ON A COVERING SURFACE OVER AN ABSTRACT RIEMANN SURFACE

MAKOTO OHTSUKA*

1. Let \mathfrak{N} be an abstract Riemann surface in the sense of Weyl-Radó, and \mathfrak{N} an open covering surface over \mathfrak{N} . If a curve $C = \{P(t); 0 \leq t < 1\}$ on \mathfrak{N} tends to the ideal boundary of \mathfrak{N} but its projection terminates at an inner point of \mathfrak{N} as $t \to 1$, we shall say that C determines an *accessible boundary point* (which will be abbreviated by A.B.P.) of \mathfrak{N} relatively to \mathfrak{N} . The set of all the A.B.P.s¹⁾ of \mathfrak{N} relative to \mathfrak{N} will be called *accessible boundary* (relative to \mathfrak{N}) and denoted by $\mathfrak{A}(\mathfrak{N})$ or by $\mathfrak{A}(\mathfrak{N}, \mathfrak{N})$. Throughout in this paper $\mathfrak{A}(\mathfrak{N})$ will be supposed to be non-empty.

After K. I. Virtanen [12] we shall use the notation (B_0) to denote the class of Riemann surfaces, on which no one-valued and non-constant bounded harmonic function exists.

In the first place in this note we shall define harmonic measure $\omega(P)$ of $\mathfrak{A}(\mathfrak{R})$ and show that if $\omega(P) > 0$ then $\mathfrak{R} \notin (B_0)$.

We suppose next that the projection of \Re is compact in $\underline{\Re}$ and that the universal covering surface \Re^{∞} of \Re is of hyperbolic type. Then \Re^{∞} is mapped conformally onto a unit circular domain U:|z| < 1, and we obtain a function f(z) which maps U into $\underline{\Re}$, corresponding to the mappings $U \to \Re^{\infty} \to \Re \to \underline{\Re}$. If f(z) tends to a value $f(e^{i\theta})$ as $z \to e^{i\theta}$ along every Stolz's path²ⁱ³ a.e. (= almost everywhere) on $\Gamma:|z| = 1$, \Re will be called of *F*-type (relatively to $\underline{\Re}$) (cf. [7], Chap. III, § 2).

In §5 of this note we shall show that $\omega(P) \equiv 1$ for \Re of F-type and give a condition so that \Re is of F-type, generalizing a result in [7].

Finally we shall remark some relations between concepts defined in this note.

2. We consider the class $\mathfrak{B}(\mathfrak{R})$ of all the non-negative continuous super-Received November 7, 1951.

^{*} This work was done by the writer as a fellow of the Yukawa Foundation of Osaka Uinversity.

¹⁾ Any equivalency of A.B.P.s is not considered here.

²⁾ By a Stolz's path we mean a path which terminates at a point on Γ and lies between two chords through the point.

³⁾ When f(z) has this property, we shall say that f(z) has an angular limit at $e^{i\theta}$ and call $f(e^{i\theta})$ the angular limit at $e^{i\theta}$.

harmonic functions $\{v(P)\}$ on \Re such that $v(P) \leq 1$ and $\lim v(P) = 1$ when P tends to $\Re(\Re)$ along every curve determining an A.B.P. of \Re relative to $\underline{\Re}$. This class is non-empty, since the constant 1 belongs to it. The lower cover $(= \inf \max \text{ at every point})$ of $\mathfrak{B}(\Re)$ is harmonic on \Re by Perron-Brelot's principle (cf. [7], Chap. I, §1), and will be denoted by $\mu(P, \mathfrak{A}(\Re))$.

First we suppose that the universal covering surface $\underline{\mathfrak{M}}'^{\infty}$ of the projection $\underline{\mathfrak{M}}'$ of \mathfrak{N} into $\underline{\mathfrak{M}}$ is of hyperbolic type; that is, if $\underline{\mathfrak{M}}'$ is of genus zero it is conformally equivalent to a plane domain with at least three boundary points, if $\underline{\mathfrak{M}}'$ is of genus one it is open, and if the genus is greater than one $\underline{\mathfrak{M}}'$ is required to fulfill no further condition. We define harmonic measure (function) $\omega(P)$ of $\mathfrak{N}(\mathfrak{R})$ by means of $\mu(P, \mathfrak{N}(\mathfrak{R}^{\infty}, \underline{\mathfrak{R}}))$, which may be regarded as a one-valued function on \mathfrak{R} .

The universal covering surface \Re^{∞} of \Re is also of hyperbolic type and mapped conformally onto U: |z| < 1. It can be shown that the images in U of a curve determining an A.B.P. of \Re terminate at points on $\Gamma: |z| = 1$, which are equivalent with respect to a Fuchsian group, and that, f(z) denoting mapping function of U into \Re , f(z) has an angular limit at any point $e^{i\theta}$ on Γ , where an image of a determining curve of an A.B.P. terminates.⁴⁾ We shall call the set of all the points on Γ , which correspond to A.B.P.s of \Re , the image on Γ of $\Re(\Re)$.

We will now give

THEOREM 1. Let \Re be an open covering surface over an abstract Riemann surface $\underline{\mathfrak{R}}$, and suppose that the universal covering surface of the projection $\underline{\mathfrak{N}}'$ of \Re into $\underline{\mathfrak{N}}$ is of hyperbolic type. Then the image E on Γ of $\mathfrak{A}(\Re)$ is linearly measurable and the value of the harmonic measure $\mu(z, E)$ in U of E is equal to the value of $\mu(P, \mathfrak{A}(\Re^{\infty}))$ at any corresponding points.

Proof. In case $\underline{\mathfrak{N}}^{\infty}$ is of hyperbolic type, map it conformally onto $U_w: |w| < 1$. *E* coincides with the place on Γ , where any branch of the function corresponding to the mappings $U \to \underline{\mathfrak{N}} \to \underline{\mathfrak{N}}^{\infty} \to U_w$ has limits lying in U_w . Namely, *E* is the complement of the set *E'* on Γ , where the branch has radial limits on |w| = 1 or has no limit. Since *E'* is linearly measurable (cf. [7], Chap. IV,§3),⁵⁾ *E* is so too.

In case \mathfrak{A}^{∞} is of parabolic or elliptic type, map it conformally onto $|w| < \infty$ or $|w| \leq \infty$. Since \mathfrak{A}'^{∞} is of hyperbolic type, any branch of the function mapping U into the w-plane does not take at least three values w_1 , w_2 and w_3 . Map further the universal covering surface of the complement of w_1 , w_2 , w_3 onto U_{ω} : |w| < 1, and let $\omega = F(z)$ be any branch of the function corresponding to the composed mappings. To w_1 , w_2 , w_3 there correspond an enumerably infinite number

⁴⁾ These results were stated in [7], Chap. III, §1 under the assumption that the projection <u>𝔅</u> is compact in 𝔅.

⁵⁾ The method in proving the measurabliity of E' is available also to show the measurability of E directly.

of points $\{\omega_i\}$ on $|\omega| = 1$. *E* is classified into the following two parts: E_1 where F(z) has radial limits lying in U_{ω} , and E_2 , which is a subset of the set E'_2 where the radial limits of F(z) are equal to some of $\{\omega_i\}$. E'_2 is linearly measurable and its measure is zero by Riesz's theorem [9], and the measurability of E_1 follows for the same reason as in the first case. Thus $E = E_1 + E_2$ is measurable.

The harmonic measure $\mu(z, E)$ of E is equal to the lower cover of the class $\mathfrak{B}(U)$ consisting of all the non-negative continuous super-harmonic functions $\{v(z)\}$ in U, each of which is ≤ 1 and tends to 1 as z approaches every point of E. If v(z) is considered on \mathfrak{R}^{∞} , it belongs to $\mathfrak{B}(\mathfrak{R}^{\infty})$ and hence

$$\mu(P(z), \mathfrak{A}(\mathfrak{R}^{\infty})) \leq \mu(z, E).$$

Conversely let $v_1(P)$ be any function of $\mathfrak{V}(\mathfrak{R}^{\infty})$ and consider it in U. Then its radial limit equals 1 at every point of E. Letting $\rho \to 1$ in inequalities

$$\begin{aligned} v_{1}(P(z)) &\ge \frac{1}{2\pi} \int_{0}^{2\pi} v_{1}(P(\rho e^{i\varphi})) \frac{\rho^{2} - r^{2}}{\rho^{2} + r^{2} - 2\rho r \cos(\theta - \varphi)} d\varphi \\ &\ge \frac{1}{2\pi} \int_{e^{i\varphi} \in E} v_{1}(P(\rho e^{i\varphi})) \frac{\rho^{2} - r^{2}}{\rho^{2} + r^{2} - 2\rho r \cos(\theta - \varphi)} d\varphi \quad (z = re^{i\theta}, \ \rho > r), \end{aligned}$$

we have by Lebesgue's theorem

$$v_1(P(z)) \ge \frac{1}{2\pi} \int_{e^{4\tau} \in E} \frac{1-r^2}{1+r^2-2r\cos(\theta-\varphi)} d\varphi = \mu(z, E).$$

Consequently we obtain the reverse inequality

$$\mu(P(z), \mathfrak{A}(\mathfrak{R}^{\infty})) \geq \mu(z, E).$$

Thus there holds the equality and the theorem is proved.

3. As preparation for the definition of $\omega(P)$ in the case when $\underline{\mathfrak{M}'}^{\infty}$ is not of hyperbolic type, we shall prove the following lemma, which will be used also in §5.

LEMMA. Let the universal covering surface \Re^{∞} of \Re be of hyperbolic type and map it conformally onto U. Suppose that the mapping function f(z) of U into $\underline{\Re}$ has an angular limit at every point $e^{i\theta}$ belonging to a measurable set $E \subset \Gamma$. Take a finite number of points $\{\underline{P}_i\}$ (i = 1, 2, ..., n) on $\underline{\Re}$ and remove from \Re all the points lying over them so that the projection of the remaining surface $\tilde{\Re}$ has a universal covering surface of hyperbolic type.

Then there holds at any corresponding points

$$\mu(z, E) \leq \mu(P, \mathfrak{A}(\widehat{\mathfrak{R}}^{\infty})).$$

Proof. Map \mathfrak{H}^{∞} onto $U_{\zeta}: |\zeta| < 1$ and denote the image on $\Gamma_{\zeta}: |\zeta| = 1$ of $\mathfrak{H}(\mathfrak{H}^{\infty})$ by E_{ζ} . Then by Theorem 1 $\mu(P, \mathfrak{H}(\mathfrak{H}^{\infty})) = \mu(\zeta, E_{\zeta})$. Hence we shall show $\mu(z, E) \leq \mu(\zeta, E_{\zeta})$ under the assumption that the linear measure m(E) > 0.

Let E' be any measurable subset of positive measure of E. Any image in U_{ζ} of a Stolz's path terminating at a point of E' terminates at a point of E_{ζ} . We shall call the set of all such end-points on E_{ζ} the angular image on E_{ζ} of E'. In the following we shall show that the angular image on E_{ζ} of E' has a positive linear inner measure.

Consider a non-constant one-valued meromorphic function on $\underline{\mathfrak{R}}$ and combine it with f(z). The function F(z) thus defined in U is also non-constant one-valued and meromorphic. Let $E'' \subset E'$ be the set where the limits of f(z)are equal to some of $\{\underline{P}_i\}$. Then F(z) has also a finite number of values as its angular limits at points of E''. E'' is measurable and Lusin-Priwaloff's theorem $[2]^{6}$ shows that the linear measure of E'' is zero. Hence m(E' - E'')= m(E') > 0. Denote the angular domain: $|\arg(1 - e^{-i\theta}z)| < \frac{\pi}{4}$ at $e^{i\theta}$ by $A(\theta)$. By Egoroff's theorem we can find a closed subset F of positive linear measure of E' - E'' such that f(z) tends to the angular limit $f(e^{i\theta})$ uniformly as $z \to e^{i\theta}$ $\in F$ from the inside of $A(\theta)$. In the usual way we get a domain $D \subset U$, which contains an end-part of every $A(\theta)$ for $e^{i\theta} \in F$ and is bounded by a rectifiable curve C consisting of F and segments lying on the boundaries of $\{A(\theta); e^{i\theta} \in F\}$. The number of points $\{z_k\}$ corresponding to $\{\underline{P}_i\}$ and lying on D+C is finite, because $f(z) \rightarrow f(e^{i\theta})$ uniformly in D and $\{f(e^{i\theta}); e^{i\theta} \in F\}$ is a closed set not containing the points $\{P_i\}$. By removing $\{z_k\}$ from D+C by rectifiable crosscuts we obtain a simply-connected subdomain D_1 with F on its boundary. Map D_1 onto $U_x: |x| < 1$. Then F is transformed to a closed set F_x of positive linear measure on Γ_x : |x| = 1 in virtue of Riesz's theorem ([9], [8]). The mapping of D_1 onto a subdomain D_{ζ} of U_{ζ} is one-to-one continuous, with their boundaries included. In the mapping $U_x \rightarrow D_\zeta$ the linear measure of the image F_ζ on Γ_ζ of F_x is greater than $m(F_x) > 0$ on account of the extension of Löwner's lemma (cf. [7], Chap. IV, §3), where $\zeta = 0$ is supposed to correspond to x = 0 without loss of generality. Accordingly $m(F_{\zeta}) > 0$. Since F_{ζ} is contained in the angular image of F on E_{ζ} , the angular image on E_{ζ} of $E' \supset F$ has a positive linear inner measure.

Once established this fact, the rest of the proof of our lemma is carried as follows. The function $\mu(\zeta, E_{\zeta})$ can be regarded as a one-valued bounded harmonic function in U. By Fatou's theorem it has angular limits a.e. on Γ . Denote the subset of E, where this function has angular limits less than 1, by E_1 , and its angular image on E_{ζ} by $E_{\zeta}^{(1)}$. At every point of $E_{\zeta}^{(1)}$ there terminates a curve along which $\mu(\zeta, E_{\zeta})$ tends to a value <1, and so $\mu(\zeta, E_{\zeta})$ can not have the angular limit 1 at any point of $E_{\zeta}^{(1)}$. Hence the inner measure $\underline{m}(E_{\zeta}^{(1)}) = 0$, because if $\underline{m}(E_{\zeta}^{(1)}) > 0$ then $\mu(\zeta, E_{\zeta})$ would have the angular limit 1 at a certain point of $E_{\zeta}^{(1)} \subset E_{\zeta}$. As we have seen that $\underline{m}(E_{\zeta}^{(1)}) > 0$ follows from $m(E_1) > 0$,

⁶⁾ For its generalization, cf. [10] and [7], Chap. III, §2.

there must hold $m(E_1) = 0$. Thus $\mu(\zeta, E_{\zeta})$, which is considered as a function in U, has the radial limit 1 a.e. on E. Consequently we have $\mu(z, E) \leq \mu(\zeta, E_{\zeta})$.

Using this lemma the following theorem is proved:

THEOREM 2. Suppose that $\underline{\mathfrak{M}'}^{\infty}$ is of hyperbolic type. Take a finite number of points $\{\underline{P}_i\}$ (i = 1, 2, ..., n) on $\underline{\mathfrak{R}}$, remove from \mathfrak{R} all the points lying over them and denote the remaining surface by \mathfrak{R} . Then there holds

$$\mu(P, \mathfrak{A}(\mathfrak{R}^{\infty})) = \mu(P, \mathfrak{A}(\mathfrak{R}^{\infty})).$$

Proof. Map \mathfrak{N}^{∞} and \mathfrak{N}^{∞} onto U and U_{ζ} , and let E and E_{ζ} be the images on Γ and Γ_{ζ} of $\mathfrak{A}(\mathfrak{N}^{\infty})$ and $\mathfrak{A}(\mathfrak{N}^{\infty})$ respectively. Since $\mu(P, \mathfrak{A}(\mathfrak{N}^{\infty})) = \mu(z, E)$ and $\mu(P, \mathfrak{A}(\mathfrak{N}^{\infty})) = \mu(\zeta, E_{\zeta})$, we want to prove $\mu(z, E) = \mu(\zeta, E_{\zeta})$ at corresponding points. One inequality $\mu(z, E) \leq \mu(\zeta, E_{\zeta})$ follows from the above lemma.

On the other hand, every radius terminating at a point on E_{ζ} is transformed to a curve in U which terminates at a point of E or at one of the inner points $\{z_n\}$ corresponding to $\{\underline{P}_i\}$. It is easily shown that E coincides with the set of all such end-points on Γ . Since the number of $\{z_n\}$ is at most enumerably infinite, the part $E'_{\zeta} \subset E_{\zeta}$ which corresponds to $\{z_n\}$ has linear measure zero. If $\zeta = 0$ corresponds to z = 0, $m(E_{\zeta}) = m(E_{\zeta} - E'_{\zeta}) \leq m(E)$ on account of the extension of Löwner's lemma. Hence there follows the reverse inequality $\mu(z, E) \geq \mu(\zeta, E_{\zeta})$, and the required equality is obtained.

Let us now define the harmonic measure $\omega(P)$ of $\mathfrak{N}(\mathfrak{R})$ when \mathfrak{N}'^{∞} is not of hyperbolic type. Take one or two or three points on \mathfrak{R} and remove from \mathfrak{R} all the points lying over them so that the projection of the remaining surface \mathfrak{R} has a universal covering surface of hyperbolic type. We define harmonic measure $\omega(P)$ of $\mathfrak{N}(\mathfrak{R})$ by $\mu(P, \mathfrak{N}(\mathfrak{R}^{\infty}, \mathfrak{R}))$. Since every removed point of \mathfrak{R} is isolated, $\omega(P)$ becomes harmonic everywhere on \mathfrak{R} . To avoid any possible ambiguity, we must, and shall, show that $\omega(P)$ is determined independently of the position of the points selected on \mathfrak{R} .

Take a finite number of points on $\underline{\mathfrak{N}}$ in another way, remove all the points lying over them from \mathfrak{N} and $\widetilde{\mathfrak{N}}$, and denote the remaining surfaces by $\widehat{\mathfrak{N}}$ and $\hat{\mathfrak{N}}$ respectively. The universal covering surface of the projection into $\underline{\mathfrak{N}}$ of $\widehat{\mathfrak{N}}$ is supposed to be of hyperbolic type here. On account of Theorem 2 we have

$$\omega(P) = \mu(P, \mathfrak{A}(\mathfrak{A}^{\infty})) = \mu(P, \mathfrak{A}(\mathfrak{A}^{\infty})) = \mu(P, \mathfrak{A}(\mathfrak{A}^{\infty})).$$

Thus the harmonic measure $\omega(P)$ of $\mathfrak{A}(\mathfrak{R})$ has been defined in all cases.

4. Prior to show a relation between $\omega(P)$ and the class (B₀), we shall state some related results obtained recently.

Let \mathfrak{N} be a covering surface over the *w*-plane, *K* be a circular domain in the plane, and \mathfrak{D} be a domain of \mathfrak{N} , which lies over *K* and whose boundary in \mathfrak{N}

lies over the boundary of K. Y. Nagai $[5]^{7}$ and M. Tsuji [11] found independently that if \mathfrak{D} does not cover a set of positive capacity in K then \mathfrak{R} has a positive boundary,⁸⁾ and Y. Nagai [5] showed that, n(w) denoting the number of points of \mathfrak{R} lying over w, if the set $\{w; n(w) < \sup n(w)\}$ is of positive capacity, then K and \mathfrak{D} can be chosen such that \mathfrak{D} does not cover a set of positive capacity in K. Further map the universal covering surface of \mathfrak{D} onto U and denote the mapping function of U into the w-plane by f(z). A. Mori [4] proved the following theorem: $\mathfrak{R} \notin (B_0)$ if it does not arise that almost all radial limits of f(z) lie on the boundary of K; and also showed that the requirement in this theorem is fulfilled if \mathfrak{D} does not cover a set of positive capacity in K.

In this section we will prove

THEOREM 3. Let \Re be a covering surface over an abstract Riemann surface $\underline{\Re}$. If the harmonic measure $\omega(P)$ of the accessible boundary $\mathfrak{A}(\mathfrak{R})$ is positive, then $\Re \notin (B_0)$.

Proof. Without loss of generality we may suppose that \mathfrak{M}^{∞} is of hyperbolic type. Let $\{\mathfrak{S}_n\}$ be a sequence of triangulations of \mathfrak{M} such that \mathfrak{S}_{n+1} is a subdivision of \mathfrak{S}_n and \mathfrak{S}_n becomes as fine as we please when $n \to \infty$. We denote the triangles of \mathfrak{S}_n by $\{\mathcal{A}_i^{(n)}\}$ $(i = 1, 2, \ldots; \text{ finite or infinite}).^{9)}$ Map \mathfrak{N}^{∞} onto U and denote the function corresponding to $U \to \mathfrak{N}^{\infty} \to \mathfrak{N} \to \mathfrak{N}$ by f(z). The set on Γ , where the radial limits of f(z) lie in $\mathcal{A}_i^{(n)}$, will be denoted by $E_i^{(n)}$. Then every $E_i^{(n)}$ is linearly measurable and the image on Γ of $\mathfrak{N}(\mathfrak{M})$ is equal to $\sum_i E_i^{(n)}$ for each n. If there is such an $E_i^{(n)}$ as $0 < m(E_i^{(n)}) < 2\pi$, its harmonic measure in U is transformed into a one-valued non-constant harmonic function on \mathfrak{N} . Thus the required function is obtained.

On the contrary, suppose that for every *n* there existed i(n) such that $m(E_{i(n)}^{(n)}) = 2\pi$. Then $E_{i(n)}^{(n)} \supset E_{i(n+1)}^{(n+1)}$ and $\mathcal{A}_{i(n)}^{(n)} \supset \mathcal{A}_{i(n+1)}^{(n+1)}$. If we compose a nonconstant meromorphic function $\mathcal{O}(\underline{P})$ on \mathfrak{M} and f(z), the angular limits of the composed function F(z) would be equal to one and the same value $\mathcal{O}(\bigcap_{n=1}^{\infty} \mathcal{A}_{i(n)}^{(n)})$ at every point of $\bigcap_{n=1}^{\infty} E_{i(n)}^{(n)}$ with $m(\bigcap_{n=1}^{\infty} E_{i(n)}^{(n)}) = 2\pi$. On account of Lusin-Priwaloff's theorem F(z) would be a constant and this is a contradiction, which completes the proof.

THEOREM 4. Let \Re be a covering surface over an abstract Riemann surface $\underline{\Re}$. If \Re does not cover a set of positive capacity on $\underline{\Re}$,¹⁰ then $\omega(P) > 0$.

7) His statement is of a slightly different form.

- 9; $\{\Delta_i^{(n)}\}$ are made half open so that they are mutually disjoint for every fixed n.
- ¹⁰⁾ This means that the image in a parameter circle, corresponding to a certain neighborhood on M, is of positive capacity.

⁸⁾ As is known, a Green's function exists on N if and only if N has a positive boundary. Cf. [7], Chap. II, §4.

Proof. First suppose that $\underline{\mathfrak{N}}^{\infty}$ is of hyperbolic type, and map \mathfrak{N}^{∞} and $\underline{\mathfrak{N}}^{\infty}$ onto U and $U_w: |w| < 1$ respectively. Any branch of the function corresponding to $U \to \mathfrak{N}^{\infty} \to \underline{\mathfrak{N}}^{\infty} \to U_w$ will be denoted by w = F(z). F(z) does not take values of a set of positive capacity in U_w and the image E on Γ of $\mathfrak{N}(\mathfrak{R})$ coincides with the place where F(z) has limits lying inside U_w . Hence by Frostman's theorem [2] for functions of class (U), m(E) > 0. Thus $\omega(P) = \mu(z, E) > 0$. The case when $\underline{\mathfrak{N}}^{\infty}$ is not of hyperbolic type is now easily treated.

COROLLARY. Let \mathfrak{D} and \mathfrak{D} be domains of \mathfrak{R} and \mathfrak{R} respectively such that \mathfrak{D} lies over \mathfrak{D} and the boundary of \mathfrak{D} in \mathfrak{R} does not lie over the inside of \mathfrak{D} . If \mathfrak{D} does not cover a set of positive capacity in \mathfrak{D} then $\omega(P)$ of $\mathfrak{A}(\mathfrak{R})$ is positive.

For, the harmonic measure of $\mathfrak{A}(\mathfrak{D}, \mathfrak{D})$ is positive by Theorem 4. On account of the extension of Löwner's lemma $\omega(P)$ of $\mathfrak{A}(\mathfrak{R}, \mathfrak{R})$ is greater than it and hence is positive.

5. Theorem 3 is trivial when $\omega(P)$ is not a constant, and is interesting only when $\omega(P) \equiv 1$.

THEOREM 5. Let \Re be a covering surface of F-type over \Re . Then $\omega(P) \equiv 1$.

Proof. If $\underline{\mathfrak{M}}'^{\infty}$ is of hyperbolic type, $\omega(P) = \mu(z, E) \equiv 1$ by Theorem 1, where E is the image on Γ of $\mathfrak{A}(\mathfrak{R})$.

In the case when $\underline{\mathfrak{M}}^{\prime \infty}$ is not so, define $\widetilde{\mathfrak{R}}$ as in §3 and map $\widetilde{\mathfrak{R}}^{\infty}$ onto $U_{\zeta}: |\zeta| < 1$. We shall denote the image on $|\zeta| = 1$ of $\mathfrak{A}(\widetilde{\mathfrak{R}})$ by E_{ζ} , and the set on Γ , where the mapping function of U into $\underline{\mathfrak{R}}$ has angular limits, by E. Then by Lemma in §3 there follows $\mu(z, E) \leq \mu(\zeta, E_{\zeta})$ at corresponding points. Since $m(E) = 2\pi$, we have $\omega(P) = \mu(\zeta, E_{\zeta}) = \mu(z, E) \equiv 1$.

We next give a condition under which \Re becomes of F-type, by

THEOREM 6. (Extension of Theorem 3.3 in [7].) Let \Re be a covering surface over an abstract Riemann surface $\underline{\Re}$ such that the projection of \Re is compact in $\underline{\Re}$, and denote the number of points of \Re lying over $\underline{P} \in \underline{\Re}$ by $n(\underline{P})$, computing the multiplicity at each branch point of \Re . If the set $\underline{E} = \{\underline{P} \in \underline{\Re}; n(\underline{P}) < N = \sup n(\underline{P})\}$ is of positive capacity on \Re , then \Re is of F-type.

Proof. The set $\underline{E}_k = \{\underline{P}; n(\underline{P}) \leq k\}$ is a closed set for each k. Since $\underline{E} = \bigcup_{\substack{0 \leq k < N \\ 0 \leq k < N}} \underline{E}_k$ and is of positive capacity, there exists the smallest number k_0 for which \underline{E}_{k_0} is of positive capacity. If $k_0 = 0$ there follows $\Re \notin (B_0)$ from Theorems 4 and 3. The set $\underline{E}_{k_0}^b - \underline{E}_{k_0}^b \cap \underline{E}_{k_0-1}$ for $k_0 > 0$ is also of positive capacity, where $\underline{E}_{k_0}^b$ denotes the boundary in \Re of $\underline{E}_{k_0}^b$. Let \underline{P}_0 be an arbitrary point of its transfinite kernel. There lie $l \leq k_0$ points of $\Re : P_1, P_2, \ldots, P_l$, over \underline{P}_0 . Over a sufficiently small neighborhood \underline{N} on $\underline{\Re}$ of \underline{P}_0 there exists another connected piece \mathfrak{D} of \Re than those containing $\{P_j\}$ $(1 \leq j \leq l)$. Since this domain

 \mathfrak{D} does not cover a set of positive capacity in \underline{N} , $\omega(P) > 0$ by Corollary of Theorem 4 and hence $\mathfrak{R} \not \in (\mathbf{B}_0)$ by Theorem 3.¹¹⁾ Thus \mathfrak{R} has a positive boundary.

Map \mathfrak{N}^{∞} , which is of hyperbolic type, onto U, and consider a Green's function G(P) on \mathfrak{N} as a function in U. The angular limit of G(P(z)) is equal to 1 at every point of a set G_z of linear measure 2π (cf. [6], Chap. VII). In a similar manner as in the proof of Lemma in §3, we get a domain D in U such that it contains an end-part of the angular domain: $|\arg(1-e^{-i\theta}z)| < \frac{\pi}{2} - \frac{1}{p}$ (>0) at every point $e^{i\theta}$ of a closed set $F_n \subset G_z$ with $m(F_n) > 2\pi - \frac{1}{n}$ and is bounded by a rectifiable curve C and $G(P(z)) \to 0$ uniformly as $z \to F_n$ from the inside of D. Since $G(P_j) > 0$ $(1 \le j \le l)$, the image of $\{P_j\}$ in D or on C consists of a finite number of points. We remove these points from D+C by rectifiable cross-cuts such that the remaining domain D_1 is simply-connected and F_n lies on its boundary. Map D_1 onto $U_{\zeta}: |\zeta| < 1$ and consider in U_{ζ} the function f(z)which maps U into \mathfrak{N} . Since the image on \mathfrak{N} of D_1 dose not contain points near $\{P_j\}$, it does not cover a set of positive capacity on \mathfrak{N} . Hence by Theorem 3.3 in [7] $f(z(\zeta))$ has angular limits a.e. on $\Gamma_{\zeta}: |\zeta| = 1$.

Now we denote the angular domain: $|\arg(1-e^{-i\theta}z)| < \frac{\pi}{2} - \frac{2}{p}$ at $e^{i\theta}$ by $A_p(\theta)$. By the method in proving the angular proportionality at boundary points in conformal mapping (cf. [1]), we can show that an end-part of $A_p(\theta)$ at $e^{i\theta} \in F_n$ is transformed to a domain inside an angular domain at $\zeta(e^{i\theta})$ when D_1 is mapped onto U_{ζ} . Thus f(z) has a limit from the inside of $A_p(\theta)$ at the image $e^{i\theta}$ of a point on Γ_{ζ} where $f(z(\zeta))$ has an angular limit. By Riesz's theorem the image on Γ of any null set on Γ_{ζ} is a null set. Therefore f(z) has a limit from the inside of $A_p(\theta)$ at a limit from the inside of $A_p(\theta)$ at every point $e^{i\theta}$ of a set of measure $2\pi - \frac{1}{n}$. By letting $n \to \infty$ we see that f(z) has limits everywhere on Γ from the inside of $A_p(\theta)$, except on a set H_p with $m(H_p) = 0$. Hence f(z) has an angular limit at every point of $\Gamma - \bigcup_{p=1}^{\infty} H_p$. Since $m(\bigcup_{p=1}^{\infty} H_p) = 0, f(z)$ has an angular limit a.e. on Γ . Thus \Re is of F-type.

6. In the following we shall see some relations between various concepts defined in this note, under the assumption that $\underline{\mathfrak{M}}^{\,\circ}$ is not of hyperbolic type; if this is of hyperbolic type the relations are stated in simpler forms.

First we suppose that \Re has a null boundary. The surface $\tilde{\Re}$ which is defined in §3 has also a null boundary by Lemma 1.3 in [7]. Since no bounded and non-constant continuous superharmonic function exists on a surface with null boundary by Lemma 1.2 in [7], the upper classes $\mathfrak{B}(\mathfrak{R})$ and $\mathfrak{B}(\tilde{\mathfrak{R}})$ contain merely the constant 1. Thus $\mu(P, \mathfrak{A}(\mathfrak{R})) = \mu(P, \mathfrak{A}(\tilde{\mathfrak{R}})) \equiv 1$. On the other hand

¹¹, Here we see that Theorem 6 does not serve as an example of the application of the fact, which follows from Theorems 5 and 3, that R of F-type does not belong to (B₀).

Theorem 3 shows that $\omega(P) = \mu(P, \mathfrak{A}(\mathfrak{A}^{\infty})) \equiv 0$. If \mathfrak{A}^{∞} is of parabolic type, this has a null boundary and hence $\mu(P, \mathfrak{A}(\mathfrak{A}^{\infty})) \equiv 1$. We shall show that $\mu(P, \mathfrak{A}(\mathfrak{A}^{\infty})) \equiv 0$ if \mathfrak{A}^{∞} is of hyperbolic type. Any curve determining an A.B.P. of \mathfrak{A} converges to an ideal boundary component of $\mathfrak{A}^{(12)}$ M. Tsuji [11] showed that the image E_0 on Γ of the ideal boundary of \mathfrak{A} has linear measure zero in the mapping of \mathfrak{A}^{∞} onto U. Hence any image of a determining curve of an A.B.P. terminates at a point of E_0 , and the lower cover of the class consisting of all the non-negative continuous superharmonic functions $\{v(z)\}$ not greater than 1 and with $\lim_{z \to E_0} v(z) = 1$ is zero. For any $\varepsilon > 0$ and an arbitrary point z_0 , we can find in this class a function $v_0(z)$ with $v_0(z_0) < \varepsilon$. If $v_0(z)$ is regarded as a function on \mathfrak{A}^{∞} , it belongs to $\mathfrak{A}(\mathfrak{A}^{\infty})$. By the arbitrarinesses of z_0 and ε , the lower cover $\mu(P, \mathfrak{A}(\mathfrak{A}^{\infty}))$ of $\mathfrak{B}(\mathfrak{A}^{\infty})$ is zero constantly.

Let us now pass to the case where \Re has a positive boundary. Set $\Re - \widetilde{\Re} = \{P_n\}$ and let $G_n(P)$ be the Green's function on \Re with its pole at P_n . For an arbitrary point $P_0 \in \widetilde{\Re}$, the function $g(P) = \sum_n \frac{1}{n^2} \cdot \frac{G_n(P)}{G_n(P_0)}$ represents a harmonic function on $\widetilde{\Re}$ in virtue of Harnack's theorem. For any $\varepsilon > 0$ and $v(P) \in \mathfrak{V}(\Re)$, min $(1, v(P) + \varepsilon g(P))$ belongs to $\mathfrak{V}(\widetilde{\Re})$ if it is considered as a function on $\widetilde{\Re}$. ε and v(P) being arbitrary, there follows $\mu(P, \mathfrak{U}(\Re)) \ge \mu(P, \mathfrak{U}(\widetilde{\Re}))$. Conversely any $v(P) \in \mathfrak{V}(\widetilde{\Re})$ belongs to $\mathfrak{V}(\Re)$ if the value 1 is supplemented to v(P) at $\Re - \widetilde{\Re}$. Hence $\mu(P, \mathfrak{U}(\widetilde{\Re})) \ge \mu(P, \mathfrak{U}(\Re))$ and the equality follows. Further there holds $\mu(P, \mathfrak{U}(\Re)) \ge \mu(P, \mathfrak{U}(\Re^{\infty}))$, because any $v(P) \in \mathfrak{V}(\Re)$ considered on \mathfrak{R}^* belongs to $\mathfrak{V}(\mathfrak{R}^*)$. It is yet unknown whether there is or not a case when a proper inequality holds. Since, for any $v(P) \in \mathfrak{V}(\mathfrak{R}^{\infty})$ and $\varepsilon > 0$, min $(1, v(P) + \varepsilon g(P)) \in \mathfrak{V}(\widetilde{\mathfrak{R}^*})$, we can conclude the inequality $\mu(P, \mathfrak{U}(\mathfrak{R}^{\infty})) \ge \mu(P,$ $\mathfrak{U}(\widetilde{\mathfrak{R}^{\infty}))$. At present we have no example in which the inequality of this relation is proper. The relations are summarized in

 $\mu(P, \mathfrak{A}(\mathfrak{R})) = \mu(P, \mathfrak{A}(\mathfrak{R})) \ge \mu(P, \mathfrak{A}(\mathfrak{R}^{\infty})) \ge \mu(P, \mathfrak{A}(\mathfrak{R}^{\infty})).$

Generalizing the definition in [7]. Chap. IV, §2, we will say that a covering surface \Re with positive boundary over $\underline{\Re}$ is of D-type (relatively to $\underline{\Re}$), if any upper bounded continuous subharmonic function u(P) is non-positive whenever $\overline{\lim} u(P) \leq 0$ as $P \rightarrow \Re(\Re)$ along every determining curve of an A.B.P. Since, for any $v(P) \in \mathfrak{B}(\mathfrak{R})$, 1 - v(P) may be taken as above u(P) and conversely. for any such a u(P) < M (>0). min $(1, 1 - u(P)/M) \in \mathfrak{B}(\mathfrak{R})$, we find that \mathfrak{R} is of D-type if and only if $\mu(P, \mathfrak{A}(\mathfrak{R})) \equiv 1$. Taking Theorem 4.1 in [7] into account. for \mathfrak{R} with positive boundary we can write

¹²⁾ For the definition of an ideal boundary component, cf. [7]. Chap. III, §5.

where $\widehat{\downarrow}$ means that this is known to us only in a special case. Theorem 4.2 in [7] is included in this scheme. Here are left some questions open still.

BIBLIOGRAPHY

- C. Carathéodory: Elementare Beweis für den Fundamentalsatz der konformen Abbildung, Schwarz Festschrift, Berlin (1914), pp. 19-41.
- [2] O. Frostman: Potentiel d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, Meddel. Lunds. Univ. Mat. Sem., 3 (1935), pp. 1-118.
- [3] N. Lusin and J. Priwaloff: Sur l'unicité et la multiplicité des fonctions analytiques, Ann. École Norm., 42 (1925), pp. 143-191.
- [4] A. Mori: On Riemann surfaces, on which no bounded harmonic function exists, which will appear in Journ. Math. Soc. Japan.
- [5] Y. Nagai: On the behaviour of the boundary of Riemann surfaces, II, Proc. Japan Acad., 26 (1950), pp. 10-16 (of No. 6).
- [6] R. Nevanlinna: Eindeutige analytische Funktionen, Berlin (1936).
- [7] M. Ohtsuka: Dirichlet problems on Riemann surfaces and conformal mappings, Nagoya Math. Journ., 3 (1951), pp. 91-137.
- [8] F. Riesz: Über die Randwerte einer analytischen Funktion, Math. Z., 18 (1923), pp. 87-95.
- [9] F. and M. Riesz: Über die Randwerte einer analytischen Funktion, 4 Congrès Scand. Stockholm, (1916), pp. 27-44.
- [10] M. Tsuji: Theory of meromorphic function in a neighbourhood of a closed set of capacity zero, Jap. J. Math., 19 (1944), pp. 139-154.
- [11] M. Tsuji: Some metrical theorems on Fuchsian groups, Ködai Math. Sem. Report, Nos. 4-5 (1950), pp. 89-93.
- [12] K. I. Virtanen: Über die Existenz von beschränkten harmonischen Funktionen auf offenen Riemannschen Flächen, Ann. Acad. Sci. Fenn., A. I., (1950), No. 75, 7 pp.

Mathematical Institute, Nagoya University