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frictional heating took over. The value of 11 would start as a low value, increasing with the 
increase in ice thickness until a good-sized sheet had been build up, then would probably 
change very littl e with time until the ice sheet began to waste appreciably. 

J. F. NYE: The equations you are using seem to imply that at the edge of the ice sheet, w h ere 
the thickness is zero, the outward velocity of the ice is automatically zero. This follows 
essentially because the sliding velocity is held at zero (and provided the surface slope is not 
allowed to be infinite) . Thus the equations do not allow the ice sheet to expand in size, even 
though this is what you d educe. Thus, strictly speaking, your results are inconsistent with 
your equations. However, I imagine that this difficul ty can be fairly easily removed by som e 
suitable readjustment of the model in a zone very close to the ice edge. Then probably your 
results would not be seriously affected. D o you agree? 

MAHAFFY: In fact, the finite-difference scheme used tacitly assumes that the mass di scharge 
across the edge is not zero, but is equal to the mass discharge calculated at the previous point. 
This is equivalent to a boundary condition of a sliding velocity at the edge that is small but 
finite . You are right in pointing out that, at the edge, this finite-difference scheme does n ot 
approximate the analytic equations with a sliding velocity equal to zero . 

REFERE NCE 
Prest, V . K . 1969. R etreat of ""isconsin and R ecent ice in North America. Callada. Geological Survry. Map 

1257A. 
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ABSTRACT. The temperature distribution in a polar glacier is described by the equation of 
heat conduction , 

Q De Kv ze+- = 
pC Dt 

( I ) 

where K is the thermal diffusivity of ice, Q is the internal h eat generation, p is the ice d ensity, 
and C is the heat capacity. To obtain a solution to this equation , boundary conditions at the 
surface and bed must b e known. The boundary condition at the bed is generally taken to be 
the temperature gradient in the ice required to conduct the geothermal h eat upward into the 
glacier, with certain modifications where the pressure melting temperature is reached. The 
boundary condition at the surface is the ice temperature, which is usually assumed to be equal 
to the m ean annual atmospheric temperature. This assumption is incorrect in the ablation 
area and in the percolation and saturation zones of the accumulation area. In this paper I 
examine the reasons for the break down of this assumption , and attempt to indicate the 
magnitude of the error introduced. 
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The atmospheric tcmperature at a g la cier surface changes seasonally; thus m easuremen t 
of the " surface" temperature for use with Equation (I) are generally made at some depth, zo, 
in the glacier below which the effect of these seasonal variations is negligible. If the seasonal 
variation can be represented by a sinusoidal function , this d epth is given by: 

(
2K)! 81' 

Zo = - In-
w 6. 

(Carslaw and Jaeger , 1959, p. 65) where w is the period of the fluctuations (in this case 
21T/year) , 81' is the temperature range from winter minimum to summer maximum , and 6. 
is the maximum acceptab le change in temperature at depth zoo For example, in the dry zone 
of the accumulation area if we take K = 16 m 2/year, a value appropriate for unpacked snow, 
8r = 30 d eg, and 6. = 0.4 deg, we obtain Zo = 10 m. This is the basis for the common 
assumption that the 10 m temperature is approximately equal to the m ean annual tempera
ture. 

In the superimposed ice zone superimposed ice occurs immediately benea th the winter snow 
cover , and K for ice at - 10°C is about 38 m 2 /year. Furthermore, the temperature fluctuation 
at the ice- snow interface cannot be approximated by a sinusoidal func tion because the 
accumulating snow cover insulates the ice during the winter , and because the temperature 
rises rapidly in the late spring when percolating melt water reaches the interface. Equation 
(2) can still be used to calculate an approximate value for Zo of about 15 m , but due to the 
non-sinusoidal temperature variation at the ice- snow interface, the temperature a t depth Zo 

is commonly a few d egrees above the mean annual atmospheric temperature. 
The magnitude of this difference, which we will call 6.8, can be calculated from Equation 

( I) if it is assumed that convection , internal heat generation , and transverse and longitudinal 
conduction are negligible, and if the proper boundary condition at the ice- snow interface is 
known. The equation to be solved is: 

The boundary condition at dep th Zo is taken to be the temperature gradient below this depth. 
The problem is thus reduced to one of determining the temperature of the ice- snow interface 
as a fun ction of time, 8s(t ) . 

In the soaked zone of the snow cover rests on permeable firn rather than on superimposed 
ice, and melt water percolating down through the snow pack can penetrate some distance 
into the firn . Upon refreezing, this water releases the heat of fusion , thus warming the firn. 
Mathematically, this can be represented by adding an internal heat-production term to 
Equation ( I ' ) , thus: 

'()l 8 Q aB - +- - OZ2 pC - at . 
Due to this internal heat production, 6.8 may be substantially larger in the soaked zone than 
in the superimposed ice zone or ablation area. 

In order to determine 85 (t ) and Q(z), six go m bore holes were drill ed on the south dome 
of the Barnes Ice Cap . Five of these holes ,;vere along a flow line extending from the divide to 
the margin. Temperature measurements were made in each hole in mid-July 1973, and three 
times in June and July 1974. Two finite-difference calculations were carried out with the 
use of these data. In one, the first of the 1974 measurem ents was used as an initial condition , 
and Equation ( I ') was integrated, using an assumed form of Bs (t) as a boundary condition . 
The form of 88 (t ) was varied until reasonable agreement was obtained be tween calculated 
and m easured profiles at the times of the second and third measurem ents in 1974. This 
calculation thus permits an estimate of 88 (1) during the critical period of melt from early June 
to mid~J uly. 
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In the second calculation, the July 1973 temperature profile was used as an initial condi
tion, and Equation (I ') was again integrated, this time simulating a time period of one year. 
In this model, snow was allowed to accumulate on the ice surface. The accumulation pattern 
of the snow cover as a function of time was determined from climatic records from nearby 
weather stations. The temperature variation at the snow-air interface was also determined 
from these records, using measured lapse rates to correct for differences in altitude (private 
communication from R. Barry in 1974). Calculations using this model suggest that three 
factors have a significant influence on the temperature distribution in the ice. One is the fact 
that most accumulation occurs in the fall and spring, with relatively little accumulation 
during the winter. The second is that thermal diffusivity of the snow apparently increases 
during the early spring as atmospheric temperatures begin to rise. The third and most 
important factor is that the snow-ice interface remains at o °C late into the fall due to the 
presence of melt water that percolated down through the accumulating snow cover in the 
early fall, and the temperature of this interface rises to o°C early in the spring, again due to 
percolation of melt water. 

The temperature measurements and climatic records were also used to estimate values 
for 118 on the Barnes Ice Cap. In the ablation area and superimposed ice zone 118 is 2 to 
4 deg. Then there is a rapid increase to about 5 deg in the lower part of the soaked zone. 
This jump occurs over a distance of only a couple of kilometers across the boundary between 
the two zones. 

Perhaps the most significant consequence of this increase in surface temperature in the 
superimposed ice and soaked zones is that the temperature throughout this part of a glacier 
will also increase by approximately the same amount. Thus if the base of a glacier were not 
already at the pressure melting temperature up-glacier from the soaked zone, it is likely that 
it would rise to the pressure melting temperature somewhere beneath the soaked or super
imposed ice zones. The consequences of this for basal erosion and the entrainment of morainal 
material need to be examined. 
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ABSTRACT. A general two-dimensional numerical model for a typical flow line of a glacier 
or ice cap has been developed which results in periodical surging for certain ranges of the 
input parameters. The input includes the bedrock and surface-balance profiles along the 
flow line, some three-dimensional parameterization depending on the cross-section shape and 
the flow-line patterns, the flow properties of the ice, and a numerical basal lubrication factor. 
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