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TRACE, SYMMETRY AND ORTHOGONALITY 

R. CRAIGEN 

ABSTRACT. Does there exist a circulant conference matrix of order > 2? When 
is there a symmetric Hadamard matrix with constant diagonal? How many pairwise 
disjoint, amicable weighing matrices of order n can there be? These are questions 
concerning which the trace function gives a great deal of insight. We offer easy proofs 
of the known solutions to the first two, the first being new, and develop new results 
regarding the latter question. It is shown that there are 2* disjoint amicable weighing 
matrices of order 2*p, where p is odd, and that this is an upper bound for t < 1. An even 
stronger bound is obtained for certain cases. 

1. Introduction and preliminaries. Weighing matrices A, B are said to be amicable 
if ABl = BAl (and antiamicable if ABf + BAl = 0). Clearly A and B are amicable 
(antiamicable) if and only if At and Bl are as well. We denote by A C\B the Hadamard, or 
entry-wise product of matrices A, B having the same size. These are disjoint if A HB = 0. 

One of the most powerful means by which Hadamard matrices are constructed is with 
orthogonal designs (see [7]). An orthogonal design OD{n\s\,... ,ty) corresponds to k 
pairwise disjoint, antiamicable weighing matrices of order n, with weights s i , . . . , ^ . 
Similar constructions use disjoint, amicable weighing matrices (see [3, Theorem 4.2], 
[5]). Even without the disjointness property, amicable weighing matrices are of consid
erable interest (see pp. 217-219 of [7]). For one, they provide an interesting variation on 
some algebraic questions regarding orthogonal designs, perhaps having implications in 
the theory of quadratic forms. 

At the problem session for the 1991 Ontario Combinatorics Workshop, I gave the 
following problems, which I had considered hard: 

1. Does there exist a symmetric weighing matrix of odd order with zero diagonal? 
Conjecture: No. 

2. Do there exist disjoint, amicable weighing matrices of odd order? Conjecture: No. 
Of course, the second question generalizes the first. I was surprised and pleased when 

David Gregory offered a proof of the former, as follows. 

THEOREM 1 (D. GREGORY). There does not exist a symmetric weighing matrix of odd 
order, having zero diagonal. 

PROOF. Let W = (w, w), n odd, A = y/w, W D / = 0, W = W . Then W2 = w/, and so 
W has all real eigenvalues A, = ±A, / = 1 , . . . , n. Now tr(W) = 0 = £"=1 A; = JcX. Since n 
is odd, k is odd and therefore nonzero—contradiction! • 
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The same trick gives an easy proof of the classical result [7] that there is no skew 
weighing matrix of odd order. I was immediately able to generalize the method to prove 
the second conjecture, as follows. 

THEOREM 2. There does not exist a pair of disjoint, amicable weighing matrices of 
odd order. 

PROOF. Let A = Win, a), B = W(n, b), n odd, A(1B = 0, AB< = BAl. Then let W = ABf. 
W is then symmetric, with all eigenvalues ±A, À2 = ab, and since A and B are disjoint, 
W has zero diagonal. A contradiction is obtained as above. • 

The simplicity of the method used here motivated a closer look into the possibility 
of exploiting the trace function as a tool for studying orthogonal matrices satisfying 
symmetry conditions. The method is not entirely new, for it has been used in the related 
setting of symmetric designs (see, for example, [1]). 

2. Trace and symmetric weighing matrices. We state here the relationship be
tween symmetric weighing matrices and their trace. 

LEMMA 3. Let W = Win, w) be symmetric. Then either 
1. w is not a perfect square, and tr(W) = 0, or 
2. w - k2, and tr(VF) = tk, where \t\ < |_f J and t = n mod 2. 

PROOF. Since we have W2 = wl, W has minimal polynomial x2 — w. It follows that the 
eigenvalues of W are all ±&, where k2 = w. Now tr(W) = £(A an eigenvalue of wo A = ia—b)k, 
where a + b = n. Letting a — b = (,we have t = n — 2b = n mod 2. Finally, | tv(W)\ < n, 
and this gives the bound on t. m 

Symmetric Hadamard matrices with constant diagonal are sometimes called graphi
cal. The following was obtained by Wallis [14], [15] in the setting of graph theory and 
design theory. (See also [9]). 

THEOREM 4. If there is a symmetric Hadamard matrix of order n, with constant 
diagonal, then n is a square. 

PROOF. The trace of such a matrix is ±n ^ 0. So from Lemma 3, n is a square. • 

Lemma 3 also tells us something about symmetric Hadamard matrices of non-square 
orders. 

THEOREM 5. A symmetric Hadamard matrix of non-square order has trace 0. 

We may use this lemma, more generally, to study the existence of symmetric weighing 
matrices with constant diagonal. Now it is not known whether there exists a symmetric 
weighing matrix of odd order, other than the identity matrix, which has constant diagonal, 
although Theorem 1 dispenses with the case of zero diagonal. In contrast, we may 
generalize and slightly modify Example 3 of [4] to obtain symmetric Wi2p2,p2) with 
constant diagonal 1, where p is any odd prime power, and consequently a number of 
other classes of orders 2g, q odd. Examples abound even more in orders divisible by 4. 
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Let us consider the case W = W(n, w), W = Wr, lv(W) = n. By Lemma 3, we have w = k2, 
n = kt,t = n mod 2, from which we obtain the following. 

THEOREM 6. Let W = W(n, w) be a symmetric weighing matrix with all diagonal 
entries 1, where n = 2qp, p odd. Then w = k2. Moreover, if q = 0 then k \ p, and 
otherwise, k \ 2q~xp. 

EXAMPLE 1. We can eliminate symmetric W(n, w) with constant diagonal 1, for n = 
2/7,/? odd and w > 1, in the cases n = 2,6,10,14,22,26 as well as W(18,4), W(18,16), 
W(30,4), W(30,16). As mentioned above, we can construct such a W(18,9). The matrix 

/J -A -A -A\ 
IA J -A A \ 
\A A J -Ay 
\A -A A J I 

with A the 3 x 3 circulant matrix with first row (0 1 —) and J the 3 x 3 matrix of 1 's, is an 
example with n = 12, w = 9, and so direct sum gives us an example with n = 30, w = 9. 
The first unresolved case for n = 2p,p odd, is W(30,25), and for n odd, W(15,9). 

3. Circulant conference matrices. A conference matrix is a W(n, n — 1) with zero 
diagonal. Clearly, ft must be even. A matrix is k-regular if all its row and column sums 
equal k. Clearly, every circulant matrix is ^-regular for some k. 

LEMMA 7. A k-regular conference matrix of order n is symmetric, and we must have 
n = k2 + \,k odd. 

PROOF. By assumption, we have JW = JW = U. Thus, J WW = k2J = (n — 1)7. 
i 0 x 5k • • • s k i 

So n = k2 + 1, and k is odd. Now let the first two rows of W be ^ 
yy 0 * ••• *y 

where a of the unspecified columns are of the form (J), b are of the form (1\ c of the 
form ("j1)» a nd d of the form (~J). Then from the regularity of W and orthogonality of 
its rows, we have the relations 

a + b + c + d = k2 — 1, 

x + a + b — c — d = k, 

y + a — b + c — d = k, 

a — b — c + d = 0. 

Adding the four equations, we get x + y + 4a = k2 + 2k — 1. Since k is odd, we have 
x+y = I +2— I =2 mod 4. Therefore, x = y. Similarly arranging the ith andy'th rows, 
we show that the (ij) and (/', /) entries of W are equal. Therefore, W is symmetric. • 

EXAMPLE 2. There is a symmetric circulant conference matrix of order 2, namely 

(Ï!) 
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The following result shows that this is an exceptional case. The usual proof requires 
at least a page or two of counting arguments, and consideration of several cases (see, for 
example, [7, pp. 201-205]). 

THEOREM 8 (MULLIN AND STANTON, [13]). There is no circulant conference matrix 
of order n > 2. 

PROOF (NEW). If W is a circulant conference matrix of order n, then from Lemma 7, 
n = k2 + 1, and without loss of generality, W has first row (0, a\,..., am, 1, amj..., a\ ), 
where m = | — 1. So also, U = W(n, n — 1), the circulant matrix with first row 
( l , a m , . . . ,fli,0,<zi,... ,<zm), is symmetric and has trace n. Therefore, by Lemma 3, 
n = tk—which is clearly impossible unless k = 1, n = 2. • 

In contrast to the circulant case, it is possible for regular conference matrices of other 
orders to exist. 

EXAMPLE 3. The following is a 3-regular W(10,9): 

/° 1 
1 
1 
1 
1 
1 
— 
— 

\ -

1 
0 
1 
1 
1 
— 
— 
— 
1 
1 

0 

— 

— 

— 

1 
1 
1 
0 
— 
— 
1 
1 
1 
— 

1 
1 
— 
— 
0 
1 
1 
— 
1 
1 

1 
--
1 
— 
1 
0 
1 
1 
— 
1 

1 
— 
— 
1 
1 
1 
0 
1 
1 
— 

-
— 
1 
1 
— 
1 
1 
0 
1 
1 

— -
1 1 
— 1 
1 -
1 1 
— 1 
1 -
1 1 
0 1 
1 0 

4. Pairwise disjoint, amicable weighing matrices. A result of Radon gives an 
upper bound on the number of pairwise disjoint antiamicable weighing matrices of order 
n [7], [10]. Can we find a similar upper bound for pairwise disjoint amicable weighing 
matrices? 

0^ 

matrices of order 2. 

EXAMPLE 4. and are two pairwise disjoint amicable weighing 

Now if {X/}/=iv..^ and {^}/=i,...,/ are sets of disjoint amicable weighing matrices 
of orders m and n respectively, it is clear that {X, ® ly-}/=i,...,A:,y=i,.-,/ IS a s e t °f M 
disjoint amicable weighing matrices of order mn. Thus we obtain 2l disjoint amicable 
weighing matrices of order 2\ t > 0 (these actually form the regular representation of 
the elementary abelian group of order 2*). Now let n = 2lp, where p is odd. Letting {X,} 
be a set of 2l disjoint amicable weighing matrices of order 2\ and Y\ = Ip, we obtain 
2l disjoint amicable weighing matrices of order n. Observe that this number exceeds 
Radon's function when t > 3, so in the case of amicable matrices we must expect a 
weaker bound than is known for antiamicable matrices. 
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THEOREM 9. There are 2f disjoint amicable weighing matrices of order 2fp, where p 
is odd. Further, we may choose all the weights to be 1. 

Could it be that this is also an upper bound? It certainly is when/? = 1. Also, Theorem 2 
demonstrates this is the case when t = 0. We now extend this to the case t = 1. 

THEOREM 10. If A,B,C are disjoint amicable weighing matrices of order n, then 
4 | n. 

PROOF. Let a, b, c be the weights of A,£, C respectively, and set X\ = -4=rAB\ 
X2 = -h=cBO, X3 = -T^CA1. It is easy to verify that G = {I,XUX2,X3} is a group of 
commuting matrices all squaring to the identity, and Xi,X2,X3 all have zero diagonal. 
So G is a representation of EA(4) with character (w, 0,0,0). Since every character of a 
group may be uniquely expressed as an integer combination of its irreducible characters, 
it follows that G is equivalent to an ^-fold direct sum of the regular representation with 
itself (the regular representation has character (4,0,0,0), and is the direct sum of the 
irreducible representations of EA(4)). Hence, 4 | n. m 

The use of trace in this result is hidden in the fact that characters of matrix repre
sentations are defined using trace; both result and proof, therefore, are extensions of 
Theorem 2. Unfortunately, this method does not extend in the obvious way to the case 
t = 2, as the following example shows. 

EXAMPLE 5. Let At = diag(d,-), i = 1 , . . . , 5, where 

d\ = (11 11 11 111111), 

d2 = (1 11 11 1 ), 

d3 = (lll 111 ), 

d4 = (1 1 - 1 1 1 1 - ) , 

d 5 = ( l l l i _ i _ i ) . 

The pairwise products of these five orthogonal, symmetric, commuting matrices of order 
12 = 22 • 3 all have trace 0. Since our use of character theory, as in Theorem 10, will not 
detect that these matrices are not disjoint, it cannot prohibit the existence of five disjoint, 
amicable weighing matrices of weight 1. Diagonal matrices can be used analogously to 
exceed our conjectured bound for any order divisible by 4. 

Here is a result similar to Lemma 3, involving (not neccesarily disjoint) amicable 
matrices. 

LEMMA 11. Let W\,..., W2p be pairwise amicable weighing matrices of order n, 
having weights w\,..., w2p. Let M = W\ W2 W3 W4 • • • W2p-\ W2p

l and m = w\W2 • • • wp. 
Then either 

1. mis not a perfect square, and tr(M) = 0, or 
2. m- k2, and tr(M) -tk,t = n mod 2. 
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PROOF. AS in Lemma 3, except that we must first show that M is symmetric. For 
p = 1, this is clear. For p = 2, taking A,B,C,D to be the given matrices, we have 
Ml = (AB'CDJ = DCBA* = CDrABf = CA'DB1 = ACBDf = AffCD1 = M. Similar 
calculations give the general case. • 

We may now give a stronger upper bound for the number of pairwise disjoint amicable 
weighing matrices in some special cases. 

THEOREM 12. If there are q pairwise disjoint amicable weighing matrices of order n, 
such that no product of 2p of their weights is square, 1 < p < |_f_|> then 2q~l \ n. 

PROOF. Let the weighing matrices be W\,..., Wq, with weights w\,..., wq. It is not 
hard to see that the matrices -T= WiWf, i ^j, generate a multiplicative group isomorphic 
to EA(2^_1 ). Let M ^ I be an element of this group. If M is one of the generators, then 
tr(M) = 0 since the weighing matrices are disjoint. Otherwise, tr(M) = 0 by Lemma 11. 
Therefore, this representation of EA(2^_1) has character (n ,0 , . . . ,0), and the result 
follows as in Theorem 10. • 

This result eliminates many possibilities that would not be covered by a general bound 
on the number of weighing matrices in such a set. For example, it excludes most 4-tuples 
(of weights) of order 12, such as (1,1,1,2) and (1,2, 3,5), although Theorem 9 shows 
that some 4-tuples do exist. A few 4-tuples, such as (1,1,3, 3) remain unresolved by the 
results of this paper. Incidentally, Theorem 12 also eliminates all but four 5-tuples of 
order 12, and (1,1,1,1,4) is the only 5-tuple it leaves unresolved in order 8. 

We may drop the condition that the weighing matrices are pairwise disjoint by in
cluding the case/7 = 1 in the statement of the theorem. 
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