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Asymptotics of Perimeter-Minimizing
Partitions

Quinn Maurmann, Max Engelstein, Anthony Marcuccio, and Taryn
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Abstract. We prove that the least perimeter P(n) of a partition of a smooth, compact Riemannian

surface into n regions of equal area A is asymptotic to n/2 times the perimeter of a planar regular

hexagon of area A. Along the way, we derive tighter estimates for flat tori, Klein bottles, truncated

cylinders, and Möbius bands.

1 Introduction

T. Hales [3] proved that a tiling by congruent regular hexagons provides a least-

perimeter way to partition the plane into unit areas. (Since the plane is infinite,

this is really a statement about the optimal perimeter to area ratio inside large balls

about the origin or for large, finite clusters, as stated in Theorem 2.1 below.) Theo-

rem 2.9 shows that for any smooth, compact Riemannian surface as in Figure 1, the

least perimeter P(n) of a partition into n equal areas is asymptotic to the perimeter

of a partition into regular planar hexagons, i.e., n/2 times the perimeter of a planar

regular hexagon of the given area. (Divide by 2 because each interface is shared by

two regions.)

It is known that least-perimeter partitions exist and are given by finitely many

constant-curvature curves meeting at 120 degrees at finitely many points [7, 2.3, 2.4,

3.3].

An early result, Lemma 2.4, shows that a planar disk of finite perimeter can be

almost filled by a union of small, congruent regular hexagons with bounded perime-

ter. Corollaries 2.2, 2.3, and 2.5 find that for many flat surfaces, the estimate for least

perimeter P(n) for partitions holds not only asymptotically but also with bounded

error.

Lemma 2.6 (refined in Lemma 2.7) provides area-preserving near-isometries be-

tween small open disks in a surface M and in the plane. The first application, Lemma

2.8, provides fairly efficient partitions of any measurable subset of M. The second

application is our main asymptotic formula (Theorem 2.9) for least perimeter P(n).

Most of M is partitioned by Lemmas 2.4 and 2.7, and the small remaining space

in between is partitioned by Lemma 2.8, yielding the requisite bound on P(n) from

above. The bound from below follows from Lemma 2.7 and Hales’s Theorem 2.1.
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Figure 1: Theorem 2.9 states that the least perimeter P(n) for partitioning a compact surface

into n equal areas is asymptotic to that corresponding to planar regular hexagons.

Even for the round sphere, the least-perimeter partition into n equal areas is

known only for n = 2 (Bernstein 1905, [1]), n = 3 (Masters 1996, [5]), n = 4

(Engelstein 2010 [2], and n = 12 (Hales 1999, [4]). The main difficulty is that a

region could in principle have many components.

2 Definitions

Let M be a smooth, compact Riemannian surface of area |M|, possibly with bound-

ary. Let H denote half the perimeter of a planar regular hexagon of area |M|, namely

121/4
√

|M|. Following Morgan [6, §15.2], define a planar cluster as a smooth, locally

finite graph with each closed face included in a unique region (nonempty union of

faces). The external perimeter of a cluster is the perimeter of the union of all the faces

or regions. Occasionally, we will abuse terminology and refer to the boundary of this

union of faces as a cluster’s external perimeter.

We begin the march toward our main asymptotic Theorem 2.9 with a statement

of Hales’ theorem for planar clusters.

Theorem 2.1 (Hales, [3, Theorem 2], [6, Proposition 15.6]) Any cluster of planar

regions with areas a1, . . . , an, where 0 < ai ≤ 1 for i = 1, . . . , n has perimeter greater

than 121/4
∑n

i=1 ai . In particular, if each ai = 1, then the perimeter is greater than

121/4n.

One immediate consequence is a constant lower bound for the least perimeter of
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partitions of several flat surfaces.

Corollary 2.2 If M is a flat torus, Klein bottle, truncated cylinder, or Möbius band,

then P(n) > H
√

n − L for all n, where L is the length of the boundary of a fundamental

planar parallelogram of M.

Proof We view a flat surface M as a parallelogram in the plane with appropriate sides

identified. Given a perimeter-minimizing partition of M into n equal areas, adding

the boundary of the parallelogram yields a cluster of n (not necessarily connected)

planar regions of area |M|/n and perimeter at most P(n) + L. Scale the cluster by

a factor of
√

n/|M| to obtain a cluster of unit-area regions with perimeter at most

(P(n) + L)
√

n/|M|, which by Theorem 2.1 must be greater than 121/4n. In particular,

P(n) > 121/4
√

|M|n − L = H
√

n − L.

Though we are content bounding P(n) − H
√

n below by a constant, we do note

that the lower bound may be tightened to P(n) ≥ H
√

n−L/2 by constructing a large

grid of copies of M so that only half the boundary of the fundamental parallelogram

need be included to separate the copies. Only copies on the very edge of the grid

will need the entire boundary, and they are a small fraction of the total number. The

next corollary uses this type of technique to improve the lower bound for flat tori and

Klein bottles.

Corollary 2.3 If M is a flat torus or Klein bottle, lim infn→∞(P(n) − H
√

n) ≥ 0.

Proof For each n, let Xn be a perimeter-minimizing graph which partitions M into

n regions of equal area. The main difficulty will be treating noncontractible compo-

nents should they arise in such a partition. Topologically, a noncontractible compo-

nent must be an annular band, a Möbius band, or the complement of a disk, possibly

with other (contractible) holes in it. Actually, such holes will not arise in a perimeter-

minimizing partition: holes may be slid, preserving area and perimeter, to eventually

contradict the regularity results of [7].

At this point, we assume without loss of generality that M has area 1 and is gen-

erated by the rectangle [0, 1) × [0, 1). In the case that M is generated by a general

parallelogram, our calculations will change only by constant factors. It is easy to see

that for flat surfaces P(n) is O(
√

n); for example, skip to Corollary 2.5 or simply parti-

tion M by a grid of line segments. Since the perimeter of any annular band or Möbius

band in M is at least 2, we must have that the number of bands in the partition by

Xn is at most O(
√

n). That is, for some K > 0 and large n, the number of bands is

less than K
√

n. Note that if the partition by Xn contains the complement of a disk,

then certainly it is the only noncontractible component. In either case, the number

of noncontractible components is less than K
√

n.

With a horizontal line segment and a vertical line segment each of length 1, we

could cut every noncontractible component into contractible pieces; by placing the

segments more carefully and by intersecting them with a given noncontractible com-

ponent, we can do better. For any noncontractible component A and for each x ∈
[0, 1), let Sx be the intersection of the vertical line at x with A. When |Sx| denotes the
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length of Sx and |A| denotes the area of A, we have

1/n ≥ |A| =

∫ 1

0

|Sx|dx

so that we may choose some x̄ with |Sx̄| ≤ 1/n. Similarly, we may let Ty be the

intersection of the horizontal line at y with A, and choose ȳ so that |T ȳ | ≤ 1/n.

For each noncontractible component, take the union of the corresponding Sx̄ and T ȳ

with Xn to get a graph X∗

n . Since the number of noncontractible components is less

than K
√

n, the perimeter of X∗

n is less than P(n) + 2K/
√

n and can be made as close

as desired to P(n) for large n.

Now suppose lim infn→∞(P(n) − H
√

n) < 0; that is, for some ε > 0 and some

increasing sequence of integers {nk}∞k=1, we have P(nk) − H
√

nk < −ε. Take k suf-

ficiently large so that 2K/
√

nk < ε/2, and hence the perimeter of X∗

nk
is less than

H
√

nk − ε/2. Copies of M (partitioned by X∗

nk
) tile the plane, and components along

the boundary of the fundamental rectangle can be identified. Since each component

is contractible, the identification does not produce any regions with area greater than

1/nk. For any integer m, we may construct an m×m grid in the plane of copies of M.

Including only the outermost boundaries of rectangles in the grid (with total length

m), we get a cluster of m2nk regions in the plane of area 1/nk and perimeter less than

Hm2√nk − εm2/2 + m. Scaling up by a factor of
√

nk, we obtain a cluster of m2nk

unit-area regions with perimeter less than

121/4m2nk −
εm2

2

√
nk + m

√
nk.

For large m, this perimeter can be made less than 121/4m2nk, contradicting Theo-

rem 2.1.

Lemma 2.4 shows that a planar disk of finite perimeter can be almost filled by a

union of small, congruent, regular hexagons with bounded perimeter.

X

X

X

X

X

X

X

X

X

D D D

Figure 2: To limit the number of hexagons intersected by the boundary curve ∂D, we see that

at least 1/7 of them (shaded in figure) are nonadjacent, because any hexagon is adjacent to just

six others. Illustrated is the process of following ∂D, repeatedly choosing the first available

hexagon and excluding its neighbors.
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Lemma 2.4 Let D be a disk in R2 with rectifiable boundary ∂D, and fix A > 0. For

each n, let Tn denote a tiling of the plane by regular hexagons of area A/n. Then there

exists a constant B such that for large n, the number of hexagons of Tn intersected by ∂D

is less than B
√

n. Furthermore, letting Cn denote the cluster of hexagons contained in D,

the total area covered by the hexagons in Cn approaches |D| as n → ∞, and the external

perimeters of the Cn are bounded.

Proof Let kn be the number of hexagons of Tn intersected by ∂D. We will see that ∂D

must intersect at least kn/7 nonadjacent hexagons as illustrated in Figure 2. Pick any

of these hexagons and include it in our collection of nonadjacent hexagons, excluding

its neighbors from the process. Follow ∂D until it intersects another hexagon that

has neither been marked for inclusion nor exclusion in our collection. Mark it for

inclusion, its neighbors for exclusion, and repeat until the entire length of ∂D has

been traversed.

The minimum distance between two nonadjacent hexagons is the length of one

side of one hexagon, s/
√

n, where s = 3−3/4
√

2A. Let L denote the length of ∂D, and

so long as kn/7 ≥ 2, we have L ≥ kns/7
√

n, so that kn ≤ 7L
√

n/s; take B = 7L/s.

Let cn be the number of hexagons in Cn so that the area covered by Cn is Acn/n. To

see that this area converges to |D|, we have

|D| − Acn

n
≤ Akn

n
≤ AB√

n
,

which approaches 0 as n → ∞. And certainly the external perimeter of the cluster is

less than 6kns/
√

n ≤ 42L, which is independent of n as desired.

Cn

J

Figure 3: To partition a flat surface with perimeter H
√

n plus a constant, start with the cluster

Cn of hexagons inside the fundamental parallelogram γ. By including four long line segments

parallel to the sides of γ, it is easy to partition the O(
√

n) remaining regions with perimeter at

most O(1/
√

n) each.

Corollary 2.5 If M is a flat torus, Klein bottle, truncated cylinder, or Möbius band,

then P(n) is no greater than H
√

n plus a constant.
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Proof Let γ be the boundary of a parallelogram that generates M, and let L be its

length. For large n, lay down the tiling Tn of regular hexagons of area |M|/n, so that,

by Lemma 2.4, the number of hexagons intersected by γ is less than B
√

n for some

constant B. Let dn = 23/23−3/4
√

|M|/n, the diameter of a regular hexagon of area

|M|/n. When Cn denotes the cluster of hexagons inside the parallelogram, it is easy to

see that at each point on the external perimeter of Cn, there is some side of γ which is

not further than dn from that point, otherwise another hexagon from Tn would have

fit inside the parallelogram.

Each Cn has total perimeter no greater than H
√

n + K for some constant K, and

will be the starting point for a partition of M into n regions of equal area. Fewer

than B
√

n regions remain to be separated in the partition. As in Figure 3, we may

include four line segments parallel to each side and at orthogonal distance dn with

total length less than L. Then each remaining region can be separated by a segment

with length at most dn (without trouble at the parallelogram’s corners). Including γ
in the partition to separate regions on the boundary, we have a partition of M into n

regions of area |M|/n with total perimeter less than

H
√

n + K + 2L + dnB
√

n,

where dnB
√

n = 23/23−3/4B
√

|M| and in particular is constant.

Lemmas 2.6 and 2.7 partition M into disks with area-preserving near-isometries

with planar regions.

Lemma 2.6 Let M be a smooth Riemannian surface, possibly with boundary, and let

ε > 0. Then every interior point p of M has an open disk neighborhood V p with smooth

boundary ∂V p and an area-preserving diffeomorphism Φp mapping V p to an open disk

in R2 while distorting length by no more than a factor of 1 + ε. Similarly, each point

in ∂M has an open disk neighborhood with piecewise smooth boundary and an area-

preserving diffeomorphism to an open disk in the upper half-plane R2
+ = {(x, y) ∈ R2 :

y ≥ 0} which distorts length by no more than 1 + ε.

Proof As in Figure 4, we define Φp for interior points p by mapping some geodesic

through p, parameterized by arc length, into the x-axis. Similarly, for p ∈ ∂M,

map ∂M into the x-axis at unit speed. In either case, map orthogonal geodesics

into vertical lines, parameterized at a speed to preserve area. The stretch factor is

continuous, so we may restrict Φp to a small open disk V p on which the stretch is

between 1 + ε and 1
1+ε .

Lemma 2.7 Let M be a smooth, compact, Riemannian surface, possibly with bound-

ary, and let ε > 0. Then for some integer n there exists a partition of M into disjoint

regions Ei for i = 1, . . . , n with piecewise smooth boundaries such that on each Ei there

exists an area-preserving diffeomorphism Φi mapping Ei to a region in R2 while distort-

ing length by no more than a factor of 1 + ε. Moreover, the Ei may be taken so that each

consists of finitely many disks.
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Figure 4: The area-preserving map Φp takes some geodesic through p to the x-axis at unit

speed and takes orthogonal geodesics to vertical intervals at a speed chosen to preserve area.

Proof At each point p ∈ M, let V p be an open disk neighborhood of p in M with

piecewise smooth boundary ∂V p such that some area-preserving diffeomorphism

Φp maps V p to an open disk in R2 [R2
+] and distorts length by no more than a factor

of 1 + ε. These disks may be taken to be sufficiently small and round so that the

boundary of one intersects the boundary of any other in at most two points. Since

M is compact and {V p : p ∈ M} is an open cover of M, there exists some finite set

of points {p1, . . . , pn} in M with
⋃

i V pi
= M. We may assume that none of the V pi

are completely contained in any other; otherwise, such a disk need not be included

in the finite subcover. Now for each i = 1, . . . , n, set Ei = V pi
\
⋃i−1

j=1 V p j
, so that the

Ei are pairwise disjoint with
⋃

i Ei = M and
⋃

i ∂Ei ⊂
⋃

i ∂V pi
, and each Ei is a finite

union of disks. Take each Φi as the restriction of Φpi
to Ei .

The following lemma provides fairly efficient partitions of any measurable subset

of M.

Lemma 2.8 Let M be a smooth, compact Riemannian surface. Then there exist con-

stants c1 and c2 such that for any integer n and any measurable subset A ⊂ M, there

exists a partition of M into n regions R1, . . . , Rn with total perimeter less than c1

√
n + c2

such that the measure of each A ∩ Ri equals |A|/n.

Proof By Lemma 2.7, there is a partition of M into m regions Ei with area-preserving

diffeomorphisms Φi into planar regions which each distort length by no more than

a factor of 2. The partition has finite perimeter Q. Set d = max diamEi , so that each

Φi(Ei) has diameter no greater than 2d. We partition each planar region Φi(Ei) into n

regions containing equal portions of Φi(A) by horizontal and vertical line segments,

each of length no greater than 2d. First, take k as the unique positive integer such that

k2 ≤ n ≤ k2 + 2k, and set Ai = Φi(A ∩ Ei).

As in Figure 5, we partition each Φi(Ei) into k + 1 regions B0
i , . . . , Bk

i by placing k

horizontal lines at appropriate heights so that the measures satisfy

|Ai ∩ B0
i | =

n − k2

n
|Ai | and |Ai ∩ B

j
i | =

k

n
|Ai | for j = 1, . . . , k.
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The regions may be situated so that Bα
i lies below B

β
i whenever α < β. The k hor-

izontal lines can be intersected with Φi(Ei) to obtain segments with total length no

more than 2dk. The regions B1
i , . . . , Bk−1

i can each be partitioned into k regions by

taking k − 1 vertical segments between the highest and lowest parallel lines used to

define the B
j
i . Each of these segments can be broken wherever it intersects any of

these parallel horizontal lines, and the resulting segments can be translated left or

right so that each region contains the same portion of Ai . These segments again have

total length no more than 2dk. The regions Bk
i and B0

i can also be partitioned by

k − 1 and by n − k2 − 1 < 2k vertical lines, respectively. These segments have total

length less than 6dk, so that all the segments placed in Φi(Ei) have total length less

than 10dk ≤ 10d
√

n. For each i = 1, . . . , m, we map these segments by the ap-

propriate Φ
−1
i into M, stretching edges by no more than a factor of 2. These curves

together with the ∂Ei partition M into n (disconnected) regions with perimeter less

than 20md
√

n + Q, and each region contains an equal portion of A.

\i
(E )
i

A
i

A
i

A
i

1

\i
(E )
i

B
i

k

B
i

0

B
i

1

2

\i
(E )
i

B
i

k

B
i

0

B
i

1

3

Figure 5: To bound the cost of partitioning an arbitrary subset A of the surface M into n equal

areas by a multiple of
√

n, map portions of the surface (Ei : i = 1, . . . , m) into the plane and

partition the part of A in Ei by horizontal and vertical line segments.

The following theorem provides our main asymptotic formula for least perimeter.

Theorem 2.9 For any smooth, compact, Riemannian surface M with area |M|, and

possibly with boundary, the least perimeter P(n) to partition M into n regions of equal

area is asymptotic to n/2 times the perimeter of a planar regular hexagon of area |M|/n:

lim
n→∞

P(n)√
n

= 121/4
√

|M|.

Proof With H = 121/4
√

|M|, we first prove lim supn→∞
P(n)/

√
n ≤ H. Let ε > 0.

As in Lemma 2.7, take regions E1, . . . , Em and area-preserving diffeomorphisms Φi

mapping Ei into planar regions while distorting length by no more than a factor of

1 + ε. For each i, ∂Φi(Ei) is piecewise smooth, and each Φ(Ei) consists of finitely

many disks, so we may apply Lemma 2.4 to find a sequence of clusters {C i
n} of regular
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hexagons in Φi(Ei), each of area |M|/n whose total area approaches the area of Ei as

n → ∞ and whose external perimeter is bounded by some constant Ki . Since H
√

n

is half the total perimeter of n separated regular hexagons of area |M|/n, we have that

the total perimeter of all these clusters is no greater than H
√

n + 1
2

∑m
i=1 Ki .

Each Φ
−1
i maps the appropriate cluster of planar hexagons into Ei , increasing

perimeter by at most a factor of 1 + ε while preserving area. After the mapping,

the total length of these arcs is less than (1 + ε)
(

H
√

n + 1
2

∑m
i=1 Ki

)

. To finish the

partition, we must separate the remaining area into some number rn of regions of

area |M|/n, which can be partitioned as in Lemma 2.8 with additional perimeter less

than c1
√

rn + c2 for some constants c1 and c2. The area covered by the hexagons in
⋃

i Φ
−1
i (C i

n) is |M|− rn|M|/n, and must converge to |M|, hence rn/n → 0 as n → ∞.

Thus we have an upper bound on the perimeter of this partition. In particular, we

may bound the minimal perimeter of an equal-area partition:

P(n)√
n

<
(1 + ε)

(

H
√

n + 1
2

∑m
i=1 Ki

)

+ c1
√

rn + c2√
n

.

As n → ∞, all terms but the first approach 0, hence lim supn→∞
P(n)/

√
n ≤ (1 +

ε)H; since ε was arbitrary, we have lim supn→∞
P(n)/

√
n ≤ H.

It now suffices to prove lim infn→∞ P(n)/
√

n ≥ H. Suppose on the contrary that

lim infn→∞ P(n)/
√

n = G < H, so for some increasing sequence of integers {nk}∞k=1,

we have P(nk)/
√

nk → G as k → ∞. Fix ε > 0, sufficiently small so that (1 + ε)2G <
H. Take N so that k > N gives P(nk)/

√
nk < (1 + ε)G. For each k > N, let Xk be

a perimeter-minimizing graph which partitions M into nk regions of equal area, so

that the perimeter of Xk is less than (1 + ε)G
√

nk.

By Lemma 2.7, we take a partition of M into some finite collection of regions

E1, . . . , Em with finite total perimeter on which area-preserving diffeomorphisms Φi

into planar regions distort length by no more than a factor of 1 + ε. Let Q be the sum

of lengths of the ∂Φi(Ei), and Q is also finite. We may assume each Φi maps each Ei

into a different region of the plane. Then
⋃

i(∂Φi(Ei) ∪ Φi(Xk ∩ Ei)) is a cluster of

nk (not necessarily connected) regions of area |M|/nk, and this cluster has perimeter

less than (1 + ε)2G
√

nk + Q. The regions can be scaled to have area 1, giving a cluster

of nk unit regions in the plane with total perimeter less than

(

(1 + ε)2G
√

nk + Q
)

√

nk

|M| = (1 + ε)2 G

H
121/4nk + Q

√

nk

|M| .

Such a construction must be valid for every k > N, and since (1 + ε)2G/H < 1,

the above can be made less than 121/4nk for large k, contradicting Theorem 2.1. The

contradiction ensures lim infn→∞ P(n)/
√

n ≥ H, proving our result.
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