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Abstract. I discuss my stellar evolution code Ev in the context of simulations of large clusters
of stars. It has long been able to handle single stars, and also binary stars up to a point. That
point is far beyond what other codes are able to do, but well short of what is necessary for
believable simulations. A recent version, Ev(Twin), can in principle deal with the contact phase
of binary evolution, but it is not yet clear what the physical interaction is that needs to be
simulated.

An upgrade, which I hope will be only a few lines, should allow it to follow Kozai cycles
with tidal friction, a process that strongly influences the orbital period of close pairs that reside
within wide, non-coplanar triples. However, there are many substantial gaps in the physics of
even single stars, let alone binaries or triples.
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1. Introduction
There is quite a lot that we seem to understand reasonably well about single and

binary stars, but also quite a lot that we clearly don’t understand and so we ought to
try harder. For many people, a stellar evolution code is something you take off the shelf,
turn into a module, and plug into some larger computational entity. For me, a stellar
evolution code is a warm, living entity, a small child that needs constant nurturing and
encouragement in the hope that it will grow to a comfortable and productive adulthood.
It should develop the social skills to interact with other codes, but it should also develop
its brain. This must be sufficiently supple that new ideas can be grafted in without major
rearrangement.

The main difference between a code and a child is that a code does exactly what you
tell it. This has disadvantages as well as advantages.

I call my code Ev. I run it usually in one of three operational modes that I call
Ev(Single), Ev(Flip-Flop) and Ev(Twin). The first deals with single stars, the sec-
ond with binaries under the assumption that Roche-Lobe overflow (RLOF) is the main
interaction between them, and is reasonably (but not necessarily wholly) conservative
both of total mass and of orbital angular momentum. Flip-Flop refers to the fact that
it will advance the primary (‘∗1’) say 200 timesteps, then the secondary (‘∗2’) until it
catches up, and then advances ∗1 another 200 timesteps, and so on. The reason for this
is a small economy: very often when we follow ∗2 in a rather close binary we find that
it fills its own Roche lobe while ∗1 still does. It evolves into contact, in other words, and
there is no point in following ∗1 through to a supernova (SN) explosion if in practice ∗2
evolves into contact with ∗1 quite early in ∗1’s evolution. Almost certainly the fact of
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Figure 1. (a) A detached binary, also showing the critical inner (and outer) Lagrangian surface.
(c) A semidetached system, with mass flowing from the loser to the gainer. The components
have equal mass but different radii, perhaps as a result of differential stellar wind. (b) The gainer
expands to fill its own Roche lobe, leading to contact. (d) Progressive mass transfer reduces one
component to zero, and the other is then a rapidly rotating single star.

contact makes the later evolution of ∗1 obsolete – we need some different approach to
compute the effect of contact. Nelson & Eggleton (2001) showed that contact is almost
inevitable at a late stage in the evolution of short-period binaries; it is avoided only if the
masses are fairly nearly equal, and the period is not too short. Fig. 1 is a cartoon of the
progression of a binary from an initial detached configuration through a semidetached
configuration, then into contact and ultimately (in many cases, I expect) into a merged
single, rapidly-rotating star.

I believe that contact binaries are the proverbial elephant in the drawing room, which
everyone prefers to ignore because they don’t know what to do about it.
Ev(Twin) is intended to be the new process that will solve the contact problem, but

it is still in development. It has in fact solved just one contact binary so far, which I will
show shortly.

Even Ev(Single) contains some very powerful and original concepts, of which the main
one is that equations for all of (a) the structure, (b) the composition, and (c) the adaptive
mesh, are solved simultaneously and implicitly. Because of this concept, Ev(Flip-Flop)
is enabled to be very powerful also. In order to deal with RLOF in a binary, it differs
from the Single mode in one significant line only: the boundary condition M1 = given
is replaced by one which says that −dM1/dt is proportional to the cube of lnR1/Rlobe,1 ,
provided this is positive, when doing ∗1, and by dM2/dt = − dM1/dt when doing ∗2.
This is based on the approximination of Paczyński & Sienkiewicz (1972), itself based on
a Bernoulli-type approximation to the fluid flow involved in RLOF.
Flip-Flop can incorporate what I call ‘partially non-conservative’ effects, such as

stellar winds, magnetic braking, tidal friction, circularistion of eccentric orbits, and syn-
chronism of non-corotating components, but only for ∗1. The wind from ∗2, for example,
will depend on parameters relating to ∗2 such as its radius, luminosity and rotation rate.
These will not be known at the time that one is advancing the evolution of ∗1.
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Figure 2. Evolution of a system like Z Her, starting with (1.8 + 1.68 M�; 3.8 d, e = 0.3), using
Ev(Twin). (a) Theoretical HRD: thick line ∗1, thin line ∗2. The evolution terminated with a
nova explosion on ∗1, following reverse RLOF. (b) Eccentricity (lower thick line), orbital period
(upper thick line), and both rotational periods (thin lines) as functions of age. The rotational
period of ∗1 ends shorter than that of ∗2.

Ev(Twin) is revolutionary in that it deals with this and several other problems by
solving both of the components simultaneously. Actually it is not quite revolutionary:
Robertson & Eggleton (1977) did this. But in 1977 big, powerful computers had only
50KB (KB!) of random-access memory, and it was quite a chore to squeeze in a matrix
that was 2× 2 times as large as the usual one. But the virtue of Twin is, or ought to be,
that it can deal numerically with the contact phase. Contact involves what I would like to
call a ‘strong interaction’, ie. the behaviour of one component is very strongly influenced
by what the other component is doing at the same time. The obvious answer to this is
to enlarge the concepts of ‘simultaneous’ and ‘implicit’ to the whole binary system.
Ev(Twin) can deal well with systems that are not in contact, but where non-conservative

processes in both components are happening simultaneously. Fig. 2 shows the evolution
of a system starting with parameters (1.8 + 1.68 M�; 3.8 d, e = 0.3). It is strikingly dif-
ferent from what would go on in presumed conservative evolution, but space does not
permit a detailed description.

The difficulty with contact binaries is to think of a reasonable mathematical/physical
model of what goes on in contact. On the one hand mass can flow, in either direction in
principle, between the outer layers of one component and the outer layers of the other,
all the way down to the inner Lagrangian surface. On the other hand, heat can also flow.
The direction of heat flow might change with depth, as might the direction of mass flow.

My best shot so far treats the heat flow by a model based on the fact that, in the Sun,
it is well known (though not yet well understood) that there is differential rotation. A
surface equatorial belt, about 30% of the depth of the Sun and about ±30◦ in breadth,
rotates about 10% faster than the mean. In a frame that rotates with the mean Sun, this
belt is carrying a colossal flow of heat ‘sideways’. Work it out: it’s about 3000L�. Of
course this makes no difference to the Sun, because the Sun is roughly axially symmetric.
But in a contact binary consisting of say 1 + 0.5 M� components which share a single
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Figure 3. (a) M1 and M2 plotted against timestep number. In actual time, the oscillatory
stretch is only about 2% of the entire evolution. (b) Evolution of L1 , L2 (upper two curves), ∆L,
and 10∆ log T (thick curve) against timestep number, in a binary which evolves from detached
through semidetached to early contact. ∆L is the amount of luminosity transferred in contact,
and so is zero during a detached or semidetached phase. ∆ log T is the difference in effective
temperatures of the two components.

envelope that accounts for the outer 5–10% of each by radius, even 0.1% of this flux,
flowing largely around the equatorial belt of one star and on around the equatorial belt
of the other, and on further, would represent a large exchange of luminosity between the
components, quite possibly equalising, more or less, the two surface temperatures as is
normally observed in contact binaries.

Fig. 3 is an attempt (Yakut & Eggleton 2005) to model part of this with Ev(Twin).
Fig 3a shows the two masses, and the upper two curves of Fig 3b the two luminosities. M1
and L1 started to decrease rapidly at RLOF, but shortly after the mass and luminosity
ratio reversed the system came into contact. There followed a series of oscillations, but
with a slight trend discernible: the mass ratio continued to depart from unity, on average.
The oscillations are rather rapid, and demand small timesteps; the 11 oscillations occupy
about 2% of the entire evolutionary sequence.

It is not clear how real these oscillations are, although similar oscillations were seen
(using semi-analytical techniques) by Lucy (1976) and Flannery (1976), as well as by
Robertson & Eggleton (1977). They appear to contradict the observational datum that
the great majority of contact binaries have closely equal temperatures. The thick line of
Fig 3b (10∆ log T ) oscillates between -0.1 and -0.4; the first value is acceptable, but the
second is not. However, there are a few arguments that suggest that the inconsistency
may be more apparent than real:
(i) The model presented here has a mass ratio rather close to unity – of necessity, since I
have had difficulty getting the code to work for more extreme mass ratios – and so is not
representative of real contact binaries, whose mass ratios are usually in the range 2–10
(ii) There does exist a small population of close binaries that have similar periods to
contact binaries, but rather more unequal temperatures. They are sometimes called
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‘near-contact binaries’. There is perhaps one of these for every 10–20 normal contact
binaries, but the statistics are very poor
(iii) We might hypothesise that as the mass ratio gets more extreme, the time spent with
the temperatures substantially different becomes a smaller fraction of the time spent
with temperatures nearly equal.

Models in contact have so far turned out to be very expensive of computational time.
But I hope to produce some more, with more extreme mass ratios, in due course. However
it is possible that some important element of the physics is missing, and that when this
is included the evolution will actually be simpler to calculate. Perhaps there is some kind
of ‘thermal inertia’ which turns the oscillatory behaviour into monotonic behaviour; but
most attempts to fudge that lead to the two components having permanently different
temperatures, rather than permanently equal temperatures.

I believe, or at least hope, that it will not be very difficult to add in the equations that
govern Kozai cycles. These are cycles of eccentricity, but not semimajor axis or period,
that are induced in a binary that is part of a triple system where the outer orbit is
inclined at more than 39◦ to the inner orbit. When tidal friction is included (which it
already is) the inner orbit does suffer a reduction in period and semimajor axis: see the
poster by Kisseleva-Eggleton & Eggleton in this conference. We believe this may be vital
in producing the shortest-period systems.

I and my colleagues at Lawrence Livermore Laboratory hope to gain insight into the
physics of contact binaries, tidal friction and several other evolutionary problems, by
modeling stars in 3 dimensions with the code Djehuty; see Dearborn et al. (2006) and
Eggleton et al. (2006).

2. Conclusion
When evolving a cluster, the evolution of the single stars (and of wide binaries, if any)

can be well approximated by interpolating in a pre-computed grid of, say, 1000 single
stars with a range of masses. But binaries have too many parameters to be pre-computed.
A code like Ev(Twin) will be needed for parallelised evolution, but further development
of the contact model is necessary.
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