makes it clear that
K dim NJNk+1 < /3 + y, since K dim NiS/NjA s£ /3 and y > 0. Hence K dim NR =s 0 + 7.

NkS

Nk+,S
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4 J. C. ROBSON

2. Semiprime rings. In this section we first describe a technique for constructing
semiprime rings which are not direct sums of prime rings. Then, using the results of
Section 1, we show that these can be arranged to be Noetherian and of finite global
dimension.

NOTATION 2.1. Let n be an integer, n&2, and let R{ be a ring, Af an ideal of Re for
i = 1 , . . . , n. Suppose that, for each i, there exists an isomorphism 0f: RJA{ —* K for some
ring K. Then let T be the subset of fl #i defined by

T = {(r1; . . . , r j | 0,(r,) = OM) for all i, /}.

LEMMA 2.2. (i) T is a ring;
(ii) A; embeds as an ideal of T for each i via the map Oj —> ( 0 , . . . , 0, Oj, 0 , . . . , 0);

(iii)

(iv)

Proof. These are all easily verified.

LEMMA 2.3. (i) If each Re is an indecomposable ring, then so too is T.
(ii) If each Rf is right Noetherian with K dim Rt = at, then T is right Noetherian and

KdimT=sup{ai}.
(iii) / / each Rt is prime then T is semiprime but not prime.

Proof, (i) Suppose T = exT(&e2T is a decomposition of T with eu e2 being central
orthogonal idempotents, and I = c1 + e2. By Lemma 2.2(iv), each ef centralizes each i?,.
Thus ex, c2 are also central orthogonal idempotents of the ring R = n ^ r However, the
only central orthogonal idempotents of R are the sums of the elements IR. (the identity
element of Rt). And it is clear from the definition of T that the only such sums belonging
to T are 1 and 0. Hence T is indecomposable.

(ii) Evidently R = £ I R T and so is a finite centralizing extension of T. The result
follows from [5] or [8].

(iii) Suppose X is a nilpotent ideal of T. The isomorphism in Lemma 2.2(iv) shows,
for each j , that X c [ j A , ; and so X = 0. Clearly T is not prime, since AjA2 = 0.

In order to apply the global dimension results from Section 1, it is necessary to
choose the rings Rt with care. Note that D( ) denotes an idealizer.

NOTATION 2.4. For i = 1 , . . . , n, let S; be a ring, let Af be a proper right ideal of Sf

with SiAi = Si and let Rt be a subring of i(Aj) containing At and with J^/A; — K, a
semisimple ring. Let T be as specified in 2.1. Let S = nSj, R =Fl^i and A =11 A.

PROPOSITION 2.5.

(i) rt gl dim S =£rt gl dim T=^ 1 + rt gl dim S.
(ii) / / rtgldimS = 0 then rtgldimT=l.

https://doi.org/10.1017/S001708950000570X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950000570X
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(iii) p.d.(T/A)T = p.d.(S/A)s.
(iv) I/p.d.(S/A)s = 0 then p.d.(S/i?)T=£l.
(v) f/p.d.(S/A)s>0 then p.d.(S/R)T= l + p.d.(S/A)s.

Proof.
(i) By construction T/A-K which is semisimple; and SA = S. So Corollary 1.4

applies.
(ii) This is clear from (i) together with Lemma l.l(ii).

(iii) This follows from Lemma 1.1 (iii).
(iv) Since p.d.(S/A)s =0, then As, AT and each (Af)T has an idempotent generator

(as in the proof of Lemma 1.1 (iii)). But JRj-T/r iA and so p.d. RT = 0. Hence

(v) Since p.d.(S/A)s>0, it follows that AS, and hence AT also, does not have an
idempotent generator. The same, therefore, is true of (Afc)T for at least one k e { l , . . . , n}.
Hence the short exact sequences 0 -» A -> T -»• T/A -»• 0 and 0 ->r iA~* ' r ~*- R i~* ' 0

jV.i

are nonsplit, provided i^k. Hence p.d.(T/A)T = 1 + p.d. AT and p.d.(.Rj)T =
1 + sup p.d.(A,)T. Therefore

p.d. RT = supip.d.CRj)-,-} = 1 + sup{p.d.(A,)T} = 1 + p.d. AT.

Since p.d. J?T>0, then p.d.(S/-R)T = 1 + p.d. RT and thus

p.d.(S/i?)T = 2 + p.d.AT = l + p.d.(T/A)T = l + p.d.(S/A)s,
using (iii).

With more restrictions on i?f and Af more precision can be achieved, as the next two
results show.

THEOREM 2.6. / / p.d.(S/A)s = it gl dim S, then rt gl dim T = 1 + rt gl dim S.

Proof. If p.d.(S/A)s = 0 then rt gl dim S = 0 and the result follows from Proposition
2.5(ii). On the other hand, if p.d.(S/A)s>0, then Proposition 2.5(v) shows that
p.d.(SAR)-r= l+p.d.(S/A)s = 1 + rtgldim S and so, by Proposition 2.5(i), rtgldimT =
1 + rtgldimS.

THEOREM 2.7. If, for each i, R{ =D(Aj) with A; being a semimaximal right ideal of Sit

then
rt gl dim T = sup{rt gl dim S, 1 + p.d.(S/A)s}.

Proof. If U is a simple T-subfactor of S/T then U is a subfactor of either (S/R)T or
(R/T)T, each of which is semisimple. Therefore

sup{p.d. V) = sup{p.d.(S/R)T, p.d.(K/T)T}.

Now R/T is a T/A-module, and T/A is semisimple. Hence p.d.(.R/T)T=£p.d.(T/A)T =
p.d.(S/A)s by Proposition 2.5(iii). Also, by Proposition 2.5(iv) and (vi), p.d.(S/l?)T =£
l + p.d.(S/A)s. Hence sup{p.d. t/}=sl + p.d.(S/A)s and the result follows from Theorem
1.2.
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We now turn to some specific examples.

EXAMPLES 2.8.

(a) Let k be a field, D be the commutative polynomial ring fc[x,,..., x,,] and
= (x x , . . . , Xp). Then M is a maximal ideal with p.d. M = p. For i = 1 , . . . , n, let

and Ri=|(Ai) = [^ ^ ] . By [14, Theorems 2.2, 2.5],

together with symmetry, R{ is Noetherian with Krull dimension p; and clearly Rt is a
prime ring. Therefore by Lemma 2.3 T is a Noetherian, indecomposable semiprime ring
with Krull dimension p on each side.

Now gl dim Sf = gl dim D = p, and, since Sj/Aj corresponds, under Morita equivalence,
with D/M, then p.d.(Sj/Aj) = p. Thus p.d. SI A = p and so, by Theorem 2.7 and symmetry,
gldimT=p + l. Evidently T is also a P.I. ring.

(b) Let fc be a field of characteristic zero, and, for i = 1 , . . . , n, let S; be the first Weyl
algebra over k. It is well known that $ is a Noetherian integral domain with K dim Sf =
gldimSi = l. Take Af to be any nonzero right ideal of St, and let i?; = k + Aj. By [14,
Theorem 7.4] Rt is a Noetherian integral domain of Krull dimension 1. So T is an
indecomposable Noetherian semiprime ring with K d i m T = l . By Theorem 2.6,
rt gl dim T = 2 and, since T is Noetherian, It gl dim T = 2. Since each Rt is primitive, T is
semiprimitive.

(c) In both the previous examples gldim T>gldimS. This is not always the case,

however. For example, take D, M as in (a), with p>2 , and let E = which, as

noted in (a), has global dimension p. As a right E-module M2(D)IE~EIL where

L = is a maximal right ideal of E. Hence p.d. E/L = 1.

Let Si=M2(E), Af = and Rj =0(A). Arguing as in (a), it follows that T is

Noetherian, with Krull dimension p, and that gl dim T = gl dim S = p.

NOTE 2.9. (i) We note, in connection with [3], that in none of these examples is it the
case that p.d. U = gl dim T for all simple T-modules U. In fact T/A is a simple T-module
and p.d. T/A < gl dim T. For, by Proposition 2.5(iii), p.d.(T/A)T = p.d.(S/A)s > 0 and then

p.d.(T/A)T < 1+p.d.(S/A)s = p.d.(S/R)T ̂  gl dim T

by Proposition 2.5(v).
(ii) Let T be a Noetherian semiprime, but not prime, indecomposable ring, finite

over its centre C, as in Examples 2.8(a) and (c). Then C is indecomposable, Noetherian,
by [5] or [8], but not an integral domain [IS, 1.6.14]. Thus gldim C = °o.

(iii) In [19, Chapters 3, 4] commutative rings of global dimension 2 are constructed
by methods akin to those above. However, these are not Noetherian.
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3. Some prime rings of finite global dimension. In this section we describe the
constructions of some subrings R of a Dedekind prime ring S which turn out to be
Noetherian prime rings of finite global dimension. The basic facts required concerning S
can be found in [6]. In the particular case when S = M^ (D) for a discrete valuation ring D,
these examples are amongst those considered by Tarsy [17, 18] and V. A. Jategaonkar
[10, 11, 12], and by Fields [7]. When S is a (noncommutative) principal ideal domain,
Example 3.7 becomes one of the examples used by Stafford and Warfield [16].

EXAMPLE 3.1. Let S be a Dedekind prime ring with a nonzero maximal ideal, P say.
Then S/P3 — Jin(D) where D is an Artinian principal ideal ring, with radical M say, such
that D/M is a division ring and M3 = 0. Under the isomorphism, PIP3 corresponds to
Mn(M) and P2/P3 to M^iM2).

Let R be the subring of S containing P2 and with

D M M2 M2

D D M M2

D D D M

D D D D

D

M2

M2

M
D

MM2)

and let {ej(} be inverse images in S of the matrix units of Mn(D).

THEOREM 3.2. R is a Noetherian prime ring with K dim R = l, and with gl dim R =
n - 1 , provided n 5* 2.

We will split the proof into a number of steps. Note, however, that R contains the
right ideal A of S defined by A = ennS + P2, and SA = S. Thus the results of Section 1 are
applicable. It is easy to see that (S/A)R has finite length—and indeed a composition series
will be exhibited later. This, by Theorem 1.5, shows that R is right Noetherian and, by
symmetry, left Noetherian and that K dim JR = 1. The fact that P2 £ R shows that R and S
have the same quotient ring and so R is also prime.

In order to obtain the global dimension, it is convenient to consider "one-rowed"
right R-modules, i.e. right R-modules B with P2 <=, B c eyS + P2 for some i, /.

LEMMA 3.3. (i) For any i, j , e{iR + P2 is projective.
(ii) / / BRSejjS + P2 and BRcej7S + P2 satisfy ejiB + P2 = B', etjB' + P2 = B, then

p.d.B = p.d.B'.

Proof, (i) The map ((l-e^R +P2)© (euR +P2)—>• R, given by addition, is clearly
surjective and so splits; and it has kernel P2. However, P2 is a projective right ideal of S
and hence, by Lemma l.l(i), of R.
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(ii) The map a : B © P2 -*• B' via (b, x) -*• eitb + x yields a short exact sequence

and it is thus clear that p.d. B = p.d. B'.

Thus, in effect, each row is the same as any other. We can therefore concentrate on
one row—the first say. We set I = I{nu n2, n3) to be the .R-submodule of e^S + P2

containing P2 and with

'D...D M...M M2...M2'

IIP2 0 . . . 0 -A,(M2)/A,(M2)

.0 . . . 0J

where the numbers of D, M and M2 terms in the first row are nly n2, n3 respectively.
Similarly, J = J(n1, n2, n3) is the J?-submodule of e^S + P3 containing P3 and with

2 M 2

J /p3 f M . - . M M2...M2 0 . . . 0 J

where n1; n2, n3 are the numbers of M, M2 and 0 terms in the first row.

LEMMA 3.4. (i) p.d. J(nlt n2, n3) = p.d. I(nl, n2, n3).
(ii) If n1>0 then I(n1; 1, n-Hx-1) is projective.
(iii) If nj>0 and n2> 1 then I(nu n2, n3) is not projective.
(iv) I / t t jX) and n2^l then p.d.I(n1,n2,n3) = n2-l.

Proof, (i) Note that both P and P"1 are projective as right or left JR -modules, and
that I®P — J, J®P~l — I. Thus any projective resolution for I yields one for J and vice
versa.

(ii) This follows immediately from Lemma 3.3.
(iii) We may view I*, the dual of I, as a subset of Q, the quotient ring of R and of S.

Evidently I*IP2^P~2/P2 which can again be viewed as a collection of nXn matrices
(^S/P4 in fact). It is easy to check that the matrices in J*/P2 must have elements only
from M in the first nx entries of column 1. But that alone ensures that 1<£II* and so, by
the dual basis lemma, I is not projective.

(iv) Note, by (ii) and (iii), if n ^ O , then I(nlt n2, n3) is projective if and only if n 2
= 1-

It is easy to check that

u n2, n3) = I(nu 1, n2 + n3 -1) + /(r^ + n2 ,1, n3 -1 )
and

J(rii + 1, n2-1, n3) = I{nu 1, n2+ n3-l)n J(nj + n2 ,1 , n3-1) .

This, of course, yields a short exact sequence whose middle term is projective by (i) and
(ii). By (i) the kernel has the same projective dimension as has /(nx + l, n 2 - l , n3).
Induction on n2 yields the result.
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Proof of Theorem 3.2. The chain

I(n, 0,0) => I(n - 1 , 1 , 0) => . . . => 7(1, n -1 ,0 ) => 7(1, n - 2,1) =>...=> 7(1,1, n - 2)

together with the similar chains inside each eHS + P2, i =* 2, has simple factors and includes
all the simple modules U required in order to apply Theorem 1.2. It is clear from 3.4 that
sup{p.d. U} = n — 1, with the supremum being achieved by U = 1(2, n — 2,0)/7(l, n — 1, 0).
Hence gl dim R = n — 1.

NOTE 3.5. Arguments similar to those involved in Theorem 3.2 apply if P is a finite
intersection of nonzero maximal ideals of S. Then S/P3 is a direct product of matrix rings
as described in Example 3.1, FI-^OA) say. If R is chosen to be the subring containing
P2, with RIP2 being the direct product of the appropriate subrings of these matrix rings
then gl dim R = supir^ — 1} provided some nf s= 2. Again R is prime Noetherian of Krull
dimension 1.

COROLLARY 3.6 [10]. If B is a (commutative) discrete valuation ring with maximal
ideal M then the subring

~B M M2 ... M2

B B M

LB B B

M2

M
B J

of ^C(B) has global dimension n — 1.

EXAMPLE 3.7. First, let K be a division ring. We aim to describe a subring Tn of

MAK). Let I\ = [* £ ] c M2(K), and, inductively, Tm+1 = [£" ^ ] c M2(Tm).
Now let S be a Dedekind prime ring, P a maximal ideal such that

let R be the inverse image in S of Tn.
M2~(K), and

THEOREM 3.8. R is a Noetherian prime ring of Krull dimension 1 and global dimen-
sion n.

The proof is similar to that of Theorem 3.2 although some of the details are rather
more complicated. We merely sketch the proof.

Note first that the right ideal A of S which is the inverse image in S of the right ideal

"0 .

0 .
-K.

.. o -

. . 0
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is, in fact, a right ideal of R and, moreover, SA = S. Thus the results of Section 1 are
applicable. Furthermore, S/A has finite length over K and hence over R. As before, it
follows that R is Noetherian of Krull dimension 1; and since P^R, R is a prime ring with
the same quotient ring as S.

In order to calculate the projective dimensions of simple composition factors of S/R
we consider a chain of submodules between the inverse images in S of eiiM2-(K) and
euTn, i.e. of

\KK...K1 TK0. . .01I o J and L o I
First we describe the chain inside M2«(K). Set Ao, A,, A 2 , . . . to be

[KK...KKK1 \KK...KK0~\ [KK...K001

L o H o J'L o J
or

[KK...KKKI IKK... KK 01 [K K. . . K 0 0], . . .
for short. Let A*, A*, A*,... be their inverse images in S. These are the "one-rowed"
right R-modules of interest here; and again it is enough to concentrate just on the first
row. Note that the only At which are projective are those with A; being identical with
one of the rows of Tn. Such Af we will call principal projectives of Tn. Now each At can be
subdivided, taking the first and second halves of its entries, to give two similar rows in
Tn^: say Af =(Bh Q). Inductively, we suppose projective resolutions of Bf and Q are
known, involving only principal projectives of Tn_u and maps involving additions of rows.
Thus if D is a one-rowed module from Tn_1 let

be the projective resolution for D with each Qj = Z®P,ic where the P,k are principal
projectives of Tn_,.

Now, given any principal projective P of Tn_t, there are two related principal
projectives of Tn: one formed by preceding P by Ki2"'n, the other by following P by 2"~'
zeros. We write (K, P) and (P, 0) for short, and let (K, Q) denote I ©(K, Pik). Then

0 -»(Qr, 0) -»(Qr_,, 0) 0 (Qr, Qr) - * . . . ->

(Qi, 0)® (Q2, Q2) ̂  (K, 0)®(Q,, Q,) -* (K, D) -> 0
and

0-^(Qr ,0)->. . . -»(Q2,0)->(Q1,0)->(D,0)-»0

are both projective resolutions of these one-rowed modules of Tn of the same type.
Note next that each Af either has the form (K, D) or (D, 0) for some D. Thus we

obtain projective resolutions for each Ai; of maximal length n —1. The form of these
resolutions means that they can easily be lifted to give resolutions of the A*; and, as
before, it can be checked that these are indeed of minimal length. The result then follows
from 1.2.
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