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Statement of results. Consider any group G. A [G,2]-complex is a connected
2-dimensional CW-complex with fundamental group G. If X is a [G, 2]-complex and L is
a subgroup of G, let X, denote the covering complex of X corresponding to the
subgroup L. We say that a [G,2]-complex is L-Cockcroft if the Hurewicz map
hy:7,(X)— Hy(X,) is trivial. In case L =G we call X Cockcroft. There are interesting
classes of 2-complexes that have the Cockcroft property. A [G, 2]-complex X is aspherical
if m,(X)=0. It was observed in [4] that a subcomplex of an aspherical 2-complex is
Cockcroft. The Cockcroft property is of interest to group theorists as well. Let X be a
[G, 2]-complex modelled on a presentation (S; R) of the group G. If it can be shown that
X is Cockcroft, then it follows from Hopf’s theorem (see {2, p. 31]) that H)(G) is
isomorphic to H,(X). In particular H,(G) is free abelian. For a survey on the Cockcroft
property see Dyer [5]. A collection {G, : & € Q} of subgroups of a group G that is totally
ordered by inclusion is called a chain of subgroups of G. Defining § = « if and only if
G, = Gg makes Q into a totally ordered set. The main result of this paper is the following
theorem.

THeOREM 1. Let {G,: o € Q} be a chain of subgroups of a group G. A |G, 2]-complex
X that is G,-Cockcroft for all « € Q is also ( M Ga)-Cockcroft.
xeQ

Theorem 1 together with Zorn’s lemma give the next result.

CoroLLARY 1. Let X be a Cockcroft |G,2]-complex. Then G contains a minimal
subgroup L such that X is L-Cockcroft.

It is a longstanding open question raised by J. H. C. Whitehead [9] whether a

subcomplex of an aspherical complex is aspherical. Suppose X is a subcomplex of an
aspherical 2-complex Y and denote by K the kernel of the map 7,(X) — x,(Y) induced by

inclusion. J. F. Adams [1] showed that if X is not aspherical then K contains a nontrivial
perfect subgroup. He studied a certain system of coverings {Xk, }see Of Xk, where
{K,}«eq is the set of characteristic subgroups of K such that the quotients K/K, are
C-conservative for any abelian group C. A group G is C-conservative if the functor
C ®g-detects monomorphisms between projective CG-modules; i.e. if W:P—Q is a
homomorphism between projective CG-modules and C Qs W:C Qs P— C Qs Q is
injective, then W is injective (see also Howie [8]). Adams observed that N, the
intersection of all groups K,, is perfect and that H,(Xy)=0. If one assumes X to be
non-aspherical, then the second homology of the universal covering of X is non-trivial.
Thus Xy is different from the universal covering and therefore N is non-trivial (see also
Howie [6] and [7]).

The proof of Theorem 1 relies on a lemma that deals with arbitrary systems of
coverings {X¢,}qcq Of a [G, 2]-complex X. We show that H,(X,) embeds in lim H(X¢,),

where N is the intersection of all the G,. We use this result also to characterize
non-asphericity of a 2-complex X with H,(X) =0 by the existence of a certain minimal
subgroup of x,(X).
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THEOREM 2. Let X be a [G, 2]-complex with Hy(X) = 0. The following statements are
equivalent:

(i) X is non-aspherical;

(ii) there exists a non-trivial minimal subgroup L of G such that H,(X,)=0.
Furthermore, if X is non-aspherical, then no group L as in (ii) can have a nontrivial
Z-conservative quotient; in particular L, is torsion.

Assume now that X is a subcomplex of an aspherical 2-complex Y. As before let K
denote the kernel of the homomorphism 7,(X)— 7,(Y) induced by the inclusion map.
The covering complex X of X can be viewed as a subcomplex of the universal covering
complex Y of Y. Since Xx and Y are 2-complexes, the map H,(Xy)— H,(Y) induced by
inclusion is injective. Since Hy(Y)=m,(Y)=0 it follows that Hy(X)=0. Theorem 2
applied to the complex X together with the fact that X is non-aspherical if and only if X
is non-aspherical, yield the following result.

CoroLLARY 2. Let X be a [G,2]-complex that is a subcomplex of an aspherical
2-complex Y. Let K be the kernel of the homomorphism m,(X)— 7 (Y) induced by
inclusion. The following statements are equivalent:

(i) X is non-aspherical,

(ii) there exists a nontrivial minimal subgroup L of K such that H,(X,)=0.
Furthermore, if X is non-aspherical, then no group L as in (ii) can have a non-trivial
Z-conservative quotient; in particular L, is torsion.

I am grateful to Mike Dyer for many helpful suggestions.
Proof of results. Let X be a [G,2]-complex and let {G,:a € Q} be a chain of

subgroups of G. Denote by X the universal covering complex of X and by p the covering
projection

p: X=X
The preimage p~'(c) of each open cell ¢ in X consists of open cells é,, g € G, such that
ple:é—c
is a Vhomeomorphism. For each G,, the orbit complex X/G,, denoted by X,, is the
covering complex X, with covering projection

Pa:X—X,.
Denote by N the intersection () G, and by py the covering projection
aeQ

pniX— Xn.
Let p .~ be the covering projection
| Pan: Xn— Xq
and let pg, be the covering projection

Ppa: Xo—> Xg

for «=p. The cells in Xy and in X, are just N and G, orbits of cells in X. So if
Nxé={n*¢:neN, &an open cell of X} is an open cell of Xy, then p,y sends this open
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cell homeomorphically onto the open cell G, * € of X;_and pg, sends the open cell G, *¢
of X, homeomorphically onto the open cell Gg*¢ of X; for a=f. Now
(Co(Xa),Pap.)apea is an inverse system of Abelian groups with inverse limit
lim C(X,).

LEmMMA 1. lim poy : Co(Xn)— lim Cy(X,) is injective and yields an injection from
Hy(Xy) to lim H,(X,) when restricted to H)(Xy); in particular, if all the H,(X,,) are trivial,
then Hy(Xy) is trivial.

Proof. First we show that if ¢, = N ¢, and ¢, = N *¢, are two different open cells in
Xy, then there exists an element 8 € Q such that pgy(c,) and pgy(c,) are two different
open cells in Xg. Suppose not. Then

Go*¢,=G,*¢C,
for all a € Q. So, in particular,
cieG,*C,
for all &« € Q. Then for each a € Q there exists a g, in G, such that
€, =g %0,

Fix an element y € Q; then g, *&,=¢, =g, * ¢, for all E_Q; hence g;'gu * ¢, = C, for all
e Q. Since G acts freely on the set of open cells of X this says that g;'g, = 1; thus
8y =8« € G, for all @ € Q and therefore g, is an element of the intersection N. Since

é-1 =gy *C—Z’

we have ¢, =N=*¢ = N=*¢,=c,, which contradicts our assumption that ¢, and ¢, are
different cells. Suppose now that

m
z= 2 nyCy,
k=1

is a nontrivial element of C,(Xy), so that the integers n; are nonzero and the cells ¢, are
different 2-cells of Xy. If m =1, then

Pan.(2) =n1pon(c)) 0

for all @ € Q. If m > 1 then for every pair {i,j}, i,j€{l,...,m}, we can find an element
B(i,j) € Q such that pg; yn(c;) and pg; jn(c;) are two different 2-cells of X ;). Let B be
the largest element among the finitely many B(i, j). Then pgy(c;) and pga(c;) are different
cells for any pair (i,j), i,je{l,...,m}, so

PﬁN,(Z) = ’(2 nkpﬁN(ck) #0.
=1

This shows that

ll‘l'_n paN,(z) #: O

Lemma 2. (limp,y )ohy =lim h,.
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Proof. From the commutative diagram

m(X) 25 my(X) o Hy(X) — Cy(X)

Hy(X,) — Ci(X,)

we see that for every o € Q,

Pan.°hn =Pan °Pn ohopa' =pg chopa' =h,.
Hence (liln Pan,)°hy =1im h,.

Proof of Theorem 1. Since X is G,-Cockcroft for every o € Q, each h, is the zero
map. Hence lif_n h, is the zero map. Lemma 2 and the fact that, by Lemma 1, li(r_n Pan, 1S
injective show that hy is the zero map as well. So X is N-Cockcroft.

Proof of Theorem 2. Only the direction (i) = (ii) requires a proof. If {G,: o e Q} isa
chain of subgroups of G such that H,(X,) =0 for all o, then H,(Xy) =0 by Lemma 1; as
before X, is the 2-complex X c, and N is the intersection of all the G,. The existence of a
minimal subgroup L such that H,(X,) =0 now follows from Zorn’s Lemma. If L/K were
a non-trivial Z-conservative quotient of L, then K would be a proper subgroup of L with
H,(Xx) =0 by definition of Z-conservative. This contradicts minimality of L.
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