BULL. AUSTRAL. MATH. Soc. Vol. 54 (1996) [1-3]

ADMISSIBLE LIMITS OF BLOCH FUNCTIONS ON BOUNDED STRONGLY PSEUDOCONVEX DOMAINS

HU ZHANGJIAN

Let $\mathcal{D} \subseteq \mathbb{C}^n$ be a bounded strongly pseudoconvex domain with C^2 boundary $\partial \mathcal{D}$. In this paper we prove that for a Bloch function in \mathcal{D} the existance of radial limits at almost all $\zeta \in \partial \mathcal{D}$ implies the existence of admissible limits almost everywhere on $\partial \mathcal{D}$.

Let $\mathcal{D} \subseteq \mathbb{C}^n$ be a bounded strongly pseudoconvex domain with C^2 boundary $\partial \mathcal{D}$ (for the definition we refer to [1]). For $z \in \mathcal{D}$ the Euclidean distance from z to $\partial \mathcal{D}$ is denoted by $\delta(z)$ and for $\zeta \in \partial \mathcal{D}$ the unit outward normal of $\partial \mathcal{D}$ at ζ is denoted by v_{ζ} . If $\zeta \in \partial \mathcal{D}$ and $\alpha > 0$ we define the admissible approach region $\mathcal{U}_{\alpha}(\zeta)$ with the vertex ζ by

$$\mathcal{U}_{oldsymbol{lpha}}(\zeta) = \{z\in\mathcal{D}; \ |(z-\zeta)\cdotar{v}_{\zeta}| < (1+lpha)\delta_{\zeta}(z), \ |z-\zeta|^2 < lpha\delta_{\zeta}(z) \},$$

where $\delta_{\zeta}(z) = \min\{\delta(z), \operatorname{dist}(z, T_{\zeta}(\partial D))\}$ and $T_{\zeta}(\partial D)$ is the real tangent space to ∂D at ζ . A function f on D is called to have an admissible limit at ζ if $\lim_{z \to \zeta, z \in \mathcal{U}_{\alpha}(\zeta)} f(z)$ exists for all $\alpha > 0$.

Let $\mathcal{B}(\mathcal{D})$ be the space of all Bloch functions f which are holomorphic in \mathcal{D} with $\sup\{|\nabla f(z)| \cdot \delta(z) : z \in \mathcal{D}\} < \infty$. It is well known that each function in H^p has an admissible limit at almost every $\zeta \in \partial \mathcal{D}$. But for Bloch functions generally we can say nothing on the existence of admissible limits. For example, Ullrich constructed a Bloch function in the unit ball (a typical model of a strongly pseudoconvex domain) in \mathbb{C}^n which has a radial limit at no point of the boundary (see [2]). On the other hand, Lehto and Virtanen proved in [3] that the existence of radial limits implies the existence of angular limits for Bloch functions in the unit disc $D = \{z \in \mathbb{C}: |z| < 1\}$.

The purpose of this paper is to extend this result to the setting of strongly pseudoconvex domains. Our approach will be very different from that of [3] and our result also generalises [4].

Received 21 August 1995 Research supported by the Natural Science Foundation of Zhejiang Province.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/96 \$A2.00+0.00.

Hu Zhangjian

THEOREM. Let $\mathcal{D} \subseteq \mathbb{C}^n$ be a bounded strongly pseudoconvex domain with C^2 boundary, and let f be a Bloch function in \mathcal{D} . If the limit $\lim_{t\to+0} f(\zeta - tv_{\zeta})$ exists at almost all $\zeta \in \partial \mathcal{D}$, then f has admissible limits almost everywhere on $\partial \mathcal{D}$.

PROOF: First, we do some estimates on $\mathcal{U}_{\alpha}(\zeta)$ for $\zeta \in \partial \mathcal{D}$. Without loss of the generality we may assume that ζ is the origin, that v_{ζ} is in the negative y_1 direction (here $z_1 = x_1 + y_1 i$) and thus the complex normal space \mathcal{N}_{ζ} and the complex tangential space \mathcal{T}_{ζ} are

$$\mathcal{N}_{\zeta} = \{(z_1, 0, \ldots, 0); z_1 \in \mathbb{C}\}, \ \mathcal{T}_{\zeta} = \{(0, z_2, \ldots, z_n); z_j \in \mathbb{C}, j = 2, \ldots, n\}$$

For $z = (z_1, \ldots, z_n) \in \mathcal{U}_{\alpha}(\zeta)$, by definition

(1)
$$\begin{aligned} |z_1| &= |\langle z - \zeta, v_\zeta \rangle| < (1 + \alpha)y_1, \\ |z_2|^2 + \cdots + |z_n|^2 \leqslant |z - \zeta|^2 < \alpha y_1 \end{aligned}$$

Put $z' = (y_1 i, 0, ..., 0)$ and let $P_{z'}(r_1, r_2)$ be the polydisc centred at z' with radius r_1 in the complex normal direction and r_2 in each complex tangential direction [1, p.55]. Then we know from (1) that $z \in \mathcal{U}_{\alpha}(\zeta)$ implies $z \in P_{z'}$ ($\sqrt{3\alpha} y_1, \sqrt{\alpha}\sqrt{y_1}$). Notice that Lemma 6 of [5] is still valid under the weaker assumption that \mathcal{D} is a bounded strongly pseudoconvex domain with C^2 boundary in \mathbb{C}^n , with the same proof to the case of C^{∞} boundary. By applying this lemma we can take $\alpha > 0$ so small that

$$P_{z'}\left(\sqrt{3\alpha}y_1,\sqrt{\alpha}\sqrt{y_1}\right)\subseteq \{w\in\mathcal{D};\,\beta(z',w)<1\},$$

where $\beta(z', w)$ is the Kobayashi distance from z' to w. Hence, for $z \in \mathcal{U}_{\alpha}(\zeta) \cap \{w : |w - \zeta| < \varepsilon\}$ with ε small enough we have

$$\beta(z', z) < 1.$$

Now suppose $f \in \mathcal{B}(\mathcal{D})$ and for almost all $\zeta \in \partial \mathcal{D}$ the limit $\lim_{t \to +0} f(\zeta - tv_{\zeta})$ exists. Set $E = \{\zeta \in \partial \mathcal{D} : \lim_{t \to +0} f(\zeta - tv_{\zeta}) \text{ exists}\}$. If $\zeta \in E$, then f is bounded on $\{\zeta - tv_{\zeta} : 0 < t \leq \varepsilon\}$, say

$$|f(\zeta - tv_{\zeta})| \leq M \quad t \in (0, \varepsilon].$$

Then for $z \in \mathcal{U}_{\alpha}(\zeta) \cap \{w : |w - \zeta| < \varepsilon\}$, from the estimate on [6, p.150] and (2), (3) we obtain

$$egin{aligned} |f(z)| \leqslant |f(z)-f(z')|+|f(z')| \ &\leqslant Ceta(z',z)+M\leqslant C+M. \end{aligned}$$

That f is bounded on $\mathcal{U}_{\alpha}(\zeta) \setminus \{w : |w - \zeta| < \varepsilon\}$ is obvious. This means that f is admissible bounded at $\zeta \in E$. Theorem 12 of [1] tells us that f has admissible limits at almost all $\zeta \in \partial \mathcal{D}$. The proof is complete.

REMARK. We have actually proved the following: If $E \subseteq \partial D$ is measurable and f is a Bloch function which has radial limits at each $\zeta \in E$, then f has admissible limits at almost all $\zeta \in E$.

References

- [1] E.M. Stein, Boundary behavior of holomorphic functions of several complex variables (Princeton University Press, Princeton, NJ, 1972).
- [2] D.C. Ullrich, 'A Bloch function in the ball with no radial limits', Bull. London Math. Soc. 20 (1988), 337-341.
- [3] O. Lehto and K.J. Virtanen, 'Boundary behavior and normal meromorphic functions', Acta Math. 97 (1959), 47-65.
- [4] Hou Xiangdong, 'Bloch functions on the unit ball', Chinese Ann. Math. Ser. A 8 (1987), 287-299.
- [5] H. Li, 'BMO, VMO and Hankel operators on the Bergman space of strongly pseudoconvex domains', J. Funct. Anal. 106 (1992), 375-408.
- [6] S.G. Krantz and D. Ma, 'Bloch functions on strongly pseudoconvex domains', Indiana Univ. Math. J. 37 (1988), 145-163.

Department of Mathematics Huzhou Teachers College Huzhou, Zhejiang 313000 People's Republic of China