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Daily activity recognition based on recurrent
neural network using multi-modal signals

akira tamamori1, tomoki hayashi2, tomoki toda3and kazuya takeda2

Our aim is to develop a smartphone-based life-logging system. Human activity recognition (HAR) is one of the core techniques
to realize it. Recent studies reported the effectiveness of feed-forward neural network (FF-NN) and recurrent neural network
(RNN) as a classifier for HAR task. However, there are still unresolved problems in those studies: (1) a life-logging system using
only a smartphone for recording device has not been developed, (2) only indoor activities have been utilized for evaluation,
(3) insufficient investigations/evaluations of RNN. In this study, we address these unresolved problems as follows: (1) we build
a prototype system for life-logging and conduct data recording experiment on this system to include both indoor and outdoor
activities. The experimental results of HAR on this new dataset showed that RNN-based classifier was still effective. (2) From
the results of a HAR experiment, it was demonstrated that a multi-layered Simple Recurrent Unit with a non-linear transform
at the bottom layer and a highway-connection was the most effective. (3) We could grasp the reason for the improvement of
RNN from FF-NN by observing the posterior probabilities over test data.
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I . I NTRODUCT ION

Being faced with an unprecedented super-aging society
such as in Japan [1], we consider that a society will be
required where sustainable social participation of elderly
people is promoted and they can select an active and fresh
lifestyle as long as they wish. However, there is a problem to
be resolved in order to realize such society: a stay-at-home
problem of elderly people. Their physical strength includ-
ing muscular strength is prone to get weaker and this leads
an inconvenience of walking. As a result, they tend to stay-
at-home due to psychological and human factors [2]. By
using a technologywhich can sense, record, and understand
their daily activities, it may be possible to promote such
elderly people to go out. An increase of opportunities for
the elderly to go out will bring an increase of opportunities
for their social participations. Our aim is to develop such a
technology.

Figure 1 shows a concept image of our social implementa-
tion in the future. The system interacts with a user through
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the smartphone. Based on his/her recent activity history, the
system will notify a message in order to promote the user
to go out and start an activity. When the activity is over,
the system will send a message to confirm the user’s feeling.
Based on the feedback and history, the system again sends
a message to promote the next activity, and the cycle will be
kept. We consider that human activity recognition (HAR)
is one of the core techniques to realize this implementa-
tion. The objective of HAR system is to identify human
activities from observed signals. The information of iden-
tified activity can be utilized for the promotion about going
out. Various applications about HAR can be found, such as
life-logging [3], monitoring the elderly [4], health care [5],
and so on. As shown in Fig. 2, our target system can also
be regarded as a life-logging system on the basis of HAR
technique. In this study, we develop HAR technique for a
smartphone-based life-logging system.

By using deep learning, many researchers have been
working on sensor-based HAR technique [7, 8]. Therefore,
just simply applying amethod forHARbased ondeep learn-
ing itself is no longer a novel idea, and development of the
state-of-the-art deep learning technique for HAR is not our
aim. The reason why we still adopt a method based on
deep learning in this study is that it outperformed other
traditional pattern recognition methods such as k-nearest
neighbor, Gaussian mixture model (GMM), a decision tree,
and support vector machine (SVM) [6, 9]. Additionally, the
reason why we adopt the smartphone as a sensor device in
this study is that usersmay not feel an obtrusiveness from it,
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Fig. 1. A concept image of our social implementation.

Fig. 2. Overview of our target life-logging system [6]; The system sends the recognition result, the subject’s activity to their smartphone. The history of the user’s
activity can be viewed through a graphical user interface on the smartphone. The subject can send a feedback about his/her feeling about the activity. This feedback
information can be used to improve the recognition performance.

compared with many body-worn sensors. Therefore, using
a smartphone is suitable for many people to use our target
system.

Before proceeding with our social implementation, it is
necessary to address unresolved problems in the previous
studies [6, 9]:

(i) A life-logging system using only a smartphone for
recording device has not been developed yet.

(ii) Only indoor activities have been utilized for evaluation.
(iii) The authors have not demonstrated that a multi-layered

long short-term Memory-recurrent neural network
(LSTM-RNN) for the classifier outperforms a single
layer one.

(iv) The effectiveness of RNN over feed-forward neural net-
work (FF-NN) was evaluated by using only a F1-score.

The purpose of this paper is to strengthen the previous
studies [6, 9] by addressing the above problems: For (i) and
(ii), a prototype system could be built towards a realization
of life-logging system using a smartphone. It was utilized to
construct a new dataset which includes not only indoor but
also outdoor activities. From the results of the HAR experi-
ment conducted on the newly constructed dataset by using
the prototype system, the effectiveness of RNN over FF-NN
could be further demonstrated. For (iii), we further investi-
gated better network architecture of RNNwhich could keep
recognition performance even if it was multi-layered. By
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Table 1. Data recording conditions of Nagoya-COI database [6]

Number of subjects 1 (long-term) + 18 (short-term)

Recording environment One-room studio apartment
Instructions Lead well-regulated life

Acceleration signal
Recorded signals Environmental sound signal

Video

combining a highway connection and a single layer feed-
forward network, we could demonstrate better results than
those studies conducted on Nagoya-COI database. It was
confirmed that the simple recurrent unit (SRU) [10], where
a highway connection is incorporated, showed the high-
est recognition performance. For (iv), posterior probabil-
ities over consecutive time steps were visualized, in order
to visually grasp and explain the reason for better recog-
nition performance of RNN than FF-NN. The advantage
of RNN compared with FF-NN in a HAR task could be
demonstrated.

Our contributions in this study can be summarized as
follows:

• Towards a realization of the life-logging system using
a smartphone, we showed a concrete framework of the
prototype system for recording multi-modal signals.

• By using the newly constructed dataset which includes
both indoor and outdoor activities, we could demon-
strate that an RNN-based classifier was still effective and
outperformed the FF-NN in a HAR task.

This paper is organized as follows. Section II describes
a digest of the previous studies [6, 9] and the unresolved
problems of these studies. Section III introduces the proto-
type system towards a realization of our target system. The
results of experimental evaluations are given in Section IV.
Finally, Section V concludes the paper.

I I . A D IGEST OF PREV IOUS STUDY

First, we briefly review the previous studies [6, 9]. Next, we
mention the unresolved problems to be addressed in this
study.

A) Nagoya-COI daily activity database
The data recording condition is shown in Table 1. The
recording environment was a one-room studio apartment.
Each subject could freely live in the room and go outside
with recording staffs, however, to prevent an idle living
such as sleeping all day, they were instructed to lead a well-
regulated life. An accelerated signal was recorded with an
Android application (HASC Logger [11]). About 300 hours
data of indoor activities were annotated. The two types
of dataset were constructed: (1) long-term, single subject
data of 48 h in length, (2) short-term, multiple subject data
with a total length of 250 h. Table 2 lists the recorded daily
activities.

Table 2. Recorded daily activities in Nagoya-COI database [6]

Activity Length Activity Length
name (min) name (min)

Others 3879 Cleaning 188
Sleeping 2731 Writing 150
Note-PC 2252 Cleaning bath 107
Smartphone 1959 Calling 104
Watching-TV 1873 Tablet 86
Cooking 1827 Light meal 85
Eating 908 Drying clothes 75
Cleaning table 679 Washing 36
Reading 476 Walking 30
Toilet 310 Monologue 5
Tooth brushing 310 Taking a bath 5

B) Experimental evaluations
The authors first conducted the subject-closed experiment
on the Nagoya-COI database. In this experiment, the same
subject’s data were used in both the training and test phases.
A total of 56-dimensional features was extracted from the
multi-modal signals for each subject in the dataset and
used as classifier inputs. The most frequently observed
nine activities were used as the target activities, while all
of the remaining activities were used as non-target activ-
ity [6]. The authors also conducted the subject–subject
experiment where the same subject’s data were used in
both the training and test phases. From the results of the
subject-closed experiment, they demonstrated that a clas-
sifier based on a FF-NN outperformed other popular clas-
sifiers such as GMM and SVM, and LSTM-RNN further
outperformed the FF-NN (see Fig. 3). The authors also
conducted the subject-open experiment where the data of
different subjects were used in the training and test phases.
From the results of the subject-open experiment, the adap-
tion method that all of the layers was re-trained gave the
best performance.

Fig. 3. Performance of daily activity recognition [9]; a comparison with other
popular methods. “KNN” and “Tree” represent k-nearest neighbor and a deci-
sion tree, respectively.
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C) Unresolved problems
In the previous studies [6, 9], the Nagoya-COI daily activity
database was utilized for evaluation of HAR. We consider
that there is a mismatch between the performance eval-
uation and our aim. Although the target activity should
include not only indoor but also outdoor activities, the
authors have not evaluated the recognition performance for
outdoor activities. Moreover, a concrete life-logging system
using only a smartphone for recording device has not been
developed. Therefore it is still needed to evaluate the perfor-
mance of the recognition part which will be incorporated
into the target system.

Furthermore, an LSTM-RNN with single hidden layer
was applied. This is because some results have been
obtained from a preliminary experiment that the recog-
nition performance degraded when using a multi-layered
LSTM-RNN. We consider that this is due to a vanishing
gradient problem in optimizing the network parameters
and an overfitting problem, and these problem can be fur-
ther mitigated by introducing a simple and suitable net-
work architecture such as highway connection [12]. Thiswill
be beneficial for realization the target system and can be
incorporated into it. Lastly, the effectiveness of RNN over
FF-NN was evaluated by using only F1-score. We consider
that it is insufficient to account for the effectiveness and an
additional experiment will be needed.

I I I . TOWARDS REAL IZAT ION OF
TARGET L I FE - LOGG ING SYSTEM

In order to construct a new dataset of multi-modal
signals which include both indoor and outdoor activ-
ities, a prototype system for data recording was built.
Figure 4 shows the framework of the prototype system.
From a microphone and an acceleration sensor in user’s

smartphone, HASC Logger [11], an Android application,
records both sound and acceleration signals. We have
modified the original HASC Logger so that MFCC, zero
crossing rate (ZCR) and root mean square (RMS) can
be extracted from the raw sound waveform stored tem-
porary in the smartphone, in consideration to user’s pri-
vacy. The extracted acoustic features and acceleration sig-
nals are then uploaded every 11 seconds and stored in
the temporary database. After a feature extraction from
acceleration signals on the temporary database, the acous-
tic and acceleration features are concatenated and sent to
the recognition engine where the RNN-based classifier is
utilized. After loading the network parameters of RNN,
the engine is driven and the recognition results from the
engine are stored in the activity database. From the tem-
porary database, the acoustic and acceleration features are
uploaded once a day to Nagoya-COI Data Store [13] which
is a data storage server specially developed by the Center
of Innovation Program (Nagoya-COI). It should be noted
that multiple users can use this system in parallel. The sys-
tem can accept the data uploaded asynchronously from
each user. The monitoring controller checks whether the
smartphone is active or not during an operation. This fea-
ture has been introduced to support a stable and continuous
operation of the system. Although we have not developed
a notification/browsing application, it is necessary for our
social implementation in future.

I V . EXPER IMENTAL EVALUAT ION

A) Experiment on Nagoya-COI database
A subject-closed experiment was conducted in order to
compare the architecture of RNN where the same sub-
ject’s data was used in both the training and test phases.
A subject-open experiment was also conducted in order to

Fig. 4. Framework of the prototype system.
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compare the recognition performance of FF-NN with RNN
using a leave-one-subject-out validation. In this experi-
ment, the data of different subjects was used in the training
and test phases. Moreover, a subject-adaption experiment
was conducted. Finally, we visualized the posterior prob-
abilities on test data, in order to grasp the reason why
better recognition performance of RNN than FF-NN was
obtained.

1) Experimental conditions
In this paper, the following variants of RNN were applied:

• Simple RNN (SRNN) [14]: It calculates hidden vector
sequences and output vector sequences through a linear
transform and an activation function.

• Simple Recurrent Unit (SRU) [10]: This can be viewed as
a special case of Quasi-RNNs [15]. The forget gate and the
reset gate at current time step do not require the hidden
vector at previous time step. The highway connection is
also introduced between the input and output.

• Minimal Gated Unit (MGU) [16].
• Gated Recurrent Unit (GRU) [17].

Those architectures are simpler than LSTM-RNN in terms
of the number of network parameters. In fact, the number
of weight matrices of SRNN (SRU), MGU, GRU, are about
25, 50, and 75 of a vanilla LSTM-RNN, respectively. The
details of these variants are described in Appendix.

Table 3 and 4 list the number of activities in the
subject-closed experiment and the subject-open experi-
ment, respectively. The feature vectors were extracted from
the dataset by the same manner as the previous studies [9];
A total of 56-dimensional features was used as classifier
inputs; The environmental sound signal and the accelera-
tion signal were synchronized, the features were extracted
from each frame. The frame size and shift size were set to
both 1 second. From the windowed environmental sound
signals, the 41-dimension feature vectors are extracted: 13-
order Mel-Frequency Cepstral Coefficients (MFCC) with
its 1st and 2nd order derivative coefficients, ZCR and RMS.
MFCC is a feature reflecting human aural characteristics.
ZCR and RMS represent volume and pitch, respectively.
From the windowed acceleration signals, the 15-dimension
feature vectors are extracted: the mean, variance, energy
and entropy in the frequency domain for each axis, and the
correlation coefficients between these axes.

From our preliminary results, the number of units per
one hidden layer of RNN was set to 512. The length of

Table 3. Target activities in subject-closed experiment
conducted on Nagoya-COI database [9]

Activity name Length (min) Activity name Length (min)

Cleaning 39 Sleeping 1257
Cooking 108 Smartphone 198
Meal 120 Toilet 61
Note-PC 141 Watching-TV 109
Reading 164 Other 582

Table 4. Target activities in subject-open experiment
conducted on Nagoya-COI database [9]

Activity name Length (min) Activity name Length (min)

Cleaning 67 Sleeping 2731
Cooking 1826 Smartphone 1959
Meal 908 Toilet 310
Note-PC 2257 Watching-TV 1873
Reading 476 – –

the unfold of RNN was set to 60 frames. The loss func-
tion of the network was a cross-entropy loss. The opti-
mization algorithm was back-propagation through time via
Adam [18] and the learning rate was fixed to 0.001. The
minibatch size was set to 128. For regularization, we applied
the standard dropout [19] and added a L2 loss term to the
loss function. All of the networks were trained using the
open source toolkit, TensorFlow [20] with a single GPU.

Throughout these experiments, a hold-out validation
method for evaluation was adapted because the number of
samples for each activity class is different. In this validation
method, 10 test samples are randomly selected for each class
and the rest is used for training, and this procedure was
repeated 10 times. For evaluation, the following averaged
F1-score was adopted:

F = 1
10

10∑
r=1

(
1
C

C∑
c=1

F(r)c

)
, (1)

whereC is the number of classes to be recognized and F(r)c is
the F1-score of the class c at the r-th repetition, respectively.

2) Results of experiment
Figure 5 shows the recognition performance when the
number of weight matrices and gates in LSTM-RNN was
reduced; we applied SRNN, MGU, and GRU for compar-
ison. The “Frame” represents a frame level accuracy and
“Sample” represents a sample level accuracy, which is the
recognition accuracy obtained using the majority vote of
the frame recognition results in each sample. The number

Fig. 5. Performance of daily activity recognition in comparison with architec-
tures of LSTM-RNN: the number of parameters, i.e., weight matrices and gates.
The number of hidden layers was set to 1.
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of hidden layers was set to 1. At first, it can be observed
that even SRNN, which has the most simple architecture,
exceeded FF-NN in performance. This result means that
the recurrent architecture of RNN has a high discrimi-
nation ability in modeling sequential data. While a large
difference between the variants of LSTM-RNN in terms of
sample level F1-score could not be observed, the best result
was given by the LSTM-RNN in terms of frame level F1-
score. These results suggest that the number of parameters
of LSTM-RNN is a little excessive in this HAR task.

Figure 6 shows the recognition performance when the
highway connection was incorporated and a non-linear
transform of input at the bottom layer was applied. It can
be observed from the figure that the recognition perfor-
mance of LSTM-RNN degraded when the number of layers
was increased. On the one hand, the recognition perfor-
mance was improved from the single layer LSTM-RNN
when the multi-layered FFNN-LSTM was applied. On the
other hand, only applying highway connections to LSTM-
RNN did not achieve a significant improvement. It can be
considered that the cause of the degradation due to the
multi-layered LSTM-RNN was that the input feature was
not embedded in a space suitable for discrimination, and
the vanishing gradient problem was not the main cause.
Furthermore, by applying highway connections to FFNN-
LSTM, it was possible to obtain an improvement. This is
because the attenuation of the gradient was further sup-
pressed. In addition to the above factors, i.e., a non-linear
embedding and highway connections, due to the reduction
of the number of network parameters, the FFNN-SRUcould
obtain the best performance.

Figure 7 shows the results of a subject-open experi-
ment to compare FF-NN with FFNN-SRU, which gave the
best performance in the subject-closed experiment. In this
figure, “Sample” level accuracy is shown. We can see that
FFNN-SRU outperformed FF-NN even in the subject-open
setting. However, the performance in the subject-open eval-
uation was still lower than the subject-closed evaluation
even if FFNN-SRUwas applied. As already discussed in [6],
this is because there are large differences in subject behavior

Fig. 6. Performance of daily activity recognition in comparison with architec-
tures of RNN: highway connection and non-linear transform of input. “n layer
(s)” means that the number of hidden layer is set to n.

Fig. 7. Performance of daily activity recognition; leave-one-subject-out evalua-
tion.

and the orientation of the smartphone was not normalized.
Therefore, we consider it is necessary for future work to
extract a new feature which is robust and independent to
the variation of the orientation of the smartphone.

Figure 8 shows the results of subject adaptation exper-
iment to compare FF-NN, LSTM-RNN and FFNN-SRU.
We can see that RNN-based classifier outperformed FF-NN
even when subject adaptation task. Moreover, FFNN-SRU
still performed better than LSTM-RNN.

3) Visualization of posterior probability on
test data
In this section, we try to visually grasp the reason for the
improvement of recognition performance, by seeing how
the problem of the width of the temporal context (see
Section II.C) could be resolved. A visualization of poste-
rior probabilities over consecutive time steps on test data is
shown in Fig. 9. Both FF-NN and RNN were the same ones
as evaluated in Section A. In those figures, the horizontal
axis represents the number of samples and the vertical axis
represents the posterior probability, and the vertical dotted
line is the boundary of the sample. Since the test data con-
sists of a holdout set in the sample unit, the continuity of
time is not maintained between samples. Comparing with
FF-NN, misclassifications could be reduced significantly by

Fig. 8. Performance of daily activity recognition; subject adaptation.
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Fig. 9. Visualization of posterior probability over consecutive frames of test data. (a) FF-NN: From “Cleaning” to “Reading” (b) FF-NN: From “Sleeping” to
“Watching-TV” (c) LSTM-RNN: From “Cleaning” to “Reading” (d) LSTM-RNN: From “Sleeping” to “Watching-TV”.
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Table 5. Data recording conditions

Number of subjects 10

Recording environment Indoor and outdoor in daily life
Instructions perform normal daily activities
Recorded signals Acceleration signal

Environmental sound signal

LSTM-RNN. In fact, at a frame level accuracy, 81.57 (FF-
NN) and 90.28 (LSTM-RNN) were obtained. Many mis-
classifications from the “Cleaning” class shown in Fig. 9(a)
were suppressed over almost all the frames in Fig. 9(c).
This result clearly shows an advantageous characteristic of
RNN in the prediction that past frames influences the pre-
diction of a future frame. This characteristic, a sequential
prediction, does explain why the significant improvement
of recognition performancewas obtained by applying RNN.

B) Experiment on newly constructed dataset
1) Experimental conditions
By using the prototype system, we conducted an addi-
tional data recording. The number of subjects was 10, e.g.,
university students, housewife, and office workers. A smart-
phone holder was attached to the rear pocket of the subject’s
trousers. They were instructed to put the smartphone into
the holder with a fixed orientation every time. They were
also instructed so that they record the beginning and end
time of the activity if they performed one of the activi-
ties as listed in Table 7. An Android application, which was
originally developed by us for this experiment, was utilized
to record both times efficiently. Therefore, the recorded
data were firstly annotated by each subject. Tables 5 and 6
show the data recording conditions and the recorded daily
activities, respectively. Using the information of annotation,
we again tagged all of the activities of subjects. It should
be noted that the signals of “Walking” were recorded in
the indoor and outdoor environment. Compared with the
Nagoya-COI database, “Car driving”, “Shopping”, “Cycling”
activities are newly added. The “Other” contains signals
recorded in a restaurant (eating out) and tooth-brushing.

Table 7. Target activities of newly
constructed dataset

Activity name Activity name

Car-driving Other
Cleaning Reading
Cooking Shopping
Cycling Talking
Meal Walking
Office Watching-TV

Fig. 10. Performance of daily activity recognition on newly constructed dataset.

In this experiment, a subject-closed experiment was con-
ducted on the newly constructed dataset. The subject #1, #2,
#3, #7, #8, and #9 were selected for evaluation because at
least one of “Cycling”, “Car-driving”, and “Shopping”, were
recorded by these subject, all of which are outdoor activities.
The SRU-FFNN was applied for an RNN-based classifier,
where it consists of three hidden layers and a single layer of
FF-NNat the bottom layer. The same FF-NNas the previous
study [6] was also applied for comparison. The conditions
of network training were set to the same as the previous
experiment. For evaluation, a hold-out validation method
was applied.

Table 6. Recorded daily activities using prototype system for each subject; the number in each cell represents the
activity length in hours.

Activity name sub. #1 sub. #2 sub. #3 sub. #4 sub. #5 sub. #6 sub. #7 sub. #8 sub. #9 sub. #10

Car-driving 4.1 – – – – – 2.5 3.1 2.3 –
Cleaning – – 0.77 – – 1.9 0.3 2.9 – –
Cooking – – 0.38 0.17 – 5.8 – 2.9 – –
Cycling – 2.3 0.05 – 0.54 – – – – –
Meal 4.1 – 3.8 1.9 – 5.7 – 5.1 – –
Office 33 15 25 1.7 – 26 22 – 29 36
Other – 0.8 7.5 – 0.43 – 8.0 – 3.5 2.1
Reading 6 4.2 – 1.1 – – – – – –
Shopping – – 2.7 – – – 3.0 1.8 0.4 0.24
Talking 1.1 – – – 0.39 – 3.9 – – –
Walking 3.3 3.0 5.5 0.36 0.42 18 8.3 – 8.0 2.2
Watching-TV 5.2 – – – – 4.4 3.0 3.9 – –
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Table 8. Confusion matrix of subject #8. Diagonal elements represent recall, that of the right-end
column represent precision, and that of the lower end row represent F1-score.

Recall Car-driving Cleaning Cooking Meal Shopping Watching-TV Precision

Car-driving 94.4 3.4 0.0 2.2 0.0 0.0 100
Cleaning 8.6 71.4 17.4 2.9 0.0 0.0 57.8
Cooking 0.0 0.0 74.3 22.9 0.0 2.8 70.8
Meal 0.0 0.0 4.9 73.8 0.0 21.3 80.4
Shopping 0.0 5.0 5.0 0.0 90.0 0.0 89.4
Watching-TV 0.0 2.1 19.6 4.3 0.0 73.9 86.2
F1-score 94.7 65.0 72.3 76.9 91.8 78.1 79.8

2) Results of experiment
Figure 10 shows the results of the experiment for each sub-
ject. In this figure, “Sample” level F1-score is shown.We can
see that the classifier based on RNN was still more effec-
tive than that of FF-NN even if the dataset includes the
outdoor activities. Figure 8 shows the confusion matrix of
subject #8. This seems intuitive; for example, we can infer
the “Car-driving” is likely to be far from other indoor activ-
ities such as “Cooking” and “Watching-TV”, because we can
feel or imagine its unique environmental sound and acceler-
ation (vibration) in the car. The “Shopping” includes some
body movements such as walking, standing, and ascend-
ing/descending a staircase. Not only those movements, but
also some announcements broadcasted and background
music played in the shop can be observed.

V . CONCLUS ION

In this study, towards the realization of a smartphone-based
life-logging system, the unresolved problems in the previ-
ous studies were addressed. First, a prototype system was
successfully built and utilized to construct a new dataset
which includes not only indoor but also outdoor activi-
ties such as “Cycling”, “Car-driving”, and “Shopping”. From
the results of a subject-closed experiment conducted on the
new dataset, it was confirmed that RNN-based classifier for
HAR was still effective for indoor and outdoor activities.
Next, we investigated variants of LSTM-RNN forHAR from
the viewpoint of the number of matrices, gates and layers
with the help of highway connection. From the results of a
subject-closed, open, and adaptation experiments, it could
be demonstrated that the SRU with 3 hidden layers and a
non-linear conversion of input by a single layer FF-NN was
the most effective. Finally, we visualized the posterior prob-
abilities of RNN over consecutive frames on test data, and
could partly explain the reason for the improvement from
FF-NN.

In future, we will conduct a large data recording exper-
iment and investigate the effectiveness and validity of our
data collection scheme. We will also develop a notifica-
tion/feedback application for the target system. Develop-
ment of a useful feature for HAR which is robust to the
variation of the orientation of smartphone will also be a
future work.
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APPENDIX: VARIANTSOF LSTM-RNN

In this appendix, we review the LSTM-RNNand its variants.

Simple recurrent neural network
Given input vector sequences, simple RNN (SRNN) [14]
calculates hidden vector sequences and output vector
sequences through a linear transform and an activation
function. A hidden vector ht is calculated from ht−1 and
xt through an activation function, a hyperbolic tangent
function in this paper.

ht = φ(Wh[ht−1, xt]+ bh), (A.1)

where φ represents an activation function; we applied a
hyperbolic tangent function in this paper.Wh and bh repre-
sent the weight matrix and bias term, respectively.

RNN with long short-termmemory
The LSTM-RNN has the special architecture, LSTM
memory blocks. The hidden units in SRNN are replaced
with it. The LSTM memory block contains memory cell
which stores past information of the state, and gates which
control the duration of storing. The LSTM-RNN can cap-
ture long-term context by representing information from
past inputs as hidden vector and propagating it to future

direction. The following sections describe several variants
of LSTM-RNN with much simpler architecture.

The architecture can be written as:

it = σ(W i[ht−1, xt]+ bi), (A.2)

f t = σ(W f [ht−1, xt]+ bf ), (A.3)

ot = σ(Wo[ht−1, xt]+ bo), (A.4)

c̃t = φ(Wc[ht−1, xt]+ bc), (A.5)

ct = f t � ct−1 + it � c̃t , (A.6)

ht = φ(ct)� ot , (A.7)

where ct is the state of memory cell. it , f t , and ot repre-
sent input gate, forget gate, and output gate for memory
cell, respectively, and � is a Kronecker product operator
(element-wise product). Thanks to these gates, LSTM-RNN
can capture long-term context by representing information
from past inputs as hidden vector and propagating it to
future direction.

LSTM-RNN with recurrent projection layer
The LSTM-RNNwith Recurrent Projection Layer (LSTMP-
RNN), has been proposed to reduce the number of
parameters in LSTM-RNN [21], where a linear transform
(projection layer) is inserted after an LSTM layer. The out-
put of the projection layer then goes back to the LSTM layer.
In the LSTMP-RNN, equation (A.7) is replaced with the
following equation:

ht = Wp(φ(ct)� ot), (A.8)

whereWp is the projectionmatrix with the size of P × N,N
is the dimension of the output vector of φ(ct)� ot , and P is
the dimension after a linear transformation. If the projected
dimension,P, is set to satisfyP < N, If the projected dimen-
sion is set properly, the number of parameters in LSTM
block can be reduced significantly.

LSTM-RNN with non-linearly transformed
input
In this study, we utilize a network architecture; the orig-
inal input of LSTM-RNN is transformed by a non-linear
function beforehand. Concretely, we compute the x̃t in
equation (A.9) from the input xt , and then the computations
from equations (A.2) to (A.5) are applied:

x̃t = ψ(Whxt + bh), (A.9)

where ψ(·) is a non-linear function. In this paper, we use a
Rectified Linear Unit (ReLU) function [22]. We refer to this
architecture as “FFNN-LSTM”.

LSTM-RNN with highway connection
In this study, we newly apply LSTM-RNN with highway
connection [23] to resolve a vanishing gradient problem of
multi-layer LSTM-RNN. By using the highway connection,
it is expected that the less attenuated gradient will be prop-
agated to the lower layer in the optimization. The difference
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between the original LSTM-RNN and the LSTM-RNNwith
highway connection can be written as:

x̃t = Wxt , (A.10)

ht = ot � φ(ct)+ (1 − ot)� x̃t . (A.11)

The linear transform in equation (A.10) is applied to match
the dimension of the input with the output gate.

Gated recurrent unit and minimal gated unit
Gated Recurrent Unit (GRU) [17] have the following archi-
tecture:

ut = σ(Wu[ht−1, xt]+ bu), (A.12)

rt = σ(Wr[ht−1, xt]+ br), (A.13)

h̃t = φ(Wh[rt � ht−1, xt]+ bh), (A.14)

ht = (1 − ut)� ht−1 + ut � h̃t , (A.15)

where 1 is the vector of 1’s. Compared with LSTM-RNN,
the memory cell ct and output gate ot are removed. The
input gate it and forget gate f t is then renamed as update
gate ut and the reset gate rt , respectively. In Minimal
Gated Unit (MGU) [16], the reset gate in Gated Recurrent
Unit (GRU) [17] is integrated with the update gate. The per-
centage of parameter size reduction is roughly 75 for GRU
and 50 forMGU from LSTM-RNN. It is expected that this
parameter reduction leads to a regularization effect.

Simple recurrent unit
Recently, simple recurrent unit (SRU) [10] has been pro-
posed. The architecture is:

x̃t = Wxt , (A.16)

f t = σ(W f xt + bf ), (A.17)

rt = σ(Wrxt + br), (A.18)

ct = f t � ct−1 + (1 − f t)� x̃t , (A.19)

ht = rt � φ(ct)+ (1 − rt)� x̃t . (A.20)

Compared with LSTM-RNN and the above variants, the
computation of the forget gate f t and the reset get rt does
not require the hidden vector ht−1. The highway connection
is also introduced at the output.
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