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Statement of results. Consider any group G. A [G, 2]-complex is a connected
2-dimensional CW-complex with fundamental group G. If X is a [G, 2]-complex and L is
a subgroup of G, let XL denote the covering complex of X corresponding to the
subgroup L. We say that a [G, 2]-complex is L-Cockcroft if the Hurewicz map
hL:ji2(X)—*H2(XL) is trivial. In case L = G we call X Cockcroft. There are interesting
classes of 2-complexes that have the Cockcroft property. A [G, 2]-complex X is aspherical
if n2{X) = 0. It was observed in [4] that a subcomplex of an aspherical 2-complex is
Cockcroft. The Cockcroft property is of interest to group theorists as well. Let X be a
[G, 2]-complex modelled on a presentation (S; R) of the group G. If it can be shown that
X is Cockcroft, then it follows from Hopfs theorem (see [2, p. 31]) that H2(G) is
isomorphic to H2(X). In particular H2{G) is free abelian. For a survey on the Cockcroft
property see Dyer [5]. A collection {Ga:aeQ.} of subgroups of a group G that is totally
ordered by inclusion is called a chain of subgroups of G. Denning /3 < a if and only if
Ga ^ Gp makes Q into a totally ordered set. The main result of this paper is the following
theorem.

THEOREM 1. Let {Ga :a e Q} be a chain of subgroups of a group G. A [G, 2]-complex

X that is Ga-Cockcroft for all a e Q is also I p | Ga)-Cockcroft.

Theorem 1 together with Zorn's lemma give the next result.

COROLLARY 1. Let X be a Cockcroft [G,2]-complex. Then G contains a minimal
subgroup L such that X is L-Cockcroft.

It is a longstanding open question raised by J. H. C. Whitehead [9] whether a
subcomplex of an aspherical complex is aspherical. Suppose A' is a subcomplex of an
aspherical 2-complex Y and denote by K the kernel of the map nx(X) - nx(Y) induced by
inclusion. J. F. Adams [1] showed that if X is not aspherical then K contains a nontrivial
perfect subgroup. He studied a certain system of coverings {XKa}aea of XK, where
{Ka}aea is the set of characteristic subgroups of K such that the quotients K/Ka are
C-conservative for any abelian group C. A group G is C-conservative if the functor
C <8>cc-detects monomorphisms between projective CG-modules; i.e. if WiP—»Q is a
homomorphism between projective CG-modules and C <8>CG W: C <8>CG P-* C <8>CG Q is
injective, then V is injective (see also Howie [8]). Adams observed that N, the
intersection of all groups Ka, is perfect and that H2(XN) = 0. If one assumes X to be
non-aspherical, then the second homology of the universal covering of X is non-trivial.
Thus XN is different from the universal covering and therefore N is non-trivial (see also
Howie [6] and [7]).

The proof of Theorem 1 relies on a lemma that deals with arbitrary systems of
coverings {XGJaea of a [G, 2]-complex X. We show that H2(XN) embeds in lim H2(XGa),
where N is the intersection of all the Ga. We use this result also to characterize
non-asphericity of a 2-complex X with H2(X) = 0 by the existence of a certain minimal
subgroup of ^i(A').
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THEOREM 2. Let X be a [G,2]-complex with H2(X) = 0. The following statements are
equivalent:

(i) X is non-aspherical;
(ii) there exists a non-trivial minimal subgroup L of G such that H2(XL) = 0.

Furthermore, if X is non-aspherical, then no group L as in (ii) can have a nontrivial
Z-conservative quotient; in particular Lah is torsion.

Assume now that X is a subcomplex of an aspherical 2-complex Y. As before let K
denote the kernel of the homomorphism nt(X)—> JZ^Y) induced by the inclusion map.
The covering complex XK of X can be viewed as a subcomplex of the universal covering
complex Y of Y. Since XK and Y are 2-complexes, the map H2(XK)—* H2{Y) induced by
inclusion is injective. Since H2(Y) = n2(Y) = 0 it follows that H2(XK) = 0. Theorem 2
applied to the complex XK together with the fact that X is non-aspherical if and only if XK

is non-aspherical, yield the following result.

COROLLARY 2. Let X be a [G,2]-complex that is a subcomplex of an aspherical
2-complex Y. Let K be the kernel of the homomorphism JI,(X)—>JI,(Y) induced by
inclusion. The following statements are equivalent:

(i) X is non-aspherical;
(ii) there exists a nontrivial minimal subgroup L of K such that H2(XL) = 0.

Furthermore, if X is non-aspherical, then no group L as in (ii) can have a non-trivial
Z-conservative quotient; in particular Lah is torsion.

I am grateful to Mike Dyer for many helpful suggestions.

Proof of results. Let X be a [G,2]-complex and let {Ga:aeQ} be a chain of
subgroups of G. Denote by X the universal covering complex of X and by p the covering
projection

The preimage p~l(c) of each open cell c in X consists of open cells cg, g e G, such that

is a homeomorphism. For each Ga, the orbit complex X/Ga, denoted by Xa, is the
covering complex XGa with covering projection

Denote by N the intersection P | Ga and by pN the covering projection

PN '• X ~~* X-fj.

Let paN be the covering projection

and let pPa be the covering projection

Ppa '-Xa^>Xp

for a^/5. The cells in XN and in Xa are just N and Ga orbits of cells in X. So if
N*c = {n*c:neN,can open cell of X} is an open cell of XN, then paN sends this open
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cell homeomorphically onto the open cell Ga * c of XGa and pPa sends the open cell Ga*c
of Xa homeomorphically onto the open cell Gp*c of Xp for a>j5. Now
(C2(Xa),pap)apsQ is an inverse system of Abelian groups with inverse limit
WmC2(Xa). '

LEMMA 1. \impaN:C2(XN)^>\imC2(Xa) is injective and yields an injection from

H2{XN) to lim H2(Xa) when restricted to H2(XN); in particular, if all the H2{Xa) are trivial,

then H2(XN) is trivial.

Proof. First we show that if c, = N * c, and c2 = N *c2 are two different open cells in
XN, then there exists an element /3 e Q such that PpN{c\) and ppN{c2) are two different
open cells in Xp. Suppose not. Then

for all a e Q. So, in particular,

c{eGa*c2

for all a e Q. Then for each a e Q there exists a ga in Ga such that

C\ = ga * C2.

Fix an element y e Q ; then #„ * c2 = c, = gY * c2 for all a eQ; hence g~ 'gff * c2 = c2 for all
a e Q. Since G acts freely on the set of open cells of X this says that g~lga = 1; thus
gY = ga e Ga for all a e Q and therefore gY is an element of the intersection N. Since

C\=gy*C2,

we have c, = N*ct = N *c2 = c2, which contradicts our assumption that cx and c2 are
different cells. Suppose now that

k=\

is a nontrivial element of C2{XN), so that the integers nk are nonzero and the cells ck are
different 2-cells of XN. If m = 1, then

for all a- e Q. If m > 1 then for every pair {i,j}, i,j e {1,. . . , m } , we can find an element
P(i,j) e Q such that pP(i,j)N(Ci) and PPOJ)N(CJ) are two different 2-cells of XP(iJ). Let /3 be
the largest element among the finitely many /?(*,/). Then ppN{Cj) and ppN(cj) are different
cells for any pair (i,j), i,j e { 1 , . . . , m } , so

PPNXZ)= 2 nkppN(ck)*0.
k=\

This shows that

lim pa A / ,

LEMMA 2. (lim paN ) ° A^ = lim /i,,.
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Proof. From the commutative diagram

n2{X)

we see that for every a eQ,

PaN.°hN=paNt°pN,°h°p#l = pa,°h°p^ =ha.

Hence (lim paNt)°hN = lim ha.

Proof of Theorem 1. Since X is Ga-Cockcroft for every a & Q, each ha is the zero
map. Hence lim/i,, is the zero map. Lemma 2 and the fact that, by Lemma 1, l i m p ^ . is
injective show that hN is the zero map as well. So X is A'-Cockcroft.

Proof of Theorem 2. Only the direction (i) => (ii) requires a proof. If {Ga: a e Q} is a
chain of subgroups of G such that H2{Xa) = 0 for all a, then H2(XN) = 0 by Lemma 1; as
before Xa is the 2-complex XCa and N is the intersection of all the Ga. The existence of a
minimal subgroup L such that H2{XL) — 0 now follows from Zorn's Lemma. If L/K were
a non-trivial Z-conservative quotient of L, then K would be a proper subgroup of L with
H2(XK) = 0 by definition of Z-conservative. This contradicts minimality of L.
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