MINIMAL COCKCROFT SUBGROUPS

by JENS HARLANDER

(Received 20 July, 1992)

Statement of results. Consider any group G. A [G, 2]-complex is a connected 2-dimensional CW-complex with fundamental group G. If X is a [G, 2]-complex and L is a subgroup of G, let X_L denote the covering complex of X corresponding to the subgroup L. We say that a [G, 2]-complex is L-Cockcroft if the Hurewicz map $h_L: \pi_2(X) \rightarrow H_2(X_L)$ is trivial. In case L = G we call X Cockcroft. There are interesting classes of 2-complexes that have the Cockcroft property. A [G, 2]-complex X is aspherical if $\pi_2(X) = 0$. It was observed in [4] that a subcomplex of an aspherical 2-complex is Cockcroft. The Cockcroft property is of interest to group theorists as well. Let X be a [G, 2]-complex modelled on a presentation $\langle S; R \rangle$ of the group G. If it can be shown that X is Cockcroft, then it follows from Hopf's theorem (see [2, p. 31]) that $H_2(G)$ is isomorphic to $H_2(X)$. In particular $H_2(G)$ is free abelian. For a survey on the Cockcroft property see Dyer [5]. A collection $\{G_\alpha : \alpha \in \Omega\}$ of subgroups of a group G that is totally ordered by inclusion is called a chain of subgroups of G. Defining $\beta \leq \alpha$ if and only if $G_\alpha \leq G_\beta$ makes Ω into a totally ordered set. The main result of this paper is the following theorem.

THEOREM 1. Let $\{G_{\alpha} : \alpha \in \Omega\}$ be a chain of subgroups of a group G. A [G, 2]-complex X that is G_{α} -Cockcroft for all $\alpha \in \Omega$ is also $\left(\bigcap_{\alpha \in \Omega} G_{\alpha}\right)$ -Cockcroft.

Theorem 1 together with Zorn's lemma give the next result.

COROLLARY 1. Let X be a Cockcroft [G, 2]-complex. Then G contains a minimal subgroup L such that X is L-Cockcroft.

It is a longstanding open question raised by J. H. C. Whitehead [9] whether a subcomplex of an aspherical complex is aspherical. Suppose X is a subcomplex of an aspherical 2-complex Y and denote by K the kernel of the map $\pi_1(X) - \pi_1(Y)$ induced by inclusion. J. F. Adams [1] showed that if X is not aspherical then K contains a nontrivial perfect subgroup. He studied a certain system of coverings $\{X_{K_\alpha}\}_{\alpha\in\Omega}$ of X_K , where $\{K_\alpha\}_{\alpha\in\Omega}$ is the set of characteristic subgroups of K such that the quotients K/K_α are C-conservative for any abelian group C. A group G is C-conservative if the functor $C \otimes_{CG}$ -detects monomorphisms between projective CG-modules; i.e. if $\Psi: P \to Q$ is a homomorphism between projective CG-modules and $C \otimes_{CG} \Psi: C \otimes_{CG} P \to C \otimes_{CG} Q$ is injective, then Ψ is injective (see also Howie [8]). Adams observed that N, the intersection of all groups K_α , is perfect and that $H_2(X_N) = 0$. If one assumes X to be non-aspherical, then the second homology of the universal covering of X is non-trivial (see also Howie [6] and [7]).

The proof of Theorem 1 relies on a lemma that deals with arbitrary systems of coverings $\{X_{G_{\alpha}}\}_{\alpha\in\Omega}$ of a [G, 2]-complex X. We show that $H_2(X_N)$ embeds in $\lim_{\leftarrow} H_2(X_{G_{\alpha}})$, where N is the intersection of all the G_{α} . We use this result also to characterize non-asphericity of a 2-complex X with $H_2(X) = 0$ by the existence of a certain minimal subgroup of $\pi_1(X)$.

Glasgow Math. J. 36 (1994) 87-90.

JENS HARLANDER

THEOREM 2. Let X be a [G, 2]-complex with $H_2(X) = 0$. The following statements are equivalent:

(i) X is non-aspherical;

(ii) there exists a non-trivial minimal subgroup L of G such that $H_2(X_L) = 0$.

Furthermore, if X is non-aspherical, then no group L as in (ii) can have a nontrivial \mathbb{Z} -conservative quotient; in particular L_{ab} is torsion.

Assume now that X is a subcomplex of an aspherical 2-complex Y. As before let K denote the kernel of the homomorphism $\pi_1(X) \to \pi_1(Y)$ induced by the inclusion map. The covering complex X_K of X can be viewed as a subcomplex of the universal covering complex \tilde{Y} of Y. Since X_K and \tilde{Y} are 2-complexes, the map $H_2(X_K) \to H_2(\tilde{Y})$ induced by inclusion is injective. Since $H_2(\tilde{Y}) = \pi_2(\tilde{Y}) = 0$ it follows that $H_2(X_K) = 0$. Theorem 2 applied to the complex X_K together with the fact that X is non-aspherical if and only if X_K is non-aspherical, yield the following result.

COROLLARY 2. Let X be a [G, 2]-complex that is a subcomplex of an aspherical 2-complex Y. Let K be the kernel of the homomorphism $\pi_1(X) \rightarrow \pi_1(Y)$ induced by inclusion. The following statements are equivalent:

(i) X is non-aspherical;

(ii) there exists a nontrivial minimal subgroup L of K such that $H_2(X_L) = 0$.

Furthermore, if X is non-aspherical, then no group L as in (ii) can have a non-trivial \mathbb{Z} -conservative quotient; in particular L_{ab} is torsion.

I am grateful to Mike Dyer for many helpful suggestions.

Proof of results. Let X be a [G, 2]-complex and let $\{G_{\alpha} : \alpha \in \Omega\}$ be a chain of subgroups of G. Denote by \tilde{X} the universal covering complex of X and by p the covering projection

$$p: \tilde{X} \to X.$$

The preimage $p^{-1}(c)$ of each open cell c in X consists of open cells $\tilde{c}_g, g \in G$, such that

$$p|_{\tilde{c}_g}: \tilde{c}_g \to c$$

is a homeomorphism. For each G_{α} , the orbit complex \tilde{X}/G_{α} , denoted by X_{α} , is the covering complex $X_{G_{\alpha}}$ with covering projection

$$p_{\alpha}: \bar{X} \to X_{\alpha}$$

Denote by N the intersection $\bigcap_{\alpha \in \Omega} G_{\alpha}$ and by p_N the covering projection

$$p_N: \tilde{X} \to X_N$$

Let $p_{\alpha N}$ be the covering projection

$$p_{\alpha N}: X_N \to X_\alpha$$

and let $p_{\beta\alpha}$ be the covering projection

$$p_{\beta\alpha}: X_{\alpha} \to X_{\beta}$$

for $\alpha \ge \beta$. The cells in X_N and in X_{α} are just N and G_{α} orbits of cells in \tilde{X} . So if $N \ast \tilde{c} = \{n \ast \tilde{c} : n \in N, \tilde{c} \text{ an open cell of } \tilde{X}\}$ is an open cell of X_N , then $p_{\alpha N}$ sends this open

cell homeomorphically onto the open cell $G_{\alpha} * \tilde{c}$ of $X_{G_{\alpha}}$ and $p_{\beta\alpha}$ sends the open cell $G_{\alpha} * \tilde{c}$ of X_{α} homeomorphically onto the open cell $G_{\beta} * \tilde{c}$ of X_{β} for $\alpha \ge \beta$. Now $(C_2(X_{\alpha}), p_{\alpha\beta_*})_{\alpha,\beta\in\Omega}$ is an inverse system of Abelian groups with inverse limit lim $C_2(X_{\alpha})$.

LEMMA 1. $\lim_{\alpha \to \infty} p_{\alpha N} : C_2(X_N) \to \lim_{\alpha \to \infty} C_2(X_\alpha)$ is injective and yields an injection from $H_2(X_N)$ to $\lim_{\alpha \to \infty} H_2(X_\alpha)$ when restricted to $H_2(X_N)$; in particular, if all the $H_2(X_\alpha)$ are trivial, then $H_2(X_N)$ is trivial.

Proof. First we show that if $c_1 = N * \tilde{c}_1$ and $c_2 = N * \tilde{c}_2$ are two different open cells in X_N , then there exists an element $\beta \in \Omega$ such that $p_{\beta N}(c_1)$ and $p_{\beta N}(c_2)$ are two different open cells in X_{β} . Suppose not. Then

$$G_{\alpha} * \tilde{c}_1 = G_{\alpha} * \tilde{c}_2$$

for all $\alpha \in \Omega$. So, in particular,

 $\tilde{c}_1 \in G_{\alpha} * \tilde{c}_2$

for all $\alpha \in \Omega$. Then for each $\alpha \in \Omega$ there exists a g_{α} in G_{α} such that

$$\tilde{c}_1 = g_\alpha * \tilde{c}_2$$

Fix an element $\gamma \in \Omega$; then $g_{\alpha} * \tilde{c}_2 = \tilde{c}_1 = g_{\gamma} * \tilde{c}_2$ for all $\alpha \in \Omega$; hence $g_{\gamma}^{-1}g_{\alpha} * \tilde{c}_2 = \tilde{c}_2$ for all $\alpha \in \Omega$. Since G acts freely on the set of open cells of \tilde{X} this says that $g_{\gamma}^{-1}g_{\alpha} = 1$; thus $g_{\gamma} = g_{\alpha} \in G_{\alpha}$ for all $\alpha \in \Omega$ and therefore g_{γ} is an element of the intersection N. Since

$$\tilde{c}_1 = g_\gamma * \tilde{c}_2$$

we have $c_1 = N * \tilde{c}_1 = N * \tilde{c}_2 = c_2$, which contradicts our assumption that c_1 and c_2 are different cells. Suppose now that

$$z=\sum_{k=1}^m n_k c_k,$$

is a nontrivial element of $C_2(X_N)$, so that the integers n_k are nonzero and the cells c_k are different 2-cells of X_N . If m = 1, then

$$p_{\alpha N_*}(z) = n_1 p_{\alpha N}(c_1) \neq 0$$

for all $\alpha \in \Omega$. If m > 1 then for every pair $\{i, j\}, i, j \in \{1, ..., m\}$, we can find an element $\beta(i, j) \in \Omega$ such that $p_{\beta(i,j)N}(c_i)$ and $p_{\beta(i,j)N}(c_j)$ are two different 2-cells of $X_{\beta(i,j)}$. Let β be the largest element among the finitely many $\beta(i, j)$. Then $p_{\beta N}(c_i)$ and $p_{\beta N}(c_j)$ are different cells for any pair $(i, j), i, j \in \{1, ..., m\}$, so

$$p_{\beta N_{\star}}(z) = \sum_{k=1}^{m} n_k p_{\beta N}(c_k) \neq 0.$$

This shows that

$$\lim p_{\alpha N_*}(z) \neq 0.$$

LEMMA 2.
$$(\lim p_{\alpha N_*}) \circ h_N = \lim h_{\alpha}$$
.

Proof. From the commutative diagram

$$\pi_{2}(X) \xrightarrow{p_{\pi^{1}}} \pi_{2}(\tilde{X}) \xrightarrow{h} H_{2}(\tilde{X}) \longrightarrow C_{2}(\tilde{X})$$

$$\downarrow^{\rho_{N}} \qquad \qquad \downarrow^{\rho_{N}} \qquad \qquad \downarrow^{\rho_{N}} H_{2}(X_{L}) \longrightarrow C_{2}(X_{L})$$

we see that for every $\alpha \in \Omega$,

$$p_{\alpha N_{\star}} \circ h_N = p_{\alpha N_{\star}} \circ p_{N_{\star}} \circ h \circ p_{\#}^{-1} = p_{\alpha_{\star}} \circ h \circ p_{\#}^{-1} = h_{\alpha}.$$

Hence $(\lim_{k \to 0} p_{\alpha N_*}) \circ h_N = \lim_{k \to 0} h_{\alpha}$.

Proof of Theorem 1. Since X is G_{α} -Cockcroft for every $\alpha \in \Omega$, each h_{α} is the zero map. Hence $\lim_{\alpha \to \infty} h_{\alpha}$ is the zero map. Lemma 2 and the fact that, by Lemma 1, $\lim_{\alpha \to \infty} p_{\alpha N_{\alpha}}$ is injective show that h_{N} is the zero map as well. So X is N-Cockcroft.

Proof of Theorem 2. Only the direction (i) \Rightarrow (ii) requires a proof. If $\{G_{\alpha} : \alpha \in \Omega\}$ is a chain of subgroups of G such that $H_2(X_{\alpha}) = 0$ for all α , then $H_2(X_N) = 0$ by Lemma 1; as before X_{α} is the 2-complex $\tilde{X}_{G_{\alpha}}$ and N is the intersection of all the G_{α} . The existence of a minimal subgroup L such that $H_2(X_L) = 0$ now follows from Zorn's Lemma. If L/K were a non-trivial Z-conservative quotient of L, then K would be a proper subgroup of L with $H_2(X_K) = 0$ by definition of Z-conservative. This contradicts minimality of L.

REFERENCES

1. J. F. Adams, A new proof of a theorem of W. H. Cockcroft, J. London Math. Soc. 30 (1955), 482-488.

2. K. S. Brown, Cohomology of groups (Springer, 1982).

3. W. A. Bogley, Unions of Cockcroft two-complexes, preprint.

4. W. H. Cockcroft, On two-dimensional aspherical complexes, Proc. London Math. Soc. (3) 4 (1954), 375-384.

5. M. N. Dyer, Cockcroft 2-complexes, preprint.

6. J. Howie, Aspherical and acyclic 2-complexes, J. London Math. Soc. (2) 20 (1979), 549-558.

7. J. Howie, On the fundamental group of an almost-acyclic 2-complex, Proc. Edinburgh Math. Soc. (2) 24 (1981), 119-122.

8. J. Howie, How to generalize one-relator group theory, *Combinatorial group theory and topology*, ed. S. M. Gersten and J. R. Stallings (Ann. of Math. Stud. 111, Princeton Univ. Press, 1987), 53-78.

9. J. H. C. Whitehead, On adding relations to homotopy groups, Ann. of Math. (2) 42 (1941), 409-428.

Fachbereich Mathematik Johann Wolfgang Goethe-Universität 6000 Frankfurt/Main 11

90