
Robotica: (2021) volume 39, pp. 1299–1315. C© The Author(s), 2020. Published by Cambridge University Press. This is an
Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.
org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original
work is properly cited.
doi:10.1017/S0263574720001186

Motion Adaptation Based on Learning
the Manifold of Task and Dynamic
Movement Primitive Parameters
Yosef Cohen†, Or Bar-Shira† and Sigal Berman†,‡∗

†Department of Industrial Engineering and Management, Ben-Gurion University of the Negev,
Beer-Sheva, Israel
‡Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel

(Accepted November 21, 2020. First published online: December 18, 2020)

SUMMARY
Dynamic movement primitives (DMP) are motion building blocks suitable for real-world tasks. We
suggest a methodology for learning the manifold of task and DMP parameters, which facilitates run-
time adaptation to changes in task requirements while ensuring predictable and robust performance.
For efficient learning, the parameter space is analyzed using principal component analysis and locally
linear embedding. Two manifold learning methods: kernel estimation and deep neural networks, are
investigated for a ball throwing task in simulation and in a physical environment. Low runtime esti-
mation errors are obtained for both learning methods, with an advantage to kernel estimation when
data sets are small.

KEYWORDS: Dynamic movement primitives, Kernel estimation, Deep Neural networks, Motion
planning, Learning.

1. Introduction
Using a finite set of motor primitives has been suggested as the method employed by vertebrates for
producing a myriad of dexterous motor behaviors.1 In light of this, several forms of motor primi-
tives have been suggested for robot motion planning and control.2, 3 When motion is based on motor
primitives, learning to perform a task is related to learning the suitable motion primitive parame-
ters. Similarly, performance adaptation and improvement during runtime are related to adaptation of
the motion primitive parameter values. The current work suggests learning a continuous mapping
of task requirements to motion primitive parameter values, which can be used during runtime for
motion adaptation to changes in task requirements. Since the mapping is formed a priori, it ensures
predictable and robust task performance.

Learning motion primitive parameters for a required task is typically performed based on learn-
ing from demonstration or reinforcement learning (RL), and most commonly, by combining both
methods.4–6 Several methods have been suggested for handling changes in task requirements with-
out additional learning epochs, for example, selection of a suitable motion primitive from a set of
pre-trained primitives,7 concatenation of several motion primitives,8–10 and linear extrapolation of
the motion primitive’s parameters.10 The relationship between task parameters and motion primitive
parameters is typically nonlinear, forming a manifold in the parameter space. Therefore, linear meth-
ods are bounded to a small region about the original parameter values in which local linearity can
be assumed. Differently, nonlinear methods can lead to an efficient representation of the parameter
manifold and to a larger continuum of task requirements that can be successfully met.

∗ Corresponding author. E-mail: sigalbe@bgu.ac.il

https://doi.org/10.1017/S0263574720001186 Published online by Cambridge University Press

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0263574720001186
https://orcid.org/0000-0001-7717-7259
mailto:sigalbe@bgu.ac.il
https://doi.org/10.1017/S0263574720001186

1300 Motion adaptation using manifold of task and movement primitive parameters

Using meta parameters as a way to generalize learning is a common machine learning
methodology,11 and to this end, meta parameters have also been defined for motion primitives.12, 13

We present a method facilitating adaptation of motion primitive meta parameters with respect to
task parameters based on an a priori learned mapping of the parameter manifold. Before learning
the mapping, we analyze the relationship between the parameters for ensuring learning efficiency.
We compare two common manifold mapping learning methods: deep neural networks (DNNs) and
kernel estimation. The methods are examined for a soft ball throwing task. Low runtime estimation
errors were obtained for both estimation methods, with an advantage to kernel estimation when train-
ing data sets are small. The rest of this paper is organized as follows: related work is presented in
Section 2; the methodology is presented in Section 3; an in-depth case study of implementing the
methodology for a robotic soft ball throwing task in simulation and in a physical setup is presented
in Section 4; results are presented in Section 5; and discussed in Section 6.

2. Related Work
Dynamic movement primitives (DMPs)14–17 are a commonly used form of motion primitives. They
were derived based on combining notions from optimal control theory and dynamic systems. A DMP
is a nonlinear second-order dynamic system. Where the nonlinearity facilitates representing complex
motion polices. Their parametrization has been inspired by physical models, for example, a damped
spring system perturbed by a nonlinear acceleration and summation of acceleration fields.17 In several
approaches aimed at DMP generalization, the DMP parameters have been divided into three cate-
gories:12, 13 shape parameters, meta parameters, and external parameters. Shape parameters define
the spatio-temporal shape of the movement. The shape of a movement is maintained under affine
transformations in time and/or in space, for example, change of size, time scale, rotation, and trans-
lation. The meta parameters are the values that determine the DMPs frame of operation, for example,
the start and goal positions, movement duration, and internal gains. The external parameters are not
specific to the DMP formulation, and they determine external, high-level issues that affect DMP
operation, for example, when to start the motion with respect to additional task constraints. The task
parameters determine the required outcome of the task, for example, for the soft ball throwing task
used in the current work, task parameters determine the required landing position on the floor. DMP
parameters (shape, meta, and external) are determined for given task parameters. For example, for
the DMP vectorial equations defined as in.17

v̇= K(xg − x)− Dv − K(xg − x0)s + K f(s)
ẋ = v

(1)

where x(t) is the position and v(t) is the velocity of the required trajectory; the meta parameters are the
initial position x0, the goal position xg , the time scaling factor τ , the stiffness K, and the damping D.

The nonlinearity is introduced to the DMP control equations using f (s), which is a nonlinear
function defined by a weighted sum of Gaussian kernels, Ψ I,

f (s)=
∑

i ψi (s)wi∑
i ψi (s)

s

ψi (s)= e−bi (s−ci)
2

(2)
τ ṡ = −εs

where s is the phase variable and ε is the time convergence constant. The Gaussian kernels are defined
by the Gaussian distribution parameters b and c, such that the kernels span the path space. Finally,
the weights of the kernels, wi , are the shape parameters as they determine the spatio-temporal shape
of the trajectory. The external parameters are not part of the DMP formulation.

Several RL methods have been applied for finding optimal DMP parameters.18 Research has con-
centrated mainly on shape and meta parameters. The use of external parameters is less common,
and their determination and optimization are typically related to general task sequencing and thus
less addressed within literature on DMP parameters. Most researchers develop methods for learning
shape parameters for a given set of meta and task parameters (e.g.,5, 6, 13). Some researchers have
developed methods for learning meta parameters for given shape parameters.12, 19–21 Others have
integrated learning meta and shape parameters, either hierarchically9 or in parallel.21–23 While RL

https://doi.org/10.1017/S0263574720001186 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720001186

Motion adaptation using manifold of task and movement primitive parameters 1301

indeed facilitates acquiring new skills, its use for adaptation during runtime has several limitations.
The continuous parameter space along with the high dimensionality of typical robotic motor-learning
problems lead to long learning epochs. This may be unacceptable during runtime for many tasks,
especially when human–robot collaboration is required.6, 24, 25

A different body of research on data-driven models of motion, seeks to generalize available
data, forming concise representations that capture salient motion characteristics. For example, wrist
configurations required for achieving high-quality grasps for a given object were determined and
represented using graspability maps and grasp density functions.26, 27 A similar concept can be used
for constructing models of DMP meta and task parameters. Rueckert et al.28 suggest using hierar-
chical Bayesian models for estimating both meta and shape parameters for probabilistic movement
primitives. Ugur and Girgin20, 21 suggest learning parametric hidden Markov models from multi-
ple demonstrations for encoding relations between shape parameters and environment properties.
Probabilistic movement primitives facilitate encoding optimal behaviors in stochastic systems, yet
when deterministic system behavior (i.e., completely predictable operation) is required, they are
less suitable. Additionally, multiple demonstrations are typically required for learning primitive
distribution parameters taxing the initial learning process.29

Two manifold learning methods are suggested for learning the mapping of the task and meta
parameter manifold based on training data, kernel estimation, and DNNs. Both methods are suitable
for learning efficient manifold representations,30–32 yet they have different strengths and they are suit-
able for different estimation conditions. DNNs can efficiently represent complex manifold structures.
Moreover, DNNs scale in a straight forward manner to high manifold dimensions, and they can han-
dle correlations between output variables. However, DNNs are notoriously known for requiring large
training data sets for attaining an accurate representation. Kernel estimation is a classical machine
learning method, highly suitable for capturing the nonlinear data structures such as manifolds. Due
to the ability to locally adapt the kernel weights, a smooth and highly accurate representation can
be achieved with only a moderate training data set size. Moreover, task-related knowledge regarding
the relationship between the parameters can be readily incorporated in the learning process, making
it more efficient. However, kernel estimation does not scale well to high manifold dimensions and is
not well suited for handling correlations between output variables. According to these insights, in the
current work, the two learning methods are examined with respect to the size of the available training
data set and the complexity of the task and meta parameter manifold.

For ensuring efficient learning, the complexity of the task and meta parameter manifold can be
examined using problem dimension estimation methods. Two commonly used methods are principal
component analysis (PCA)33, 34 and locally linear embedding (LLE).35 PCA is a linear method that
determines a coordinate system, in which each axis is a linear transformation of the original data
features and the data’s principal components, i.e., the axes onto which the retained variance under
projection is maximal.33, 34 PCA additionally enables representation of dominant patterns in the data
by plotting the primary principal components. LLE is a nonlinear method which computes low-
dimensional, locally linear, neighborhood-preserving embedding of high-dimensional inputs.35 The
method is based on a simple geometric intuition: if data are sampled from a smooth manifold, then
neighboring points remain similarly co-located in the low-dimensional space. In LLE, each point in
the data set is linearly embedded into a locally linear patch of the manifold. The low-dimensional
data are constructed in a way that ensures that the locally linear relations of the original data are
preserved.36 The downside of using LLE is that unlike PCA analysis, the relationship between the
output and input parameters is not readily available. This is typical for nonlinear manifold learning
methods. Both PCA and LLE facilitate visualization of the parameter response surface in the lower
dimensional space. PCA is more suitable for data with linear or near linear dependencies and LLE
for data with significant nonlinear dependencies.37

In the classical DMP formulation, shape parameters are established a priori and retained for
motion generation during runtime. In the tight DMP (TDMP) formulation,38 the coordinates of a
typical movement trajectory are retained for motion generation. During runtime, these coordinates
are linearly transformed based on trajectory landmarks (e.g., start and goal positions) and suitable
shape parameters are calculated using linear regression from the transformed trajectory along with
determined meta parameters. This formulation ensures a high fit of the trajectory formed by TDMP
to the shape of the typical trajectory.

https://doi.org/10.1017/S0263574720001186 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720001186

1302 Motion adaptation using manifold of task and movement primitive parameters

In the presented methodology, TDMP parameter adaptation during runtime is based on a hierar-
chical process; first meta parameters are determined based on the task and meta parameters manifold,
and then shape parameters are found based on these meta parameters and the transformed coordinates
of a typical trajectory. The methodology is examined for a soft ball throwing task, in which the ball
is thrown to a designated landing position.

3. Methodology

3.1. Overview
The suggested methodology for robust, runtime, DMP parameter adaptation based on task require-
ments has an a priori learning stage and two sequential runtime stages. In the a priori stage, the
dimensionality of the parameter space is qualitatively evaluated using PCA and LLE. This analysis
is used for guiding the parameter mapping processes, that is, determining the regression equations
for the Gaussian kernel estimation or the hyper-parameters governing the network training processes.
The task and meta parameter mapping is learned using kernel estimation or DNNs based on a training
data set of task and meta parameters (Fig. 1). During runtime, the meta parameters are determined
based on the task and meta parameter mapping and then shape parameters are determined for the
meta parameters and a typical trajectory using the TDMP method. The typical trajectory is a pre-
determined (recorded, computed, or learned) movement trajectory. In the general case, the task
requirement space can be divided into several instances of such typical trajectories. For example,
typical trajectories for table tennis can be defined for each of the four basic strokes (forehand drive,
backhand drive forehand push, and backhand push).

3.2. Learning a representation of the task and meta parameter manifold
For a given robotic system, environment, and task, there are n task parameters, δ1, . . . , δn , m meta
parameters, γ1, . . . , γm , and p shape parameters, w1, . . . , wp. The task and meta parameters are
related through a manifold �(δ1, . . . , δn, γ1, . . . , γm) embedded in the parameter space.

3.2.1. Kernel estimation. A set of m functions, g j (δ1, . . . , δn, γ1, . . . , γi �= j , . . . , γm), j = 1 . . .m,
relating each meta parameter γ j to the n task parameters δi , and the rest of the m−1 meta parame-
ters γi , I �= j form a map of dimension n + m−1 of the task and meta parameter manifold.39 These
functions can be estimated using kernel estimation by a weighted sum of n + m−1-dimensional
Gaussians kernels,

γ j = g̃ j (δ1, . . . , δn, γ1, . . . , γi �= j , . . . , γm)

= 	 j ·
 j (δ1, . . . , δn, γ1, . . . , γi �= j , . . . , γm)∑k j

in+m−1
.

∑k j

i3=1

∑k j

i2=1

∑k j

i1=1
 j (δ1, . . . , δn, γ1, . . . , γi �= j , . . . , γm)

(3)

where k j is the number of kernels in each axis (for simplicity, we assume the same number of kernels
in each axis), and k j · (n + m−1) is the number of kernels representing each meta parameter, 	 j is
a k j · (n + m−1)-dimensional tensor of weights, and
 j is a k j · (n + m−1)-dimensional tensor of
kernel functions,

ψ
j
il

(
δ1, . . . , δn, γ1, . . . , γi �= j , . . . , γm

) = exp

⎛
⎝−(

δ1−c j
il
(δ1)

)

2
(
σ

j
il
(δ1)

)2

⎞
⎠ exp

⎛
⎝−(

δ2−c j
il
(δ2)

)

2
(
σ

j
il
(δ2)

)2

⎞
⎠ . . .

exp

⎛
⎝−(

δn−c j
il
(δn)

)

2
(
σ

j
il
(δn)

)2

⎞
⎠ exp

⎛
⎝−(

γ1−c j
il
(γ1)

)

2
(
σ

j
il
(γ1)

)2

⎞
⎠ exp

⎛
⎝−(

γ2−c j
il
(γ2)

)

2
(
σ

j
il
(γ2)

)2

⎞
⎠ · · · (4)

exp

⎛
⎝−(

γi �= j−c j
il
(γi �= j)

)

2
(
σ

j
il
(γi �= j)

)2

⎞
⎠ . . . exp

⎛
⎝−(

γm−c j
il

(
γm

))

2
(
σ

j
il

(
γm

))2

⎞
⎠ , j = 1, . . . , n + m−1, l = 1, . . . , k j

where c j
il

are the means and σ j
il

are the standard deviations.

https://doi.org/10.1017/S0263574720001186 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720001186

Motion adaptation using manifold of task and movement primitive parameters 1303

Fig. 1. Generation of a data set for the task and meta parameter mapping. Step 1: Select a typical trajectory,
Step 2: Determine a set of meta parameters. Step 3: For all the meta parameters in the set, calculate a trajectory
using TDMP. Step 4: For each trajectory, extract the task parameters. The database of task and meta parameters
is used for the kernel estimation or DNN training.

For Gaussian kernels, the kernel estimation parameters include the number of kernels, the ker-
nel means, and their standard deviations. The number of kernels balances problem complexity with
attainable estimation resolution. The kernel means must assure good coverage of the ranges of data
values. The standard deviation values affect attainable estimation accuracy. Selecting large standard
deviations may result in a smooth function, but with a low fit to the data, and selecting small standard
deviations may result in overfitting the data. There are several methods for choosing the optimal stan-
dard deviations for a given data set.40, 41 Among them, the most commonly applied method is based
on finding the standard deviations that yield the smallest average square error for the validation data
set.41 We chose this method due to its relative simplicity and high attained performance in many
practical cases.

Knowledge regarding the relationship between the parameters can be readily incorporated in the
estimation process, by pre-determining a subset of the task and meta parameters that will be included
in the estimation of each meta parameter. Reducing the dimensionality of the problem in such a way
reduces the estimation time and the size of the required training data set. Additionally, it increases
the robustness of the solution to noisy measurements.

3.2.2. Deep neural network. The hierarchical, layered structure of DNNs facilitates capturing com-
plex data structures, where the outputs are continuous piecewise linear functions of the inputs.32

Accordingly, a neural network can take as input the vector of task parameters and supply as output

https://doi.org/10.1017/S0263574720001186 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720001186

1304 Motion adaptation using manifold of task and movement primitive parameters

the vector of suitable meta parameters. The networks chosen in the current work were feed-forward
networks with a rectified linear unit activation function, and mean absolute error loss function. The
network structure was optimized with an Adam optimizer.42–44 We performed a grid search45 to deter-
mine the number of hidden layers and the number of neurons in each layer and to set the learning rate.

3.3. Task and meta parameter manifold structure
Examining the structure of the task and meta parameter manifold is important for evaluating prob-
lem complexity and for understanding the interactions between the parameters. Such knowledge
facilitates establishing suitable regression equations and regression estimation parameters (e.g., the
number of kernels). It is similarly important for correctly establishing the search space for the hyper-
parameters of the DNN. We examined the structure of the task and meta parameter manifold using
two methods, PCA and LLE. The kernel estimation equations were determined based on the weights
of the PCA components. Task and meta parameters whose weights were high in the same principal
component were used in the same regression equation. Problem complexity was assessed by exam-
ining the variance explained by the PCA components and the layout of the top components of both
PCA and LLE. For PCA, when accumulation of 95% of the variance requires more components, the
problem space is more complex. When PCA or LLE parameter dispersion is less uniform, problem
complexity is higher. Higher problem complexity requires more kernels or deeper networks with
more neurons in each hidden layer. Finally, the PCA weights influence the effort to minimize the
error of each meta parameter when learning the structure of the DNN. A meta parameter that has
larger weights in the top principal components is marked as more important, and the error threshold
guiding the training for this parameter is lower.

4. Case Study: A Robotic Soft Ball Throwing Task
A robotic soft ball throwing task was chosen for demonstrating the methodology. The target of the
task is to throw a soft ball to a designated landing point. The task was chosen since a basic motion
trajectory can be readily defined for the throwing motion. However, the physical task dynamics are
complex since due to drag, they are influenced by the ball’s surface. These dynamics have nonlinear
components which make the estimation of the task and meta parameter manifold non-trivial. The
task was examined in simulation and in a physical environment. Simulation facilitates collection
of large amounts of data. However, the physical implementation is important for attaining physical
grounding. The throwing task parameters are the required landing point on the floor defined by the
radius r and the horizontal angle α (Fig. 2a). The meta parameters are the endpoint of the robotic
throwing motion (where the robot stops at the end of the task), defined by the horizontal angle β,
height h, and radius R, the time scaling factor τ , the stiffness K, and the damping D. For a typical
throwing trajectory, the endpoint of the robotic throwing motion directly influences the ball release
point and velocity. Therefore, the endpoint of the robotic throwing motion has a major impact on
the ball’s landing position. In the current work, we investigated adaptation of the endpoint meta
parameter, while the rest of the meta parameters were defined as constants with values appropriate
for the required task parameter range.

4.1. The physical environment
A 6 degrees of freedom (DOF) HP6 manipulator (Yaskawa, Motoman, Japan) was used in the phys-
ical setup (Fig. 2b). Its manipulator was fit with a ball holder. The orientation of the ball holder
was set such that the ball will be released when the robot is moving at its maximal velocity, before
it starts decelerating. The room setup was suitable for testing landing positions in a distance of
0.8–1.6 m from the manipulator and ±27 degree about it. According to these dimensions, a green
plastic mat was printed marking distance and angles about the robot’s base. An overhead video cam-
era was mounted for determining the landing position on the mat. A soft red ball made out of clay
gel polymer was used for throwing (radius 26 mm, weight 90 g). The moderate adhesiveness caused
the ball to remain at the landing point after the initial impact, which simplified the identification of
the landing point and added some nonlinearity to the formed trajectory. Communication between the
station computer and the robot controller was established using RS-232 serial communication and
the Motocom32TM software. A typical trajectory suitable for throwing the ball was manually pro-
grammed. Before each run, the ball was loaded into the ball holder and the robot was positioned at

https://doi.org/10.1017/S0263574720001186 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720001186

Motion adaptation using manifold of task and movement primitive parameters 1305

Fig. 2. (a) The task and meta parameters. The task parameter – landing point on the floor is defined by the
radius r and the horizontal angle α. The meta parameter – motion endpoint is defined by the horizontal angle β,
height h, and radius R (and motion duration τ). (b) The physical implementation with a HP6 Motoman robot,
ball holder, and the mat for determining ball landing position.

Fig. 3. (a) An overhead camera was mounted above the arena, and an image was taken with a short delay after
the ball was thrown. (b) The image mask after band-pass filtering of the green image plan (low green values:
Low = 2 and High = 100). (c) The image mask after band-pass filtering the red image plane (high red values:
Low = 150 and High = 300). (d) Multiplication of images b & c followed by elliptical dilation for smoothing.

an initial configuration in which the end effector was low and close to the robot’s base. The required
motion trajectory was computed by the station computer based on the meta parameters and the trans-
formed typical trajectory. The trajectory was sent to the robot controller, and the robot executed the
motion. The robot’s configuration at the end of the motion was sent back to the control computer for
verification, and the landing position of the ball was automatically extracted from the image taken by
the overhead camera using color-based identification (Fig. 3) and either added to the formed training
database or used for outcome evaluation.

4.2. Simulations
The simulation was developed using Matlab (Mathworks Inc., U.S) on a computer with an Intel�

coreTM i7, and 8 GB RAM. The HP6 manipulator (Yaskawa, Motoman, Japan) used in the phys-
ical setup and was modeled in simulation with the Matlab Robotic Toolbox.46 The robot’s initial
configuration and the typical trajectory programmed in the physical environment were transformed
to the coordinates of the simulated environment. The landing point in each run was determined
based on the modeled dynamic equations of the ball’s trajectory after it was released by the robot.
Two simulation models with different ball trajectory dynamic equations were developed: a ballistic
model and an attenuated model. For both models, the meta parameter values used for establishing the
training database were β = [−45◦:45◦], h = [40 mm:140 mm], R = [500 mm:700 mm]. The ballistic
model disregarded drag forces was based on the standard ballistic motion equations (Eq. 5). The meta

https://doi.org/10.1017/S0263574720001186 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720001186

1306 Motion adaptation using manifold of task and movement primitive parameters

parameter values and these equations led to ball release velocities in the range of 0.2–0.5 m/s and to
landing distances in the range of 0.5–1.8 m with landing angles in the range of ±72 degree.

rx(t)= rz(0)+ vx(0)t
ry(t)= ry(0)+ vy(0)t (5)

rz(t)= rz(0)+ vz(0)t + 1

2
gt2

where v0 = [vx(0) vy(0) vz(0)] is the velocity of the robot when the ball is released from the holder
(the maximal velocity of the robotic motion profile).

The attenuated model was adapted in order to better account for some of the characteristics of the
motion of the physical robot. The velocity equation of the attenuated model (Eq. 6) reflects the fact
that the velocity of the physical robot at the ball release point was higher than the velocity prescribed
by the DMP profile due to differences between the modeled and actual acceleration used by the robot.
In addition, it was harder for the robot to reach high velocities when throwing the ball toward the
side using the defined typical motion profile (reflected by the added cosine function of β) and it was
harder for the robot to develop high velocities for very low or very high throwing distances (reflected
by the added exponential function of R) (Eq. 6). These led ball release velocities in the range of
0.3–1.2 m/s and to landing distances in the range of 0.5–8 m with landing angles in the range of ±79
degree.

v0_a = v0

(
1 + e

−|Rmax −R|
cw

)
(1 + cos(β)), −90<β < 90 (6)

where Rmax is the goal point radius for which the maximal velocity was obtained over all trials and
cw is a scaling constant. In the current work, cw was empirically set to 20.

4.3. Data sets
Data sets of task and meta parameter tuples were created based on a set of meta parameters using
the simulation models (ballistic and attenuated) and with the physical apparatus. Given the meta
parameters and transformed typical trajectory, shape parameters were calculated using TDMP. Then,
the resulting task parameters were calculated by using the DMP controller of the robotic motion, in
simulation (ballistic or attenuated) or within the physical environment.

Different training data sets were constructed for different analyses. For all data sets, motion dura-
tion was set as a constant value of τ = 5 since preliminary analysis with the physical robot showed
that this is an appropriate duration value for a successful throw. Similarly, the stiffness K was set to
150, and the damping D was set to 24.9. The data sets were constructed by varying the values of
the motion endpoint defined by the horizontal angle β, height h, and radius R. For kernel estimation,
training data sets of different sizes were constructed as full factorial array of meta parameter values.
Data set size was determined by the number of equally spaced parameter values used. For examining
data complexity, for training the DNNs, and for testing, data sets of different sizes were constructed
by randomly sampling motion endpoint values from a uniform distribution over the range of each
parameter.

Both kernel estimation and DNNs can be trained using iteratively converging algorithms which
minimize a cost function, for example, gradient decent. Kernel estimation can also be achieved
by linear regression with a least squares cost. In this case, the solution can be found analytically
and, therefore, ordered data can be used. When using iterative estimation algorithms, it is critical
that incoming data are not ordered, as ordered data may lead to convergence to a local minimum.
Sampling data points from a uniform distribution is a suitable method for constructing unordered
data sets. Yet, for small data sets, a stochastically sampled data set may not cover the input range
well. Therefore, for small data sets, if possible, it is better to use ordered sets.

We hypothesize that kernel estimation will have advantages over DNNs when using small data
sets. To verify this issue, we opt to use the data set that was most suitable for each method (full
factorial for kernel estimation and uniform distribution for DNNs). For each method, with q meta
parameter values, where q = 2−1, 0 therefore 8, 27, 64, 125, 216, 343, 512, 729, and 1000 parameter
tuples training data sets, and 125 parameter tuples test data set were constructed for each simula-
tion model (ballistic, attenuated). Data complexity was analyzed using the randomly sampled 1000

https://doi.org/10.1017/S0263574720001186 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720001186

Motion adaptation using manifold of task and movement primitive parameters 1307

parameter tuples training set for each simulation model. In the physical environment, a training data
set with 45 parameter tuples and a test data set with 12 parameter tuples were constructed.

4.4. Procedure
4.4.1. Examining data complexity. The relationship between the parameters was examined with
PCA and LLE. After the PCA was performed, the weights of each parameter in the top principal
components were examined. The number of required dimensions was set based on the number of
principal components required for explaining 95% of the variance. The number of required linear
dimensions is an upper bound for the number of required nonlinear dimensions. Therefore, the num-
ber of dimensions established based on PCA was used for computing the LLE. The kernel estimation
equations and the neural network structure were adjusted according to the outcome of the PCA and
LLE analysis, as discussed in Section 2.3

4.4.2. Defining the kernel estimation parameters. For determining the number of required kernels,
we examined the average estimation error as a function of the number of kernels for both simulation
models (ballistic, attenuated). The number of kernels examined was 8, 27, 64, 125, and 343. For each
kernel density, the kernel means were uniformly distributed in the parameter space. The standard
deviations were found as in41 by minimizing the square error. The number of kernels was examined
using a medium size training data set with 125 records constructed for each of the simulation models
as full factorial array of meta parameter values.

4.4.3. Defining network structure. To ensure the best possible trained network for each data set, a
DNN was devised for each data set for each of the simulation models (ballistic, attenuated). For each
training data set, 20% of the tuples were randomly defined as a validation set and kept aside for
model selection. For all networks, the number of neurons in the input layer was equal to the number
of task parameters (r, α) and the number of neurons in the output layer was equal to the number of
meta parameters (R, β, h). The batch size and the number of epochs were empirically set to 32 and
1000, respectively. A grid search was performed to adjust the number of hidden layers, the number of
neurons in each layer, and the learning rate for the optimizer. The values for the number of layers and
neuron were chosen based on the results of the PCA and LLE analysis. More neurons and layers are
required for more complex problems, since poor performance is achieved when the network is too
shallow for the problem. On the other hand when a network is too deep, redundancy can be created
which ultimately decreased the performance of the network. The learning rates tested were [0.01,
0.001, 0.0005]. An early stop technique was used, according to which the training was stopped when
the model performance stops improving with the validation set over 10 sequential epochs.47 The final
model for each data set was devised with the combination of hyper-parameter values that minimized
the mean absolute error (MAE) between the estimated and true values, for the validation set,

MAEy=1

n

∑n

t=1

∣∣yt−ŷt

∣∣ (7)

where y is one of the meta parameters (β, h, R), n is the number of samples, yt is the truth value, and
ŷt is the estimated value.

4.4.4. Testing the influence of data set size on the estimation error. The size of the required training
data set is an important consideration for choosing a learning method since requirements for large
training data sets may be very costly. The analysis of the influence of the training data set size of the
estimation error was performed with both learning methods, kernel estimation and DNNs, for both
simulation models, the ballistic model and the attenuated model.

4.4.5. Examining the methodology in the physical environment. In the physical environment, three
alternative data sets for learning the task to meta parameter mapping were examined: a training
data set constructed in the physical environment (with 45 parameter tuples) and two training data
sets (with 125 parameter tuples) based on the simulated data (the ballistic model and the atten-
uated model). Since collecting data in simulation is considerably faster than that in the physical

https://doi.org/10.1017/S0263574720001186 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720001186

1308 Motion adaptation using manifold of task and movement primitive parameters

implementation, both simulation training data sets are considerably larger than the physical data set.
Yet both simulation models make simplification assumptions with respect to the physical reality. All
mappings were tested using the physical test set.

4.5. Analysis
We examined the errors of the meta parameter mapping and the resulting task parameter errors. The
meta parameter mapping error is directly computed comparing the output of the learned estimation
function to the ground truth value of the required meta parameters. Computing the error of the result-
ing task parameters with respect to the ground truth values requires an additional execution step,
that is, computing the task parameters which result from the throwing motion conducted based on
the estimated meta parameters (using simulation or executing with hardware). The errors in task
parameters characterize the overall performance, yet the meta parameter estimation errors and their
relationship with the task parameter errors are important for evaluation of the learning outcome and
for understanding possible tradeoffs.

Distance errors to the ground truth values, R (endpoint radius) and r (ball landing point radius),
were calculated as the mean scaled absolute error (MSAE),

MSAEy=1

n

∑n

t=1

|yt−ŷt |
yt

(8)

where y is one of the parameters (R, r), n is the number of samples, yt is the truth value, and ŷt is the
estimated value.

Angle errors to the estimated ground truth values β (endpoint horizontal angle) and α (ball landing
point horizontal angle) were calculated as the MAE (Eq. 7).

4.6. Statistical analysis
For analyzing the effects of data set size on the estimation error in simulation, we applied a mixed
ANOVA with method (Kernel estimation, DNN) and model (Ballistic, Attenuated) as between-
subjects parameters and data set size as the within-subject parameter. For analyzing the effects
of the training data set source on the estimation error in the physical environment, we applied a
repeated-measures ANOVA analysis with mapping data source (Physical, Ballistic, Attenuated) as
within-subject parameters.

5. Results

5.1. Examining data complexity
In both the ballistic model and the attenuated model, the top 3 PCA components and the top 4 PCA
components explain more than 95% and 99% of the variance, respectively (Fig. 4). Based on this,
we determine that the complexity of both models is moderate. The dispersion of the first 3 PCA
components was similar and nearly uniform in both models (Fig. 5), but the dispersion of the first 3
LLE components differed, showing different concentrations along different axes, suggesting stronger
internal constraints among the parameters of the attenuated model (Fig. 6). This suggests that the
attenuated model will require higher parameter accuracy for attaining a low error than the ballistic
model.

Examining the PCA components shows a clear separation between the parameters (Fig. 5). The
angles (α, β) have very high weights in the 1st and 5th components, the distances (r, R) in the 2nd and
4th components, and the height (h) in the 3rd component. This implies separation between distances
and angles and a weaker relationship between the values of height and those of other parameters.
There was still some influence of the height on the 2nd and 4th components (distances) and some
influence of the angles on the 3rd component (height). These phenomena are easily related to the
equations of motion describing the model. For the same release distance, for different release heights,
a different final ball landing distance will be attained. The release height is also related to the attained
final angle for the same release angle.

https://doi.org/10.1017/S0263574720001186 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720001186

Motion adaptation using manifold of task and movement primitive parameters 1309

Fig. 4. Cumulative variance of the principal components. (a) Ballistic model. (b) Attenuated model.

Fig. 5. Weights of the parameters in the principal components. (a) Ballistic model. (b) Attenuated model. The
shapes symbolize the type of the model.

5.2. Kernel estimation parameters
Based on the PCA results, two separate mapping functions were defined one for task distance (R)
and one for task angle (β) for describing the �(R, β, h, r, α) manifold,

γR(r, α, h)= 	R ·
R(r, α, h)∑kR
i3=1

∑kR
i2=1

∑kR
i1=1
R(r, α, h)

γβ(r, α, h)= 	β ·
β(r, α, h)∑kβ
i3=1

∑kβ
i2=1

∑kβ
i1=1
β(r, α, h)

(9)

where γR(r, α, h) and γβ(r, α, h) are smooth functions over the three-dimensional space of r, α, and
h, 	R and 	β are the weight tensors and
R and
β are the kernel tensors.

For the ballistic model, kernel density had little effect on the error of both angles (β, endpoint,
and α ball landing point) (Fig. 7b), while the radial errors (R, endpoint, and r, ball landing point)
decreased similarly, as the number of kernels increased until reaching a plateau after 3 kernel per
dimension (over all 27 kernels) (Fig. 7a). For the attenuated model, kernel density affected both
the horizontal angle error (α, β) (Fig. 7d) and the radial distance (R, r) (Fig. 7c), where the error
decreased as the number of kernels used increased. The error did not further decrease when increasing
the number of kernels used beyond 4 kernel per dimension (over all 64 kernels).

5.3. Error as a function of data set size
The PCA and LLE analysis indicated that the complexity of the problem was moderate; thus, mod-
erate values for the lower and upper boarders of the grid search for the DNN hyper-parameters were

https://doi.org/10.1017/S0263574720001186 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720001186

1310 Motion adaptation using manifold of task and movement primitive parameters

Fig. 6. Top: 3-dimensional visualization of the top 3 principal components. (a) Ballistic model. (b) Attenuated
model. Bottom: 3-dimensional visualization of the top 3 LLE components. (c) Ballistic model. (d) Attenuated
model. The shapes symbolize the type of the model.

tested: the number of hidden layers tested was 3, 5, 7, 8 and the number of neurons in each layer tests
was 10, 20, 32, 64. The search was conducted separately for each database size. Similarly, based
on the PCA and LLE analysis, 27 kernels were used for the ballistic model and 64 kernels for the
attenuated model for the kernel estimation.

For both the ballistic and attenuated models and for both estimation methods (kernel estima-
tion and DNNs), the meta parameter estimation error decreased as the size of the training data set
increased (Fig. 8). For kernel estimation, the reduction in estimation error was very small when data
set size was increased beyond 30 tuples for the ballistic model and 64 tuples for the attenuated model.
For DNNs, the reduction in estimation error was very small when increasing data set size beyond 500
tuples for both the ballistic model and the attenuated model. Beyond this value (500 tuples), the error
converged in both methods to values of 3% for the landing distance (r) and 1◦ for the landing angle
(α) in the ballistic model and to values of 12% for the distance and 2◦ for the angle in the attenuated
model.

Both the distance and angle errors were smaller when data set size was increased (r : F1,4340 =
147 p< 0.0001, α : F1,4340 = 121 p< 0.0001). Both were smaller for the ballistic model than for
the attenuated model (r : F1,4340 = 578 p< 0.0001, α : F1,4340 = 257p< 0.0001). The distance error
was similar for both estimation methods, yet the angle error was larger for the DNN (F1,4340 =
533 p< 0.001). For both errors, there was a significant three-way interaction between model,
method, and data set size (r : F8,4340 = 2.9 p< 0.01, α : F8,4340 = 10.7 p< 0.0001).

5.4. Physical environment
The physical training data set size was determined based on the results of the simulation analysis and
accounting for the fact that the area in the physical implementation is smaller than in the simulation

https://doi.org/10.1017/S0263574720001186 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720001186

Motion adaptation using manifold of task and movement primitive parameters 1311

Fig. 7. Average estimation error of the task and meta parameters as a function of the number of kernels, pre-
sented parameters: r: ball landing radius; R: endpoint radius; α: ball landing horizontal angle; β: endpoint
horizontal angle. Ballistic model: A and B, Attenuated model: C and D.

Fig. 8. Average estimation error as a function of data set size, r: ball landing radius; R: endpoint radius; α: ball
landing horizontal angle; β: endpoint horizontal angle. Kernel estimation (KR, blue) and DNN (NN, orange).
Ballistic model: A and B, Attenuated model: C and D.

due to room size limitations. The training data set size was set to 45 parameter tuples, created based
on a full factorial design for three values of h (400 mm, 900 mm, 1400 mm) and R (500 mm, 600 mm,
700 mm) and five values for β(−10◦,−5◦, 0◦, 5◦, 10◦). Results were compared for the mapping
learned with kernel estimation based on the physical training data set, and the ballistic and attenuated

https://doi.org/10.1017/S0263574720001186 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720001186

1312 Motion adaptation using manifold of task and movement primitive parameters

Table I. Estimation errors when training with different training sets (Radius – Mean scaled
absolute error (MSAEr), Angle – Mean absolute error (MAEα)).

Training dataset (size) MSAEr (SD) (%) MAEα (SD) (deg)

Physical (45) 32 (0.07) 4.00 (2.72)
Ballistic model (125) 3 (0.00) 0.09 (.05)
Attenuated model (125) 2 (0.01) 2.41 (0.46)

simulation training data sets with 125 tuples (Table I). The number of kernels was 27, and the average
error calculation for the three mappings was performed using the 12-point test set generated in a
physical experiment.

The average errors for both task parameters using the mappings based on the simulation mod-
els were significantly lower than when using the mapping based on the physical data set (radius
– MSAEr: p< 0.0001 for both simulation models, angle – MAEα: Physical-Ballistic p< 0.0001,
Physical-Attenuated p< 0.05). There was no difference between training with each of the two
simulation models for the radial error, but the angular error was larger for training with the attenuated
model (p< 0.01). Results were similar when larger simulated data sets were used.

6. Discussion
The PCA and LLE analysis of the data from both simulation models of the soft ball throwing task
indicated that the complexity of the problem was moderate, that is, that a moderate number of kernels
and similarly a moderate number of layers, were required for estimating the task and meta parameter
manifold. This was corroborated by the analysis of the number of required kernels and the analysis
of network hyper-parameters. The additional nonlinear constrains in the attenuated model are in line
with the larger estimation errors for this model using both methods (kernel estimation and DNNs).
Not surprisingly, the estimation errors decreased rapidly as the size of the training data set increased
for both kernel estimation and DNNs. However, kernel estimation attained good results even with
small data sets. While for small data sets, kernel estimation outperformed the DNNs; for the larger
data sets, their performance was similar.

In a physical environment, generating a large training data set is very time-consuming.
Accordingly, the training data set generated in the physical environment was small. Therefore, the
mapping learned based on this data set was not accurate, and the estimation errors using the map-
ping were large. Using mappings learned with training data sets generated by the simulation models
produced considerably lower errors even though the simulation models were based on simplifying
assumptions. The mapping based on the data generated using the ballistic model led to very low
errors in both landing distance and angle. The mapping based on the attenuated model led to low
errors in landing distance, but it did not capture the landing angle well, perhaps since the modeled
reduction in the velocity as a function of β was too steep.

The low errors attained in both simulations and in the physical environment when training with
simulated data, validate the use of the a priori learned mapping between task and DMP parameters
for runtime motion adaptation. The motion adapted based on the mapping is fully predictable, and
task performance is robust. For robotic applications that require high assurances of runtime behavior
without forsaking runtime adaptability, such traits are important. Mapping the task to meta parame-
ters facilitates a structured adaptation to anticipated changes in the environment (known unknowns).
For examples, in the presented use case, changes to the required landing point. It is not equipped to
handle un-anticipated changes (unknown unknowns). For example, in the presented use case, we did
not prepare for changes in the elasticity of the ball. The DMP formulation itself does provide some
flexibility for dealing with changes in the environment, yet without parameter adaptation, the ability
to handle such changes is limited and the runtime operation may be hindered.

In many applications, the task enforces requirements on the path, for example, placing a ball in
the cup,48 pouring or carrying liquid,10, 22 or flipping a pancake.49, 50 In such cases, the number of
task parameters is large; therefore, kernel estimation may not be suitable and using a DNN may
be required. Seker et al.3 suggest an alternative primitive representation based on the conditional
neural processes DNN architecture. Augmenting such a representation with a learning and generation
system facilitates encoding complex temporal multi-modal sensorimotor relations in connection with

https://doi.org/10.1017/S0263574720001186 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720001186

Motion adaptation using manifold of task and movement primitive parameters 1313

complex task constraints. Indeed, such a framework requires large learning data sets. However, for
applications with complex task requirements along the motion path, for which the relationship with
the DMP parameters is not straight forward, such a representation may be advantageous. In many
other applications, requirements are enforced by the task only on the final configuration, for example,
pick and place tasks,20 hitting a baseball,51 dart throwing,12 tennis playing,16, 52 or drumming.53, 54 In
such cases, the number of task parameters is small; therefore, forming the mapping of task to meta
parameters may be advantageous, especially when using kernel estimation which does not require
much training data.

7. Conclusions
The research presents a hierarchical method for adaptation of DMP parameters during runtime based
on an a priori learned map of the task and DMP meta parameter manifold. Two methods for learning
the mapping are compared, kernel estimation and DNNs. For facilitating faster learning convergence
and correct emphasis on reducing errors of the more influential parameters, two methods are applied
for analyzing the complexity of the task and meta parameter manifold: PCA and LLE. PCA assists
in determining the regression equations and the number of required kernels and for determining
values of the grid search for the hyper-parameters of the DNN. LLE assists in gaining a deeper
understanding of model complexity.

Acknowledgment
Research supported by the Helmsley Charitable Trust through the Agricultural, Biological and
Cognitive Robotics Center of Ben-Gurion University of the Negev. The authors thank Mr. Noam
Peles for his assistance in setting up the physical environment.

References
1. S. F. Giszter, E. Loeb, F. A. Mussa-Ivaldi and E. Bizzi, “Repeatable spatial maps of a few force and joint

torque patterns elicited by microstimulation applied throughout the lumbar spinal cord of the spinal frog.
Hum,” Mov. Sci. 19, 597–626 (2000).

2. A. Billard, S. Calinon, R. Dillmann and S. Schaal, “Robot Programming by Demonstration,” In: Handbook
of Robotics (B. Siciliano, O. Khatib, eds.) (Springer, Berlin, 2008) chapter 59, pp. 1371–1394.

3. M. Y. Seker, M. Imre, J. Piater and E. Ugur, “Conditional Neural Movement Primitives,” Robotics: Science
and Systems (RSS) Conference, Freiburg, Germany (2019). https://doi.org/10.15607/RSS.2019.XV.071.

4. B. D. Argall, S. Chernova, M. Veloso and B. Browning, “A survey of robot learning from demonstration,”
Rob. Auton. Syst. 57, 469–483 (2009).

5. P. Kormushev, S. Calinon and D. G. Caldwell, “Reinforcement learning in robotics: Applications and real-
world challenge,” Robotics. 2(3), 122–148 (2013).

6. J. Kober, J. A. Bagnell and J. Peters, “Reinforcement learning in robotics: A survey,” Int. J. Rob. Res.
32(11), 1238–1274 (2013).

7. P. Pastor, M. Kalakrishnan, F. Meier, F. Stulp, J. Buchli, E. Theodorou and S. Schaal, “From dynamic
movement primitives to associative skill memories,” Rob. Auton. Syst. 61(4), 351–361 (2013).

8. B. C. da Silva, G. Baldassarre, G. Konisidaris and A. Barto, “Learning Parameterized Motor Skills on a
Humanoid Robot,” IEEE International Conference on Robotics and Automation, Hong Kong, China (2014)
pp. 5239–5244.

9. K. Muelling, J. Kober, O. Kroemer and J. Peters, “Learning to select and generalize striking movements in
robot table tennis,” Int. J. Rob. Res. 32(3), 263–279 (2013).

10. B. Nemec and A. Ude, “Action sequencing using dynamic movement primitives”, Robotica. 30, 837–846
(2011).

11. A. McGovern and A. G. Barto, “Automatic Discovery of Subgoals in Reinforcement Learning Using
Diverse Density,” Proceedings of the Eighteenth International Conference on Machine Learning,
Williamstown, MA, USA (2001).

12. J. Kober, E. Oztop and J. Peters, “Reinforcement Learning to Adjust Robot Movements to New Situations,”
International Joint Conference on Artificial Intelligence, Barcelona, Spain (2011) pp. 2650–2655.

13. F. Stulp, G. Raiola, A. Hoarau1, S. Ivaldi and O. Sigaud, “Learning Compact Parameterized Skills with
a Single Regression”, IEEE-RAS International Conference on Humanoid Robots (Humanoids), Atlanta,
USA (2013) pp. 417–422.

14. A. J. Ijspeert, J. Nakanishi and S. Schaal, “Movement Imitation with Nonlinear Dynamical Systems in
Humanoid Robots,” IEEE International Conference on Robotics and Automation, vol. 2, Washington, DC,
USA (2002) pp. 1398–1403.

15. A. J. Ijspeert, J. Nakanishi and S. Schaal, “Learning Attractor Landscapes for Learning Motor Primitives,”
In: Advances in Neural Information Processing Systems (S. Becker, S. Thrun and K. Obermayer, eds.), vol.
15 (Vancouver, Canada, 2003) pp. 1523–1530.

https://doi.org/10.1017/S0263574720001186 Published online by Cambridge University Press

https://doi.org/10.15607/RSS.2019.XV.071
https://doi.org/10.1017/S0263574720001186

1314 Motion adaptation using manifold of task and movement primitive parameters

16. A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor and S. Schaal, “Dynamical movement primitives:
Learning attractor models for motor behaviors,” Neural Comput. 25, 328–373 (2013).

17. H. Hoffmann, P. Pastor, D. H. Park and S. Schaal, “Biologically-inspired Dynamical Systems for Movement
Generation: Automatic Real-time Goal Adaptation and Obstacle Avoidance,” IEEE International
Conference on Robotics and Automation, vol. 2, Kobe, Japan (2009), pp. 1–7.

18. P. Pastor, M. Kalakrishnan, S. Chitta, E. Theodorou and S. Schaal, “Skill Learning and Task Outcome
Prediction for Manipulation,” IEEE International Conference on Robotics and Automation, Shanghai,
China (2011) pp. 9–13.

19. M. Tamošiunaite, T. Asfour and F. Worgotter, “Learning to reach by reinforcement learning using receptive
field based function approximation with continuous actions,” Biol. Cybern. 100, 249–260 (2009).

20. E. Ugur and H. Girgin, “Compliant parametric dynamic movement primitives,” Robotica. 1–18 (2019).
First view https://doi.org/10.1017/S026357471900078X.

21. H. Girgin and E. Ugur, “Associative Skill Memory Models,” IEEE/RSJ International Conference on
Intelligent Robots and Systems, Madrid, Spain (2018) pp. 6043–6048.

22. M. Tamošiunaite, B. Nemec, A. Ude and F. Worgotter, “Learning to pour with a robot arm combining goal
and shape learning for dynamic movement primitives,” Rob. Auton. Syst. 59, 910–922 (2011).

23. F. Stulp and S. Schaal, “Hierarchical Reinforcement Learning with Movement Primitives,” IEEE-RAS
International Conference on Humanoid Robots, Bled, Slovenia (2011) pp. 231–238.

24. M. Kalakrishnan, P. Pastor, L. Righetti and S. Schaal, “Learning Objective Functions for Manipulation,”
IEEE International Conference on Robotics and Automation, Karlsruhe, Germany (2013) pp. 1323–1328.

25. M. Deisenroth, P. Englert, J. Peters and D. Fox, “Multi-task policy search for robotics,” arXiv preprint,
arXiv:1307.0813 (2013).

26. D. Eizicovits and S. Berman, “Efficient sensory-grounded grasp pose quality mapping for gripper design
and online grasp planning,” Rob. Auton. Syst. 62, 1208–1219 (2014).

27. C. de Granville, D. Wang, J. Southerland, R. Platt, J. Andrew and H. Fagg, “Grasping Affordances:
Learning to Connect Vision to Hand Action,” In: The Path to Autonomous Robots (G. Sukhatme ed.)
(Springer-Verlag Germany, 2009) pp. 1–22.

28. E. Rueckert, J. Mundo, A. Paraschos, J. Peters and G. Neumann, “Extracting Low-Dimensional Control
Variables for Movement Primitives,” IEEE International Conference on Robotics and Automation, Seattle,
USA (2015) pp. 1511–1518.

29. A. Paraschos, C. Daniel, J. Peters and G. Neumann, “Probabilistic Movement Primitives,” Advances in
Neural Information Processing Systems, vol. 26, Lake Tahoe, USA (2013) pp. 2616–2624.

30. T. He, R. Kong, A. J. Holmes, M. R. Sabuncu, S. B. Eickhoff, D. Bzdok, J. Feng and B. T. T. Yeo, “Is Deep
Learning Better than Kernel Estimation for Functional Connectivity Prediction of Fluid Intelligence?,”
International Workshop on Pattern Recognition in Neuroimaging, Singapore (2018) pp. 1–4.

31. N. C. Mutono, G. Anthony Waititu and W. A. Kiberia, “Feed forward neural network versus kernel
estimation a case of body mass index and body dimensions,” Am. J. Theor. Appl. Stat. 5(4), 180–185
(2016).

32. R. Basri and D. W. Jacobs, “Efficient Representation of Low-Dimensional Manifolds Using Deep
Networks,” International Conference on Learning Representations, Toulon, France (2017).

33. I. Jolliffe, Principal Component Analysis (Springer-Verlag, New York, 1986).
34. S. Wold, K. Esbensen and P. Geladi, “Principal component analysis,” Chemom. Intell. Lab. Syst. 2(1–3),

37–52 (1987).
35. S. Roweis and L. Saul, “Nonlinear dimensionality reduction by locally linear embedding,” Science.

290(5500), 2323–2326 (2000).
36. J. Wang, Geometric Structure of High-Dimensional Data and Dimensionality Reduction (Springer-Verlag,

Berlin, 2012) Chapter 10.
37. K. Liu, A. Weissenfeld and J. Ostermann, “Parameterization of mouth images by LLE and PCA for image-

based facial animation,” IEEE International Conference on Acoustics, Speech, and Signal Processing,
Toulouse, France (2006) pp. 461–464.

38. Y. Cohen and S. Berman, “Tight Dynamic Movement Primitives for Complex Trajectory Generation,” IEEE
International Conference on Systems, Man, and Cybernetics, Manchester, UK (2013) pp. 2402–2407.

39. B., Schultz, Geometrical Method of Mathematical Physics (Cambridge: Cambridge University Press,
1999).

40. J. Racine and Q. Li, “Nonparametric estimation of regression functions with both categorical and
continuous data,” J. Economet. 119(1), 99–130 (2004).

41. H. Shinamazaki and S. Shinomoto, “Kernel bandwidth optimization in spike rate estimation,” J. Comput.
Neurosci. 29(1–2), 171–182 (2010).

42. V. Sze, Y. H. Chen, T. J. Yang and J. S. Emer, “Efficient processing of deep neural networks: A tutorial and
survey,” Proceedings of the IEEE, 105(12), 2295–2329 (2017).

43. S. Ruder, “An overview of gradient descent optimization algorithms”, arXiv preprint arXiv:1609.04747
(2016).

44. X. Glorot, A. Bordes and Y. Bengio, “Deep Sparse Rectifier Neural Networks,” International Conference
on Artificial Intelligence and Statistics, Ft. Lauderdale, USA (2011) 315–323.

45. J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,” J. Mach. Learn. Res. 13,
281–305 (2012).

https://doi.org/10.1017/S0263574720001186 Published online by Cambridge University Press

https://doi.org/10.1017/S026357471900078X
https://arxiv.org/abs/1307.0813
https://doi.org/10.1017/S0263574720001186

Motion adaptation using manifold of task and movement primitive parameters 1315

46. P. Corke, Robotics, Vision and Control: Fundamental Algorithms in MATLAB (Springer-Verlag, Germany,
2011).

47. L. Prechelt, “Early Stopping-but When? In: Neural Networks: Tricks of the Trade (G. Montavon, G. B. Orr
and K. Müller, eds.) (Springer-Verlag, Germany 1998) pp. 55–69.

48. J. Kober and J. Peters, “Policy Search for Motor Primitives in Robotics,” Advances in Neural Information
Processing Systems, vol. 22, Vancouver, Canada (2009) pp. 171–203.

49. P. Kormushev, S. Calinon and D. G. Caldwell, “Approaches for Learning Human-like Motor Skills which
Require Variable Stiffness During Execution”, IEEE International Conference on Humanoid Robots, Santa
Monica, USA (2010).

50. P. Kormushev, S. Calinon and D. G. Caldwell, “Robot Motor Skill Coordination with EM-based
Reinforcement Learning,” IEEE/RSJ International Conference Intelligent Robots and Systems, on
Intelligent Robots and Systems, Taipei, Taiwan (2010) pp. 3232–3237.

51. J. Peters and S. Schaal, “Policy Gradient Methods for Robotics”, IEEE/RSJ International Conference
Intelligent Robots and Systems, Beijing, China (2006) pp. 2219–2225.

52. S. Schaal, P. Mohajerian and A. Ijspeert, “Dynamics Systems vs. Optimal Control — A Unifying View,”
In: Progress in Brain Research (P. Cisek, T. Drew and J. F. Kalaska eds.), vol. 165 (2007) pp. 425–445.

53. S. Schaal, S. Kotosaka and D. Sternad, “Nonlinear Dynamical Systems as Movement Primitives,” IEEE
International Conference Humanoid Robotics, Santa Monica, USA (2000).

54. D. Pongas, A. Billard and S. Schaal, “Rapid Synchronization and Accurate Phase-Locking of Rhythmic
Motor Primitives,” IEEE/RSJ International Conference Intelligent Robots and Systems, Edmonton, Canada
(2005) pp. 2911–2916.

https://doi.org/10.1017/S0263574720001186 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720001186

	Motion Adaptation Based on Learning the Manifold of Task and Dynamic Movement Primitive Parameters
	Introduction
	Related Work
	Methodology
	Overview
	Learning a representation of the task and meta parameter manifold
	Task and meta parameter manifold structure

	Case Study: A Robotic Soft Ball Throwing Task
	The physical environment
	Simulations
	Data sets
	Procedure
	Analysis
	Statistical analysis

	Results
	Examining data complexity
	Kernel estimation parameters
	Error as a function of data set size
	Physical environment

	Discussion
	Conclusions

