SEPARABLE MEASURES AND THE DUNFORD-PETTIS PROPERTY

JOSÉ AGUAYO AND JOSÉ SÁNCHEZ

Let X be a complete regular space. We denote by $C_b(X)$ the Banach space of all real-valued bounded continuous functions on X endowed with the supremumnorm.

In this paper we give a characterisation of weakly compact operators defined from $C_b(X)$ into a Banach space E which are β_{∞} -continuous, where β_{∞} is a locally convex topology on $C_b(X)$ introduced by Wheeler. We also prove that $(C_b(X), \beta_{\infty})$ has the strict Dunford-Pettis property and, if X is a σ -compact space, $(C_b(X), \beta_{\infty})$, has the Dunford-Pettis property.

The concepts introduced here arise from the theory of strict topologies for a completely regular space due to Sentilles [8] and several authors. The first three locally convex topologies considered by them on $C_b(X)$ were β_0 , β and β_1 which relate to the theory of measure on topological spaces developed in, for example, Varadarajan [10]. Such topological vector spaces have as duals the spaces $M_t(X)$, $M_{\tau}(X)$ and $M_{\sigma}(X)$ of tight, τ -additives and σ -additives measures respectively.

Another important strict topology defined on $C_b(X)$ is β_{∞} introduced by Wheeler [11]. The dual of $(C_b(X), \beta_{\infty})$ is $M_{\infty}(X)$, the space of all μ -additive measures.

1. PRELIMINARY RESULTS AND NOTATIONS

Let E be a Hausdorff locally convex space. E is said to have the D-P (respectively the strict D-P) property if for any Banach space E and every linear continuous mapping $T: E \to F$ for which T(B) is relatively weakly compact in F for every bounded set $B \subset E$, T(C) is relatively compact (respectively $\{Tx_n\}_n$ is Cauchy) in F for any absolutely convex weakly compact subset C (respectively weak Cauchy sequence $\{x_n\}_n$) in E, [2, Definition 1 and 3]. The following theorem was proved by Khurana [3].

Received 7 June 1990

This work was partially supported by FONDECYT, project 89-655 and Dirección de Investigación de la Universidad de Concepción, project 20.12.16.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/91 \$A2.00+0.00.

THEOREM 1.1. If E is a locally convex space with the strict D-P property and E', the topological dual of E, has a σ -compact dense subset in the $\sigma(E', E)$ -topology, then E has the D-P property.

Let \mathcal{K} denote the class of all bounded and equicontinuous subsets of $C_b(X)$. β_{∞} is defined to be the finest locally convex topology on $C_b(X)$ agreeing with the pointwise topology on each $H \in \mathcal{K}$. It is known [4] that $\beta \leq \beta_{\infty} \leq \beta_{\sigma}$ and then $M_{\infty}(X)$ is contained in $M_{\sigma}(X)$. It is not difficult to see that a σ -additive measure μ is μ -additive if and only if $\mu_{|H}$ is pointwise continuous on each $H \in \mathcal{K}$. Thus every Dirac measure δ_x , $x \in X$, is a μ -additive measure and the span $M_d(X)$ of $\{\delta_x : x \in X\}$ is contained in $M_{\infty}(X)$. Pachl [6] proved that $M_{\infty}(X)$ is the completion of $(M_d(X), \mathcal{K}$ -top), where the \mathcal{K} -top is the topology of uniform convergence on each $H \in \mathcal{K}$. Since X is, in particular, a Hausdorff uniform space and such uniformity is generated by the family of pseudometrics $\{d_H : H \in \mathcal{K}\}$, where

$$d_H(x, y) = \sup\{|f(x) - f(y)| : f \in H\} = \sup\{|\delta_x(f) - \delta_y(f)| : f \in H\},\$$

we have that X is a topological subspace of $(M_{\infty}(X), \mathcal{K}$ -top).

Wheeler and Sentilles [9] proved that a σ -additive measure μ is μ -additive if and only if $\sum_{\alpha \in A} \mu(f_{\alpha}) = \mu(1)$ for any partition of unity $\{f_{\alpha} : \alpha \in A\}$ in $C_b(X)$. After that, Koumoullis [5] exhibited a family U of compact subsets of $\beta X - X$, where βX denotes the Stone-Cech compactification of X, and proved that a σ -additive measure μ is μ -additive if and only if $|\overline{\mu}|(K) = 0$ for all $K \in U$, where $\overline{\mu}$ is the corresponding regular Borel measure on βX (via the isometry of $C_b(X)$ and $C(\beta X)$).

In [1] we proved that any bounded linear operator defined on $C_b(X)$ into a Banach space E is represented by a finitely additive vector measure defined on Ba(X), where Ba(X) is the Baire σ -algebra in X.

For every bounded linear operator $T: C_b(X) \to E$ we denote \overline{T} the corresponding linear operator defined on $C(\beta X)$ to E by $\overline{T}(\overline{f}) = T(f)$, where \overline{f} is the unique extension of f to βX . It is clear that, for each $x' \in E'$, $\overline{x' \circ T} = x' \circ \overline{T}$ and if m is the associated finitely additive vector measure of T, then $\overline{x' \circ m} = x' \circ \overline{m}$ where \overline{m} is the associated finitely additive vector measure of \overline{T} . We will write ||m||(A) for the supremum of the set $\{|x' \circ m|(A): ||x'|| \leq 1\}$.

2. Characterisation of a weakly compact β_{∞} -continuous operator

THEOREM 2.1. Let T be a weakly compact operator defined from $C_b(X)$ to a Banach space E. The following statements are equivalent:

- (a) T is β_{∞} -continuous.
- (b) $T_{|H|}$ is pointwise continuous for all $H \in \mathcal{K}$.

- (c) ||m||(K) = 0 for all $K \in U$.
- (d) For every partition of unity $\{f_{\alpha}\}_{\alpha \in A}$ in X and for every $\varepsilon > 0$, there exists a finite subset F of A such that $|x' \circ m| \left(1 \sum_{\alpha \in F} f_{\alpha}\right) < \varepsilon$ uniformly in x', $||x'|| \leq 1$.

PROOF: (a) \Rightarrow (b) Since β_{∞} coincides with the pointwise topology on each H in \mathcal{K} , the statement follows.

(b) \Rightarrow (c) Since $x' \circ T_{|H}$ is pointwise continuous for all $x' \in E'$, we have that $x' \circ T \in M_{\infty}(X)$ and then $|x' \circ \overline{m}|(K) = 0$ for all $K \in U$ (see [5, Theorem 3.2]). Thus $\|\overline{m}\|(K) = 0$.

(c) \Rightarrow (d) Let $\{f_{\alpha}\}_{\alpha}$ be a partition of unity for X and $0 < \varepsilon < 1$. For every finite subset F of A, we define $Z_F = \{x \in \beta X : \sum_{\alpha \in F} \overline{f}_{\alpha}(x) < 1 - \varepsilon\}$ and let K be the intersection of all Z_F . Then K is a compact subset of $\beta X - X$ and belongs to U. See [5, Lemma 3.1].

We claim that $||m||(K) = \inf\{||\overline{m}||(Z_F): F \text{ is a finite subset of } A\}$. In fact, since $K \in U$, for all finite subsets F of A, we have $||\overline{m}||(K) \leq \inf ||\overline{m}||(Z_F)|(||m||)$ is a non-decreasing set function). For each $x' \in E'$, $|x' \circ \overline{m}|(K) = \inf |x' \circ \overline{m}|(Z_F)|(Z_F)$ and therefore $||\overline{m}||(K) = \sup_{\|x'\| \leq 1} |x' \circ \overline{m}|(K) = \sup_{\|x'\| \leq 1} \inf |x' \circ \overline{m}|(Z_F)|$. Thus, to prove the

claim is to prove that $\inf_{F} \sup_{\|x'\| \leq 1} |x' \circ \overline{m}| (Z_F) \leq \sup_{\|x'\| \leq 1} \inf_{F} |x' \circ \overline{m}| (Z_F).$

Take a finite subset F of A and $\varepsilon > 0$. Then there is $x'_{\varepsilon} \in E'$ such that $\sup_{\|x'\| \leq 1} |x' \circ \overline{m}|(Z_F) < |x'_{\varepsilon} \circ \overline{m}|(Z_F) + \varepsilon$. That implies

$$\begin{split} \inf_{F} \|\overline{m}\| \left(Z_{F}\right) &= \inf_{F} \sup_{\|\boldsymbol{x}'\| \leq 1} |\boldsymbol{x}' \circ \overline{m}| \left(Z_{F}\right) \\ &< \inf_{F} |\boldsymbol{x}_{\epsilon}' \circ \overline{m}| \left(Z_{F}\right) + \epsilon \\ &< \sup_{\|\boldsymbol{x}'\| \leq 1} \inf_{F} |\boldsymbol{x}' \circ \overline{m}| \left(Z_{F}\right) + \epsilon \\ &< \|\overline{m}\| \left(K\right) + \epsilon. \end{split}$$

Since $\varepsilon > 0$ was arbitrary, we have $\inf_F \|\overline{m}\|(Z_F) \leq \|\overline{m}\|(K)$. Now, take $x' \in E'$ with $\|x'\| \leq 1$ and $\varepsilon > 0$; by above, there is a finite subset F of A such that $||m||(Z_F) < ||\overline{m}||(K) + \varepsilon$. Thus

$$\begin{aligned} |x' \circ m|(1) - \sum_{\alpha \in F} |x' \circ m|(f_{\alpha}) &= |x' \circ m| \left(1 - \sum_{\alpha \in F} f_{\alpha}\right) = |x' \circ \overline{m}| \left(1 - \sum_{\alpha \in F} \overline{f}_{\alpha}\right) \\ &= \int_{Z_F} \left(1 - \sum_{\alpha \in F} \overline{f}_{\alpha}\right) d|x' \circ \overline{m}| \\ &+ \int_{\beta X - X} \left(1 - \sum_{\alpha \in F} \overline{f}_{\alpha}\right) d|x' \circ \overline{m}| \\ &\leq |x' \circ \overline{m}|(Z_F) + \varepsilon |x' \circ \overline{m}|(\beta X) \\ &\leq ||\overline{m}||(Z_F) + \varepsilon ||\overline{m}||(\beta X)) \\ &< \varepsilon(1 + ||\overline{m}||(\beta X)). \end{aligned}$$

Therefore $|\mathbf{x}' \circ \mathbf{m}| \left(1 - \sum_{\alpha \in F} f_{\alpha}\right) < \varepsilon$ uniformly in $\mathbf{x}', ||\mathbf{x}'|| \leq 1$.

(d) \Rightarrow (a) Since $\{|x' \circ m| : ||x'|| \leq 1\}$ is bounded, we have that for every partition of unity $\{f_{\alpha}\}_{\alpha \in A}$ and $\varepsilon > 0$, there exists a finite subset F of A such that $|x' \circ m| \left(1 - \sum_{\alpha \in F} f_{\alpha}\right) < \varepsilon$ uniformly in x', $||x'|| \leq 1$, which implies that $\{|x' \circ m| : ||x'|| \leq 1\}$ is β_{∞} -equicontinuous [5, Proposition 3.6] and T is β_{∞} -continuous.

3. The strict Dunford-Pettis and the Dunford-Pettis property in $(C_b(X), \beta_{\infty})$

THEOREM 3.1. $(C_b(X), \beta_{\infty})$ has the strict Dunford-Pettis property.

PROOF: Let T be a weakly compact β_{∞} -continuous operator from $C_b(X)$ into a Banach space E. Since $\beta_{\infty} \leq \beta_{\sigma}$ (see Khurana [4]), the associated vector measure m is σ -additive and so it admits a control positive real-valued measure μ [1]. Take a weakly Cauchy sequence $\{f_n\}_n$ in $C_b(X)$. Then $\{f_n\}_n$ is β_{∞} -bounded which implies $\{f_n\}_n$ is norm bounded (see for example Khurana [4]); thus, there is L > 0 such that $\|f_n\| \leq L/2$ for all $n \in \mathbb{N}$. Given $\varepsilon > 0$, there exists $\delta > 0$ such that $\mu(F) < \delta$ implies $\|m\|(F) < \varepsilon/2L$. On the other hand, for each $x \in X$, $\{f_n(x)\}_n$ is a Cauchy sequence in R which implies, by Egoroff's Theorem, that there exists F_{δ} in Ba(X) such that $\{f_n\}_n$ is uniformly Cauchy on $X - F_{\delta}$ and $\mu(F_{\delta}) < \delta$.

Choose $n_0 \in \mathbb{N}$ so that, for $n, m \ge n_0$, we get

$$\sup\{\|f_n(x)-f_m(x)\|: x\in X-F_{\delta}\}<\varepsilon/2M, \text{ with } M=\|m\|(X).$$

Thus, if $n, m \ge n_0$, then

$$\|Tf_n - Tf_m\| \leq \left\| \int_{X-F_{\delta}} (f_n - f_m) dm \right\| + \left\| \int_{F_{\delta}} (f_n - f_m) dm \right\|$$
$$\leq (\sup\{\|f_n(x) - f_m(x)\| : x \in X\}) M + L \|m\| (F_{\delta})$$
$$< \varepsilon/2 + \varepsilon/2 = \varepsilon,$$

so $\{T(f_n)\}_n$ converges in E and the theorem is proved.

THEOREM 3.2. $(C_b(X), \beta_{\infty})$ possesses the Dunford-Pettis property, if X is σ -compact.

PROOF: Let $\{K_n\}_n$ be an increasing sequence of compact subsets of X such that $\cup K_n$ is dense in X. Let L_n denote $\overline{\operatorname{absco}(K_n)}$ in M_∞ . Since K_n are compact in $M_\infty(X)$ with the \mathcal{K} -topology and the space $(M_\infty(X), \mathcal{K}$ -top) is complete, we have that L_n are compact subsets of $M_\infty(X)$. Moreover $\{L_n\}_n$ is an increasing sequence.

We claim that $\cup L_n$ is \mathcal{K} -dense in $M_{\infty}(X)$. In fact, take $\mu \in M_{\infty}(X)$ and a balanced neighbourhood V of μ . Since $M_d(X)$ is \mathcal{K} -dense in $M_{\infty}(X)$, V contains some element of $M_d(X)$, say $v = \sum_{i=1}^n \alpha_i \delta_{x_i}$, with $x_1, x_2, \ldots, x_n \in X$. Suppose that $0 < \alpha = \sum_{i=1}^n |\alpha_i| \leq 1$ (if $\alpha = 0$, $V \cap \cup L_n \neq \emptyset$ and we are done) and take neighbourhoods W_1, W_2, \ldots, W_n of $\delta_{x_1}, \delta_{x_2}, \ldots, \delta_{x_n}$ respectively such that $\alpha_1 W_1 + \alpha_2 W_2 + \ldots + \alpha_n W_n \subset V$. Since $W_i \cap X$ is a neighbourhood of x_i in X, we have that there exists $\delta_{y_i} \in K_{n_i}$, such that $\delta_{y_i} \in W_i \cap X$. Thus $\sum_{i=1}^n \alpha_i \delta_{y_i} \in \sum_{i=1}^n \alpha_i W_i \subset V$ and $\sum_{i=1}^n \alpha_i \delta_{y_i} \in L_N$, where $N = \max\{n_i: i = 1, \ldots, n\}$ and therefore $V \cap (\cup L_n) \neq \emptyset$.

Suppose now that $\alpha > 1$; hence $\alpha \sum_{i=1}^{n} (\alpha_i/\alpha) \delta_{x_i} \in V$ and then $\sum_{i=1}^{n} (\alpha_i/\alpha) \delta_{x_i} \in 1/\alpha V \subset V$. Applying the above argument to $1/\alpha V$, we get $\emptyset \neq 1/\alpha V \cap (\cup L_n) \subset V \cap (\cup L_n)$. Thus, for every $\mu \in M_{\infty}(X)$ and every neighbourhood V of μ , $V \cap (\cup L_n) \neq \emptyset$.

Therefore, $(M_{\infty}(X), \mathcal{K}$ -top) has a σ -compact dense which implies that $(M_{\infty}(X), \sigma(M_{\infty}(X), C_b(X)))$ has a σ -compact dense subset. The conclusion of the Theorems follows from Theorems 1.1 and 3.1.

References

- J. Aguayo and J. Sanchez, 'Weakly compact operators and the strict topologies', Bull. Austral. Math. Soc. 39 (1989), 353-359.
- [2] A. Grothendieck, 'Sur les applications lineaires faiblement compactes d'espaces du type C(K)', Canad. J. Math. 5 (1953), 129-173.

0

J. Aguayo and J. Sánchez

- [3] S. Khurana, 'Dunford-Pettis property', J. Math. Anal. Appl. 65 (1978), 361-364.
- [4] S. Khurana, 'Topologies on spaces of vector valued continuous functions', Trans. Amer. Math. Soc. 241 (1978), 195-211.
- [5] G. Koumoullis, 'Perfect μ-additive measures and strict topologies', Illinois J. of Math. 26 (1982), 466-478.
- [6] J. Pachl, 'Free uniform measures', Comment. Math. Univ. Carolin. 15 (1974), 541-553.
- [7] A. Schaeffer, Topological vector spaces (Macmillan, New York) (Collier-Macmillan, London 1966).
- [8] F. Sentilles, 'Bounded countinuous functions on completely regular spaces', Trans. Amer. Math. Soc. 168 (1972), 311-336.
- [9] F. Sentilles and R. Wheeler, 'Linear functionals and partition of the unity in $C_b(X)$ ', Duke Math. J. 41 (1974), 483-496.
- [10] V. Varadarajan, 'Measures on topological spaces', Amer. Math. Soc. Transl. (2) 48 (1965), 161-220.
- [11] R. Wheeler, 'The strict topology, separable measure, and paracompactness', Pacific J. Math. 47 (1973), 287-302.

Departamento de Matemática Universidad de Concepción Casilla 3-C. Concepción Chile