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NILPOTENT IDEALS IN ALTERNATIVE RINGS 

BY 

MICHAEL RICH 

1. Introduction. It is well known and immediate that in an associative ring a 
nilpotent one-sided ideal generates a nilpotent two-sided ideal. The corres
ponding open question for alternative rings was raised by M. Slater [6, p. 
476]. Hitherto the question has been answered only in the case of a trivial 
one-sided ideal J (i.e., in case J2 = 0) [5]. In this note we solve the question in 
its entirety by showing that a nilpotent one-sided ideal K of an alternative ring 
generates a nilpotent two-sided ideal. In the process we find an upper bound 
for the index of nilpotency of the ideal generated. The main theorem provides 
another proof of the fact that a semiprime alternative ring contains no 
nilpotent one-sided ideals. Finally we note the analogous result for locally 
nilpotent one-sided ideals. 

Recall that an alternative ring A is defined by the property (x, x, y) = 
(y, x, x) = 0 for all x, y E A where the associator (x, y, z) denotes (xy)z - x(yz). 
The fundamental property that we shall use repeatedly is that 
(*ar(i), x<r(2), *ar(3)) = (sgn <r)(xl9 x2, x3) for all x* in A, i = 1, 2, 3, and aeS3 [4]. 
The nucleus, N(A), of A and the center, Z(A), of A are defined by N(A) = 
{n G A | (n, al9 a2) = 0 Va1? a2, e A} and Z(A) = {ze N(A) \za = az\fae A}. 
For aeA the right multiplication map determined by a is given by Ra : x •-» xa. 
Similarly one defines La : x «-» ax. Let Ae - {La | a e A}, Ar = {jRa | a e A}, and 
M(A) be the subring of End A generated by A€ and Ar. We also denote by A' 
the ring obtained after adjoining an identity element to A in the usual way. 

In any non-associative ring R, Rs denotes the ring spanned by all monomials 
of R of degree s (no matter how associated) and JR is nilpotent if JRS = 0 for 
some positive integer s. Finally, we define right powers of R inductively by 
R[1) = £ , and Rln+1) = Rln)R. We say that R is right nilpotent if JRCn) = 0 for 
some positive integer n. 

Throughout we shall assume that K denotes a left ideal. Similar results and 
proofs apply to right ideals. 

2. Main results. It is well known that if K is a left ideal of an alternative ring 
A then the two-sided ideal generated by K is KA' = K + KA. Thus, we shall be 
interested in the effect on KA' of the nilpotence of K. It should be noted that 
Ks is not in general a left ideal of A for a positive integer s. 
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LEMMA 1. (M(A')(KS))(KA')£M(A')(KS+1) for any positive integer s. 

Proof, We shall show that (T^ • • • TX2TXi(ks))(ky)eM(A/)(Ks+1) for T = R 
or L, ks G Xs, keK, t any non-negative integer and y, xt arbitrary elements of 
A ' for i = 1, 2 , . . . , f. The proof is by induction on f. Suppose t = 0. Then, since 
(ks, fc, y) = -(y, fc, ks) we have: 

fcs(fcy) = (k sk)y-(fc s ,k,y) 

(1) =(ksk)y + (y,k,k s) 

= (ksfc)y + (yk)k s-y(kk s) . 

It is easy to see that the right hand side of (1) is in M(A')(ks+1). Thus, if t = 0 
we have our result. 

Assume now that the result holds for t < n and consider an element of the 
form u = (TXn • • • TX2TXi(ks))(fcy) using the previous notation. Let kt = 
TX|1_1 ' * * TxTXi(ks). Then by the induction hypothesis we have k^KA')^ 
M(A')(Ks+h. Now if TXn = RXn then 

u = (ki^Kfcy) = fc1[xw(fcy)] + (fcl5 xn, ky) = kiK(fcy)]-(kx , fcy, xn) 

= k1[xn(fcy)]-[fc1(ky)]xn + k1[(ky)xj. 

Since fc^KAOs M(A')(KS+1) the second term on the right is in M(A')(KS+1). 
Since 

^n(fcy) = (*nk)y - U m k, y) = (^fc)y + (Xn, y, k) = (xnk)y + (xny)k -xn(yk) 

it follows that k^iky^e M # A 0 ç M ( A ' ) ( K s + 1 ) . Similarly (ky)xn = 
k(yxn)~(xny)k + xn(yk). Therefore 

k1[(ky)xn]e kt(KAf)^M(Af)(Ks+1). 

Thus, if T^^R^ we have ueM(A')(Ks+1). On the other hand, if 7 ^ = 1 ^ 
then 

u = (xnk1)(ky) = xn[fc1(ky)] + [k!(fcy)]xn - fc^fcyK]-

As before, all three terms on the right are in M(A')(KS+1) by the induction 
hypothesis. Thus, in all cases we have 

u =(TXn • • • TX2TXi(Ks))(KA')^M(A')(Ks+1) 

and the result follows by mathematical induction. 

THEOREM 1. If the left ideal K of the alternative ring A is nilpotent of index n, 
then the ideal KA' = K + KA is right nilpotent of index n. 

Proof. We prove by mathematical induction that (KA')Ls)^ M(A')(KS) for 
all positive integers s. The case s = 1 is obvious. Assume true in case s = t. Then 
K(AT+1) = (KA'ft\KA')ç(M(Af)ICt))(KA') by the induction hypothesis. But 
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by Lemma 1 (M(A')(lP))(JKA')sAf(A')(K t+1) to complete the proof. Now if 
s = n w e have (KA')Cn) = 0. 

This enables us to prove our main result in short order. 

THEOREM 2. If the left ideal K of the alternative ring A is nilpotent of index n, 
then the ideal KA' is nilpotent of index <n 2 . 

Proof. Let w be a monomial of (KA')n2. Then w is a product of n2 terms of 
the form k^ with a^eA'. By [2, Proposition 3] we may assume that w is a 
linear combination of second-order monomials of degree n2 in the k ^ , i.e., w 
is a sum of terms of the form u = Rz- - JRZ 2RZ I(1) where z£ = 
Rx.s() - - - Rx. jRix(l) for i = 1, 2 , . . . , r for some r, s and some choice of x̂  = ktat 

where the degree of u in the x̂  is n2. It then follows that either is(o — n for 
some i or r>n. Note that zt e(KA')Lis\ Therefore, if isii)^n Theorem 1 
provides that ^ = 0 . Thus u = 0. Suppose, on the other hand, that is ( i)<n for 
each i, and r>n. Now, by Lemma 1 (since M(A')(K) c KA') zf e M(A')CK) for 
each i. Then by repeated use of Lemma 1 we have ueM(Af)(Kr)^ 
M(A')(Kn) = 0. Thus, any product of n2 terms of KA' reduces to zero and the 
proof is completed. 

We thus have another way at arriving at the following result. 

COROLLARY. A semiprime alternative ring contains no non-zero nilpotent 
one-sided ideals. 

REMARKS. Independent of our Theorem 2, the result of the corollary can be 
obtained as an immediate consequence of a result of Slater [7, Prop. 11.6]. In 
fact, it also follows from an earlier result of Kleinfeld. For he has shown that if 
K is a left ideal of A then S(K) = {a e K \ a A ç K} is a two-sided ideal of A 
contained in K and (A, K, K ) g S ( K ) [1]. Therefore, if K is nilpotent and 
S(K)^0 we have the result while if S(K) = 0 we have (A,K,K) = 0. In 
particular, Kn is a left ideal of A for each positive integer n. Therefore Kl is a 
trivial left ideal of A for some t and by [5, Lemma 3.3] the ideal of A 
generated by Kl is a trivial ideal of A. Moreover, in case A is 3-torsion free 
then a stronger result than that of the corollary is known. Namely, a semiprime 
3-torsion free alternative ring contains no one-sided ideals which are nil of 
bounded index [3, 8]. 

We will now establish an analog of Theorem 2 with local nilpotence in place 
of nilpotence. Recall that the Levitzki radical, «S?(A), of A is the locally 
nilpotent ideal of A which contains every other locally nilpotent ideal of A and 
that an ideal J is locally nilpotent if every finitely generated subring of J is 
nilpotent. We shall also make use of the fact that «SP(A/«S?(A)) = 0. As a 
preliminary result (and as an analog to the previous Corollary) we prove 

LEMMA 2. A Levitzki semisimple 3-torsion free alternative ring A contains no 
locally nilpotent one-sided ideals. 
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Proof. Let K be a left ideal of A, with j£(A) = 0. Then A is semiprime. 
Hence, by [5, Corollary 7.7] either 3K ç N(A) or K H Z(A) ^ 0. Suppose, then, 
that K is a locally nilpotent left ideal. If 3K ç N(A) then 3K is a non-zero left 
ideal in N(A) so that the ideal generated by it, 3K + 3KA, is a locally nilpotent 
ideal just as in the case of associative rings. If 3K<£ N(A) let 0 ^ z e K fl Z(A) 
such that z2 = 0. Then either zA or Iz (I = integers) forms a non-zero nilpotent 
ideal. In either case, the existence of a non-zero locally nilpotent ideal 
contradicts the assumption 56(A) = 0 to complete the proof. 

LEMMA 3. If an alternative ring A is n-torsion free then Â = AI 56(A) is also 
n-torsion free. 

Proof. Suppose that nâ = Ô for some a G A. Then na G 56(A). We show that 
a e 56(A). For if not then the ideal 56a generated by 56 and a properly contains 
56(A). Note that a typical element of 56a is of the form € + m(a) for some 
6 e 56(A) and m G M(A'). But this implies that 56a is locally nilpotent. For if we 
pick any finite set T = {tl912,..., ts} of elements of 56a then, since na e 56(A), 
the subring generated by nT = {ntu nt2,.. •, nts} is nilpotent, say of index k. 
Thus, if we consider any product tixth • • • tik for tt. e T it follows that 
nktiti • • • fc = 0 . But since A is n-torsion free this means that t t • • • t = 0 . 

l l l 2 lfc l l l 2 l k 

Hence, the subring generated by T is nilpotent of index fc and i£a is locally 
nilpotent. Since 56(A) contains all locally nilpotent ideals it follows that 
56a = 56(A) or a e 56(A). Thus, â = 5 and Â is n-torsion free. 

THEOREM 3. If K is a locally nilpotent left ideal of the alternative ring A and 
A is 3-torsion free, then the ideal KA' of A generated by K is also locally 
nilpotent. 

Proof. Let Â =A/56(A). Then A is 3-torsion free by Lemma 3. Since Â is 
Levitzki semisimple and the image K of K in Â is locally nilpotent it follows 
from Lemma 2 that K = 0. Therefore K<=: 56(A). Since 56(A) is an ideal of A 
we have KA'^ 56(A). Thus, KA' is locally nilpotent. 

NOTE. The results beginning with Lemma 2 can be easily modified to apply 
to local finiteness instead of local nilpotence. 

I am indebted to the referee for his suggestions which aided in streamlining 
the paper. 
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