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ABSTRACT. This paper explores the impact of conservation agriculture (CA) on the
environmental efficiency of maize farmers in Zambia, by comparing nitrogen fertil-
izer recovery between farms that practise CA and those using conventional farming
technologies. The Nitrogen Index Tier Zero tool is employed in generating a nitrogen
balance sheet at the farm level. As CA technology may improve farmers’ access to bet-
ter technology, we employ a selectivity-corrected meta-frontier approach to account for
potential selection bias and technology heterogeneity. The empirical results suggest that
farmers practising CA are environmentally more efficient than conventional farmers. The
findings also show that environmental efficiency is significantly influenced by access to
credit, farming experience and years of schooling of household head, land ownership
and distance to markets. Moreover, farmers practising CA are found to be technically
more efficient than those using the conventional technology.

1. Introduction
Attaining sustainable agriculture entails the pursuance of resilient agri-
cultural practices that support synergies in increasing agricultural pro-
ductivity and maintaining the ecosystem. This requires judicious use of
farm inputs including fertilizers. With the ever-growing human popula-
tion, the demand for fertilizers, especially nitrogen (N) fertilizers to support
food production, will continue to increase. Erisman et al. (2008) note that,
while over 78 per cent of the atmosphere is composed of nitrogen, the sup-
ply of N fertilizers in commercial quantities is mainly facilitated through
the Haber–Bosch process of industrial ammonia synthesis. Galloway et al.
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(2008) indicate that about 80 per cent of nitrogen from the Haber–Bosch
process is used in the production of mineral fertilizers.

In spite of the tremendous benefits from the Haber–Bosch process, it
is estimated that only half of the fertilizers applied to crops are uti-
lized, and the rest lost to the atmosphere, soil and aquatic ecosystems
(Galloway et al., 2008). The unintended consequence from the Haber–
Bosch process has been linked to some negative environmental external-
ities, including increases in air and water pollution. Notwithstanding the
potential adverse impacts of fertilizers, estimates show that global fertil-
izer consumption is expected to increase from about 183 to 201 million
metric tonnes between 2013 and 2018, with about 60 per cent share from
N fertilizers. Although fertilizer application rates are currently low in
Sub-Saharan Africa (SSA), the use of N fertilizers is projected to double
within this same period (FAO, 2015).

Given that maize is a staple crop in many countries in SSA including
Zambia, significant amounts of fertilizers are normally applied to increase
maize output in order to meet demand in the region. While output growth
is required to meet the increasing demand for food in SSA, continuous
increases in fertilizer use without considering options to mitigate losses
from runoff, leaching and volatilization of N fertilizers could have negative
environmental consequences.

Dobermann and Cassman (2002) point out that, with good management
practices, nitrogen recovery from maize could be improved from 37 to 80
per cent, suggesting the relevance of enhanced agricultural technologies
in mitigating greenhouse gas (GHG) emissions in the coming years. In
line with the Nebraska declaration on conservation agriculture and other
conventions, conservation agriculture (CA)1 is regarded as one technology
that could enhance food productivity and environmental efficiency (EE)
relative to conventional farming (Stevenson et al., 2014). The FAO (2010)
describes CA as a concept for resource-saving agricultural crop production
which strives to achieve acceptable profits through higher and sustained
production levels, and concurrently conserving the natural environment.
Valuing social cost with regard to carbon dioxide emission suggests that
CA technology is a potential candidate to harness the desired economic,
environmental and social synergies of sustainable agriculture (Wei et al.,
2010).

Assessing the environmental impact of CA with particular reference to
the utilization of N fertilizers largely depends on the ability to generate a
nitrogen balance sheet of quantity of nitrogen (N) consumed in produc-
ing the output and quantity of nitrogen that is unutilized (surplus). This
may require vigorous laboratory analysis, with complex computer models
and technical expertise in modelling soil biogeochemistry and nitrogen
dynamics. Hence, some studies account for nitrogen surplus using weights

1 CA relies on the key principles of minimum soil disturbances, retaining perma-
nent crop residue and crop rotation with incorporation of fertilizers into the soil.
Conventional farming is referred to as the seasonal perpetual and intensive tilling
of farm land (by hoe, disc or plough), monocropping and slash-and-burn of crop
residue.
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such as the International Panel on Climate Change (IPCC) default value of
1 per cent of N applied or N released through mineralization of organic
matter in mineral soils (e.g., the eutrophication power of 1 adopted by
Coelli et al., 2007).2 However, in their recent study on Mexico, Saynes et al.
(2014) demonstrate that this approach underestimates nitrogen emission by
more than two-fold. Some other related literature employs National Farm
Accountancy Data (for example, Reinhard et al., 1999, 2002), while others
have used national nutrient management tools (for example, Ramilan et al.,
2009). In economies such as Zambia there are no standard national nutrient
management tools, soil nutrients testing is beyond the reach of many sub-
sistence farmers, and soil testing laboratories are either of lower standards
or non-existent. The current study differs from other studies in the genera-
tion of farm-level nitrogen balance sheets by using the Nitrogen Index Tier
Zero tool (NITZ; developed and validated by Saynes et al., 2014).3

Over the past two decades, numerous studies have analyzed technical
efficiency (TE) and allocative efficiency of farmers in SSA (for example,
Abdulai and Huffman, 2000). A meta-analysis by Ogundari (2014) summa-
rizes the findings of these studies. What is clearly missing is an examination
of the environmental externalities of agricultural production in this region.
This study contributes to the literature by examining the impact of CA tech-
nology on the EE of maize farmers in Zambia. In particular, it explores crop
utilization of N fertilizers among farms practising CA and conventional
farming technologies. We also consider potential technology heterogeneity
among these farms and employ a multi-stage approach to examine EE in a
meta-frontier (MF) framework, while correcting for selection bias that may
arise from both observable and unobservable factors.

Although the study follows TE and EE estimation strategies, it is unique
in several ways (for example, Reinhard et al., 2002; Nguyen et al., 2012;
Rao et al., 2012). First, it differs from other productivity and efficiency
studies on CA that assume a common technology for all production units
by accounting for technology heterogeneity among farm households (for
example, Ng’ombe and Kalinda, 2015). In spite of recent applications of a
selectivity-corrected stochastic frontier model in efficiency measurement,
this study is the first to employ the framework in the estimation of EE (for
example, Bravo-Ureta et al., 2012; González-Flores et al., 2014; Villano et al.,
2015). As in González-Flores et al. (2014) and Villano et al. (2015), we use
both the propensity score matching (PSM) method and Greene’s (2010)
sample selection approach to address these issues in a MF framework. To
the best of our knowledge, this is also the first study to employ the NITZ
tool data set within a frontier framework.

The rest of the paper is organized as follows. In section 2, CA from the
perspective of Zambia is described. Sections 3 and 4 discuss the conceptual

2 Recent data suggest that this emission factor could be disaggregated into envi-
ronmental factors and management-related factors. Countries that are able to
disaggregate their activity data from all or some of these factors may choose to
use disaggregated emission factors (IPCC, 2006).

3 Refer to the online appendix for a description of the Nitrogen Index Tier Zero tool.
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framework and the analytical strategy employed, respectively. The data
and empirical specification are presented in section 5, while section 6 dis-
cusses the empirical results. The final section presents conclusions and
policy recommendations.

2. Conservation agriculture in Zambia
There are three main CA implementing agencies in Zambia: namely, the
government through the FAO and the Ministry of Agriculture and Live-
stock (MAL); the Zambian National Farmers Union (ZNFU); and other
agencies broadly regarded as non-governmental organizations. The ZNFU
considers CA as an integrated technology with three main linked prin-
ciples, namely: minimum soil disturbance; maintenance of permanent or
semi-permanent organic soil cover; and diversification of crop species. The
CA technology entails localizing tillage and fertilizers in permanent rip
lines or planting stations, ensuring adequate weed control, retaining crop
residues and intercropping, or rotating crops with nitrogen-fixing legumes.

The ZNFU also promotes the cropping of complementary perennial
vegetation such as Faiderbia albida (a leguminous tree), and live fences.
Completing land preparation before the onset of planting rains is equally
considered a critical CA technology requirement in Zambia, in order to take
advantage of nitrogen flush and to reduce the waiting time to planting.
In particular, Haggblade and Tembo (2003) indicate that, on the onset of
the first possible planting rains, maize yields decline by 1–2 per cent for
each day of delayed planting. CA technology therefore ensures that these
losses are reduced to a minimum, thus contributing to higher output and
improving food and nutrition security, as well as reducing environmental
degradation in Zambia (Neubert, 2011).

3. Conceptual framework
The conceptual framework used in this study follows the Law of Conser-
vation of Mass, which states that matter can be changed from one form
to another, mixtures can be made or separated, and pure substances can
be decomposed, but the total amount of mass remains constant. In effect,
the total quantity of N fertilizers applied in a system is fixed, only part
of it may contribute to the generation of the farm output, and the surplus
may be environmentally detrimental. More importantly, as much as nitro-
gen is a macro-nutrient for maize, reactive nitrogen cascade from leaching,
runoff and volatilization of synthetic nitrogen tend to modify the balance
of GHG. It also decreases stratospheric ozone, increases soil acidification,
enhances tropospheric ozone, and catalyzes the formation of secondary
particulates in the atmosphere (Erisman et al., 2008). More so, nitrous oxide
(N2O) is considered one of the major non-CO2 GHG emitters, with agricul-
ture regarded as the biggest anthropogenic source (Reay et al., 2012). For
instance, in 2005 emissions from agricultural activities, largely from soil
tillage and application of N fertilizers, accounted for approximately 60 per
cent of total global anthropogenic emissions of N2O (Smith et al., 2007).
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In essence, it might be problematic to quantify the exact economic and
environmental consequences of inputs such as N fertilizers. However, the
ability to reasonably establish a nitrogen balance sheet at the farm level
with respect to nitrogen recovered and nitrogen surplus is an indication of
the potential economic benefits and environmental burden that may arise
from the application of N fertilizers. Here, the NITZ tool is used in gen-
erating the nitrogen balance. Saynes et al. (2014) are the first to use it in
their study of N2O emissions from N fertilizer in Mexico based only on
nutrient management practices. In this study, we argue that, beyond nutri-
ent management practices, other farm and household confounding factors
may influence household nitrogen use efficiency. We therefore examine
household EE with respect to nitrogen efficiency, using nitrogen balance
scores from the NITZ tool in a stochastic production frontier (SPF) frame-
work. Figure A1, available in the online appendix at (https://doi.org/
10.1017/S1355770X16000309), displays quantitative and qualitative results
of the NITZ (see Saynes et al., 2014 for details on the implementation of the
NITZ).4

In empirical analysis of EE, the potential environmentally detrimental
element is either considered an input, with input-orientation strategies
(for example, Reinhard et al., 1999, 2002) or an output, and efficiency esti-
mates follow an output orientation (for example, Färe, 1989; Cuesta et al.,
2009). On assuming weak disposability in the output orientation, an extra
pollution variable is incorporated into the production model and esti-
mated by distance and directional functions. For instance, Färe (1989) and
Cuesta et al. (2009) employed deterministic and stochastic hyperbolic and
enhanced hyperbolic distance approaches, respectively. Coelli et al. (2007)
indicate that, although previous applications did not consider material bal-
ance in their empirical study, specifications that follow the approach by
Färe (1989) violate the material balance condition. Materials balance is fun-
damentally an adding-up condition, which essentially indicates that ‘what
goes in must come out’.

To the extent that nitrogen is applied as an input and only the unexpected
surplus may be environmentally detrimental, the material balance of a
product like nitrogen is calculated as the amount of nitrogen that enters the
farm in inputs minus the amount that leaves the farm bound up in useful
output. We follow the input-oriented estimation strategy by Reinhard et al.
(2002), which draws from the material balance framework adopted by
Coelli et al. (2007) for phosphorous. This approach avoids the introduction
of an extra pollution variable into the model, be it input or weak disposable
bad output. This also complies with the underlying adding-up condition
in material balance and demonstrates that environmental pollution can be
reduced under efficient use of inputs. This approach is pragmatic, partic-
ularly when the potential environmental burden is directly linked to the
application of inputs such as N fertilizers.

4 In consultation with the developers of the NITZ tool, we use the regional N-Index
Malawi.
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4. Analytical strategy
This study employs the SPF model to estimate the TE and EE of
maize-producing households in Zambia, with the assumption that farmers
in our sample exclusively practise either CA technology or otherwise. The
SPF model is specified as:

Yij = f
(
X, DC) + εij, εij = (vij − uij

)
, (1)

where Yiji
denotes a scalar of outputs of farmer i using technology j; X is

a vector of inputs and other explanatory variables; DC is a dummy vari-
able capturing the effect of CA technology; and εij is the error term, which
is composed of vij, the random term (white noise) and uij, the systematic
error term capturing inefficiency (Aigner et al., 1977). Given that farmers
self-select themselves into adoption and non-adoption, selectivity bias may
arise from both observable and unobservable factors.

4.1. Sample selection in stochastic production frontier
PSM is used to construct statistically comparable counterfactual groups of
adopters and non-adopters to correct for observable biases from the sam-
ple (Abdulai and Binder, 2006). This entails using a binary choice model
(a Probit model in this case) to generate a propensity score, conditional
on pre-treatment observed covariates of adopters and non-adopters, and
expressed as

di = 1
[
β ′zi + ωi > 0

]
, ωi ∼ N (0, 1), (2)

where di is a binary variable, equal to 1 for adopters and 0 for non-adopters,
z is a vector of explanatory variables in the sample selection model, β is
a vector of parameters to be estimated, and ωi is the error term in the
selection equation (Greene, 2010).

In the literature it is assumed that unobserved factors in the PSM model
may be correlated with the error term in the SPF model, resulting in
selection bias. Sample selection correction models are then employed to
correct for sample selection bias due to unobservable factors (for example,
Kumbhakar et al., 2009; Lai et al., 2009; Greene, 2010). The specifications
in these applications are very similar, but differ in their assumptions
about how the selection mechanism relates to the error terms. Specif-
ically, Greene (2010) assumes that selection bias is attributable to vi ,
whereas Kumbhakar et al. (2009) and Lai et al. (2009) assume selectivity is
related to ui and εi , respectively. The models by Kumbhakar et al. (2009)
and Lai et al. (2009) require computationally demanding log likelihood
functions (Greene, 2010; Villano et al., 2015).

We follow the framework presented by Bravo-Ureta et al. (2012) and
Villano et al. (2015), using PSM to correct for biases stemming from observ-
able factors, and Greene’s (2010) SPF sample selection correction model to
account for selection bias from unobservable factors. Murphy and Topel’s
(2002) correction is employed to adjust the standard errors. Greene (2010)
indicates that (Yi, Xi) in equation (1) is observed only when di = 1 in
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equation (2). The error structure is such that:

vi = σvVi with Vi ∼ N (0, 1)

ui = |σuUi | = σu |Ui | with Ui ∼ N (0, 1)(
ωi,vi

) ∼i N2[(0, 1), (1, ρσv, σ
2
v )],

(3)

where ρ is the sample selection correction variable for nonlinear models.
The model parameters are estimated using the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) algorithm approach and asymptotic standard
errors are obtained using the Berndt–Hall–Hall–Hausman (BHHH)
algorithm estimator.5 Selectivity bias due to unobservable factors is
considered to exist if ρ is statistically significant (Greene, 2010).

4.2. Meta-frontier approach
A single production frontier is normally employed to estimate TE and EE
when firms use the same technology. Given that adopting CA technology
may improve farmers’ access to better technology, using a meta-production
frontier is a more suitable approach (Hayami and Ruttan, 1985).

Battese et al. (2004) developed an MF model for the estimation of tech-
nology gaps among producers under different technologies relative to the
potential technology available to the whole industry. The MF model facil-
itates reliable decomposition of efficiency into group specific efficiencies
and meta-technology ratio, which enables the interpretation of group effi-
ciency as well as technology gap scores. Following the EE framework of
Reinhard et al. (1999, 2002) and Battese et al.’s (2004) MF logic, we estimate
both TE and EE for N fertilizer application in the MF framework. In this
framework, EE is measured as the ratio of minimum feasible nitrogen sur-
plus to observed quantities of nitrogen surplus, at given conventional input
and output levels (Reinhard et al., 2002).

In this context, an SPF is defined as

Yi j = f
(
Xi j , Ei j , α j

)
evi j −ui j ; i = 1, 2 . . . . . . . . . , N , j = 1, 2, . . . ., M,

(4)
where Yi j denotes the output for the i th farm, of the j th group; Xi j is a
vector of inputs used by the i th farm, under the j th technology; Ei j is
the quantity of nitrogen surplus of farm i under group j ; α j denotes the
parameters of the j th technology to be estimated; and vi j and ui j are the
random (white noise) and systematic inefficiency error terms, respectively.
We assume heteroscedasticity of the one-sided error term (vi j ) to reflect
factors under the farmer’s control (Caudill and Ford, 1993).

The deterministic MF model for both CA adopters and non-adopters can
be expressed as

Y ∗
i ≡ f

(
Xiα

∗) = eXi α
∗ ; i∗ = 1, 2, . . . . . . ., N∗, (5)

5 See Greene (2010) for details on the model and its estimation as well as a review
of alternative models.
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where Y ∗
i denotes the output for the MF function, Xi is a vector of inputs

including N fertilizers, and α∗ denotes the vector of parameters to be esti-
mated.6 The observed output for the i th firm defined by the SPF for the j th

group in (4) and (5) is alternatively expressed in terms of the MF function as

Yi = e−ui j × eXi α j

eXi α
∗ × eXi α

∗+vi j , (6)

where the first term on the right-hand side in (6) is the TE of farmer i
relative to the stochastic frontier of group j .

As in Reinhard et al. (2002) and Kouser and Qaim (2015), we argue that
the logarithm of the output of an environmentally efficient producer can
be obtained by replacing the observed quantity of nitrogen surplus (Ei )

in equation (4) with the minimum feasible nitrogen surplus and setting
ui = 0. Setting equation (4) and the output of the environmentally effi-
cient producer equal, and solving for lnE Ei = lnE∗

i − lnEi , yields the EE
estimator

lnE Ei =
⎡
⎣−

⎛
⎝αe +

∑
j

α jelnXi j lnEi

⎞
⎠ ±

⎧⎨
⎩

⎛
⎝αe +

∑
j

α jelnXi j lnEi

⎞
⎠

−2αeeui

}0.5⎤⎦ /
αee. (7)

In this case, we calculate EE by assuming a positive squared root term in
equation (8)7. The EE estimation is simply a mathematical derivation of
equation (4) at full efficiency. In relation to the MF, the EE of farmer irelative
to the stochastic frontier of j th can be expressed as

EEi =
E∗

i j

Ei j
, (8)

where E∗ is the minimum feasible nitrogen surplus and E is the observed
quantity of nitrogen surplus as in equation (7).

The second term on the right-hand side of equation (6) is the MF
technology ratio (MTR) for farmer i in group j , and can be expressed as

MTRi = eXi j α j

eXi α
∗ . (9)

The TEs and EEs relative to the MF functions are therefore a product of
group-specific TEs and EEs and the MTR. TEs and EEs of the MF are then

6 For parsimony, we indicate that the environmentally detrimental input (Ei ) is part
of Xi in equations (5), (6), (7) and (10).

7 For further details on positive squared-root, refer to Reinhard et al. (1999).
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expressed as

TE∗
i j = TEi j × MTR (10)

EE∗
i j = EEi j × MTR. (11)

The MTR captures productivity and EE differences between CA and non-
CA adopters and lies between 0 and 1.

We obtain the MF parameters by either minimizing the sum of the
squared, or sum of the absolute deviation of the distance between the
MF and the group frontiers at the observed vector of inputs for farms in
the groups (Battese et al., 2004).8 This involves solving the optimization
equation below:

min L ≡
∑ N∑

i=1

(ln f (Xi , Ei , α
∗) − ln f (Xi , Ei , α̂ j ))

2

s.t. ln f (Xi , Ei , α
∗) ≥ ln f (Xi , Ei , α̂ j ) for all i (12)

By minimizing the objective function (L∗ ≡ X̄α∗), equation (12) can be
solved, subject to the linear restrictions, where X̄ is the mean of x-vector
elements for all observations.9 Here, α̂ j is treated as fixed, so that the
second term in the summation is constant with respect to the minimiza-
tion. By simulation, the standard errors for the MF parameters can be
estimated (Battese et al., 2004).

5. Data and specification
The data used in this study are drawn from a recent farm household survey
conducted between August and November 2013 in the Central, Eastern,
Western and Southern provinces of Zambia. These provinces contribute
more than 60 per cent to maize production in Zambia and are consid-
ered the prominent CA technology provinces.10 A multi-stage sampling
technique was employed to select 407 farm households across 12 districts
in these provinces. In the first stage, all four provinces were purposively
selected, such that there would be equal opportunity for all CA technol-
ogy farmers in these provinces to be included in the sample. Each province
became a stratum, and in consultation with farmers and extension agents,
and also given that there were no differences in the estimated number of
adopters in all provinces, three districts each were randomly selected per

8 For brevity, we present only the minimization for the sum of the squared
deviation.

9 The double summation signs in equation (12) indicate summation over all indices,
including the farms (denoted by j) within the different groups.

10 Based on Ministry of Agriculture & Cooperatives and The Central Statistical
Office, Zambia 2010 and 2011 Crop Forecast Surveys.
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province. In each district, five agricultural camps11 were then randomly
drawn, within which three farmer groups were randomly selected. Indi-
vidual CA farmers and their non-CA counterparts were then randomly
selected from the groups.

Face-to-face interviews were conducted with the selected farmers by
enumerators who spoke both English and the local language, and super-
vised by one of the authors, using a detailed structured questionnaire.
The survey gathered information on household characteristics, output,
input use and other related characteristics. As argued by Feder and Umali
(1993), components of the agricultural package may complement each
other, although some of them may be adopted independently. From the
logic of Feder and Umali (1993), farmers who practised one or more of the
main CA principles (minimum tillage, crop rotation and permanent crop
cover) are termed adopters.

Because this study is focused on EE with respect to the use of N
fertilizers, we employ the NITZ tool to examine the difference between
total N in the system and total above-ground uptake as nitrogen surplus.

We account for heterogeneity in farm and household characteristics by
including variables like gender, education and age of household head,
access to extension and credit, soil quality and distance to market in
the analysis of the determinants of TE and EE. We account for access to
information from institutional sources using visits by extension agents
(Krishnan and Patnam, 2014). The access to credit ranges from formal
sources (like banks and micro-credit agencies) to informal ones (like money
lenders, friends and family relations), and captures the extent to which
farmers are liquidity constrained. The variable is measured as whether
farmers obtained credit in the production season, and whether they tried
to access more credit than they obtained. We consider farmers as liquidity-
constrained if they either sought, and were unable to obtain credit, or
obtained less than their requirement. Access to credit is expected to shift
farmers’ liquidity constraint outward and facilitate their timely procure-
ment of inputs, thereby improving farm efficiency.

Heterogeneous environmental production conditions such as soil con-
dition may influence the production process. Following Sherlund et al.
(2002) we include soil quality and regional fixed effect dummies as proxies
for environmental conditions. Available evidence suggests that the subjec-
tive reporting of soil condition by African farmers is quite accurate (for
example, Suri, 2011). Since dry season land preparation is considered a
unique CA technology principle, and considered to influence input use and
output, we include seasonal dummies for land preparation in the model
(Haggblade and Tembo, 2003). We also include a variable on distance to
the nearest market, measured as the distance to the nearest bigger village
or town with a market for farm inputs and output. The definitions of the
variables employed in the econometric estimation are presented in table 1.

11 An agricultural camp in Zambia is a management unit of agricultural camp
officer, comprising a catchment area of up to eight different zones of different
villages.
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Table 1. Descriptive statistics of conservation agriculture technology adopters and non-adopters

Unmatched sample Matched sample

Non- Non-
Variable Description of variable Adopters adopters Adopters adopters

Gender (1 = male, 0 = female) 0.72 0.79 0.53 0.51
Education Number of years of schooling by household head 6.65∗∗∗ 4.91 6.06 5.89
Age Age of household head in years 46.00 46.11 47.89 45.17
Credit 1 if farmer has access to credit, 0 otherwise 0.98∗∗∗ 0.42 0.78 0.83
Owner 1 if farmer is land owner operated, 0 otherwise 0.89 0.85 0.67 0.50
Extension 1 if farmer had at least a contact with an extension agent, 0 otherwise 0.97∗∗∗ 0.43 0.67 0.61
Market Distance to permanent market (km) 5.39 5.85 6.61 6.17
Output Total maize output in tonnes 8.43∗∗∗ 4.98 6.59 5.24
Land Farm size in hectares 3.30 3.33 3.03 2.85
Seed Quantity of seeds planted in kg 59.96 58.65 51.11 48.39
Nitrogen in output Quantity of nitrogen used up for production in kg 226.57 191.44 138.99 133.23
Nitrogen surplus Quantity of unused nitrogen in kg 19.26∗∗∗ 37.92 15.26 17.50
Soil fertility 1 = fertile soils, 0 = infertile soil 0.53 0.47 0.55 0.55
Season 1 = dry season land preparation, 0 = rainy season land preparation 0.61 0.566 0.60 0.57
Eastern 1 if farm is located in Eastern province, 0 otherwise 0.25 0.25 0.25 0.22
Western 1 if farm is located in Western province, 0 otherwise 0.29 0.30 0.28 0.28
Southern 1 if farm is located in Southern province, 0 otherwise 0.22 0.24 0.22 0.26
Central 1 if farm is located in Central province, 0 otherwise 0.24 0.21 0.23 0.23
No. of observations 225 182 202 170

Notes: Coefficients followed by ∗∗∗ indicate significance at the 1% level.
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5.1. Empirical strategy
A translog functional form is employed to estimate TE and EE.12 To be able
to directly interpret the coefficients of the first-order terms as elasticities
at the sample mean, we start by employing the log input mean correction
strategy (log Xi − log X̄), with X̄ denoting mean of X (Coelli et al., 2003).
A multi-stage empirical estimation strategy is employed to account for
sample selection and technology heterogeneity.

We start by estimating a Probit model using observable farm and house-
hold characteristics to generate adoption propensity scores. This facilitates
matching of CA technology adopters and non-adopters to correct for
observable selectivity bias. We employ the nearest neighbour and kernel
matching algorithms.13 In the nearest neighbour case, a maximum of five
matches per adopter with maximum tolerance (caliper) of 0.01 is used. We
also employed an Epanechnikov kernel matching with bandwidth of 0.05.
By comparing the means, the nearest neighbour produced better matched
samples; thus the analysis is based on the samples obtained from the near-
est neighbour matching method. Out of the 407, the procedure yielded
a total of 372 matched observations, comprising 202 adopters and 170
non-adopters.

Table 1 reports the means of the variables for unmatched and matched
samples of CA technology adopters and non-adopters. In contrast to the
significant differences in most of the variables in the unmatched samples,
the estimates indicate that there are no significant differences between
the means of observable characteristics of adopters and non-adopters
after matching. Thus, the balancing condition of the covariates is fulfilled
(Leuven and Sianesi, 2003). The region of common support (see figure A2
in the online appendix) indicating the area with positive density within
d = 1 and d = 0 distributions is between 0.017 and 0.99. Based on the
propensity scores, the Greene (2010) selectivity correction variable is then
estimated and included in the stochastic frontier model.

The empirical specification of the translog function for the stochastic
frontier TE for a particular technology is expressed as

ln Yi = α0 +
∑

j

α j ln X + αe ln Ei + 0.5
∑

j

∑
m

α jm ln Xi j ln Xim

+
∑

j

α je ln Xi j ln Ei + 0.5αee
(
ln Ei

)2 + vi − ui , (13)

where ln denotes natural logarithm, Yi , is total output, and the indepen-
dent variables Xi denote vector of input quantities (including land, seed
and N fertilizers) and Ei is the quantity of environmentally detrimental

12 We tested the translog against the Cobb–Douglas specification and the Cobb–
Douglas specification was rejected at the 1 per cent level of significance.

13 Other matching algorithms include caliper and radius matching as well as
stratification and interval matching (Khandker et al., 2010).
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input (nitrogen surplus), vi is the random term (white noise), and ui is the
nonnegative systematic error term accounting for inefficiency. It is assumed
that α jm = αmj . To avoid potential multicollinearity in the model, and given
that labour and capital inputs have zero nitrogen content to support the EE
estimation, we follow previous studies on EE (for example, Coelli et al.,
2007; Nguyen et al., 2012), and limit the input variables to land, seeds,
nitrogen in output and nitrogen surplus. Specifically, Coelli et al. (2007)
demonstrate that the material balance analogy, which is the focus of our
study, allows for the possibility of some inputs (or outputs) having zero
amounts of the material of interest.

Various factors including farm household characteristics could be
responsible for technical and environmental inefficiency. Wang and
Schmidt (2002) demonstrate that in the stochastic frontier framework, a
single-stage procedure is the appropriate approach to jointly estimate inef-
ficiency and the determinants of inefficiency. The technical inefficiency and
EE across farms is modelled as a linear function of the inefficiency term ui
and of a set of covariates as

ui = z′
iγ + ωi , (14)

where zi is an m × 1 vector of exogenous variables that influence ineffi-
ciency, γ is an m × 1 vector of parameters and ωi is a random variable
truncating the normal distribution with mean zero and variance, σ 2 at
point of truncation z′

iγ (Battese and Coelli, 1995).
Unlike jointly estimating the determinants of TE with the deterministic

component of the SPF, Reinhard et al. (2002) indicate that the determinants
of EE are not required to be jointly estimated with the production frontier.
We therefore estimate the determinants of EE in a two-stage approach. In
the first stage, EE is calculated from parameter estimates describing the
structure of production technology at full efficiency. Since EE is calculated
(as in equation (8)) without a predetermined distributional assumption as
in the case of TE, this phenomenon does not violate the independently
identically distributed assumption raised by Battese and Coelli (1995).
Hence, EE can be estimated by expressing the logarithm of the minimum
feasible nitrogen surplus as a function of other covariates of equation (14)
in the second stage.

The choice of an appropriate model for the second-stage regression to
avoid misleading results is not trivial in empirical analysis (for example,
Simar and Wilson, 2007; Ramalho et al., 2010).14 Because of the bounded
nature of efficiency scores [0,1], linear specifications or Tobit models are
used to relate inefficiency scores to exogenous factors in Reinhard et al.’s
(2002) EE framework (for example, Reinhard et al., 2002; Kouser and Qaim,
2015). As in linear Probit models, Ramalho et al. (2010) argue that linear
specification of the second-stage regression may not be appropriate since
it violates the conceptual requirement that the predicted values of effi-
ciency scores lie within a range of 0 to 1. Moreover, the marginal effect in

14 Simar and Wilson (2007) provide an extensive list of references to second-stage
efficiency estimation.
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the second-stage regression of constant change in covariate over the entire
range of efficiency scores is not compatible with the bounded nature of
efficiency scores.

Simar and Wilson (2007) and McDonald (2009) indicate that, rather than
considering the efficiency score as a censoring mechanism, as implied in a
Tobit model, observed efficiency scores are products of the way the scores
are defined. Furthermore, the Tobit model is originally devised for cen-
sored dependent variables that are by nature limited to the so-called ‘corner
solution’ variables. Since efficiency scores do not generally take on values
of 0, the Tobit model is not a plausible specification for conditional mean of
a variable like second-stage regression for efficiency defined on the inter-
val [0,1] (Ramalho et al., 2010). To avoid the problems associated with using
linear and Tobit models for second-stage regressions, Ramalho et al. (2010)
demonstrate that using fractional regression models (FRM) is the most
natural way of modelling bounded, proportional variables like efficiency
scores.

The FRM provides several alternative functional forms for dealing with
the typical asymmetric nature of efficiency scores and can be estimated by
the quasi-maximum likelihood approach. This does not require assump-
tions about the conditional distribution of efficiency scores or heteroscedas-
ticity patterns. Ramalho et al. (2010) indicate that in the FRM framework a
single model is employed to explain efficiency scores of all households,
including those that are fully efficient. But where there is a relatively high
proportion of fully efficient households, a two-sided model is employed
to explain separately, first, why some firms are efficient while others are
not, and then the relative efficiency of inefficient firms. We follow the
approach by Ramalho et al. (2010) and treat efficiency scores as descrip-
tive measures of the relative EE of the sampled households. We employ
alternative models including FRM logit, Probit, log-logistic (loglog) and
complementary log-logistic (cloglog) for the second-stage estimation, and
then test for the appropriate functional form. This generalization contrasts
with the studies by Hoff (2007) and McDonald (2009) who employed only
a logit FRM.

6. Empirical results
6.1. Production frontier
Table 2 presents estimates of the deterministic component of six separate
SPF models with columns (1) and (2) for pooled sample, (3) and (4) for
adopters and (5) and (6) for non-adopters. The pooled sample case gives
an indication of technology heterogeneity and includes technology and
non-technology corrected models. The group sample estimates are com-
prised of with and without selectivity-corrected term models. While the
non-selectivity corrected model accounts for only observable biases, the
selectivity-corrected model corrects for both observable and unobservable
biases. Before discussing the estimates, we first test for inefficiency and
selectivity. The likelihood ratio (LR) test of the null hypothesis of no tech-
nical inefficiency effects, given the specifications of the SPF model, yields
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Table 2. Translog estimates of conventional and selectivity-corrected stochastic production frontier for the matched sample

Pooled Adopters Non-adopters

Variable (1) Coeff. S.E. (2) Coeff. S.E. (3) Coeff. S.E. (4) Coeff. S.E. (5) Coeff. S.E. (6) Coeff. S.E.

Constant 1.846∗∗∗ 0.057 1.545∗∗∗ 0.051 1.784∗∗∗ 0.265 1.772∗∗∗ 0.169 1.438∗∗∗ 0.065 1.448∗∗∗ 0.091
Land (ln x1) 0.662∗∗∗ 0.07 0.694∗∗∗ 0.057 0.884∗∗∗ 0.098 0.881∗∗∗ 0.099 0.498∗∗∗ 0.102 0.500∗∗∗ 0.102
Seed (ln x2) 0.126∗ 0.074 0.109∗ 0.061 0.167∗ 0.098 0.165∗ 0.098 0.212∗∗ 0.104 0.212∗∗ 0.104
Nitrogen recovered (ln x3) 0.696∗∗∗ 0.058 0.429∗∗∗ 0.052 0.555∗∗∗ 0.108 0.546∗∗∗ 0.124 0.549∗∗∗ 0.099 0.542∗∗∗ 0.112
Nitrogen surplus (ln x4) −0.520∗∗∗ 0.049 −0.280∗∗∗ 0.044 −0.388∗∗∗ 0.085 −0.378∗∗∗ 0.101 −0.302∗∗∗ 0.082 −0.296∗∗∗ 0.094
0.5(x1)2 −0.245 0.195 −0.181 0.161 −0.209 0.212 −0.215 0.214 −0.068 0.267 −0.070 0.267
0.5(x2)2 −0.184 0.214 −0.146 0.175 −0.023 0.231 −0.023 0.231 −0.001 0.269 −0.003 0.269
0.5(x3)2 −0.529∗∗ 0.227 −0.311∗ 0.184 −0.553∗∗ 0.242 −0.571 0.261 0.822∗∗ 0.406 0.808∗ 0.417
0.5(x4)2 −0.509∗∗∗ 0.192 −0.298∗ 0.157 −0.370∗∗ 0.181 −0.385∗ 0.198 0.430 0.326 0.419 0.336
In x1 * ln x2 0.238 0.183 0.170 0.151 0.124 0.194 0.122 0.194 0.059 0.252 0.060 0.252
ln x1 * ln x3 0.174 0.128 0.144 0.105 −0.203 0.224 −0.198 0.226 0.134 0.158 0.134 0.158
ln x1 * ln x4 −0.107 0.1 −0.067 0.083 0.256 0.195 0.252 0.196 −0.011 0.119 −0.012 0.119
ln x2 * ln x3 −0.233∗ 0.128 −0.169 0.105 0.209 0.201 0.205 0.201 −0.317∗ 0.177 −0.316∗ 0.177
ln x2 * ln x4 0.101 0.1 0.039 0.082 −0.305∗ 0.181 −0.306∗ 0.181 0.089 0.124 0.089 0.124
ln x3 * ln x4 0.522∗∗ 0.208 0.314∗ 0.17 0.464∗∗ 0.203 0.480∗∗ 0.222 −0.583 0.363 −0.570 0.374
East −0.025 0.04 −0.016 0.033 −0.049 0.04 −0.049 0.04 0.004 0.05 0.003 0.05
West 0.018 0.037 0.034 0.03 −0.002 0.038 −0.002 0.038 0.066 0.044 0.065 0.044
South 0.002 0.04 0.038 0.033 0.026 0.041 0.025 0.041 0.065 0.049 0.065 0.049
Season 0.008 0.027 0.031 0.022 0.026 0.042 0.026 0.042 0.070∗ 0.04 0.070∗ 0.04
Season * x1 0.182∗ 0.095 0.130∗ 0.078 0.018 0.109 0.019 0.109 0.351∗∗∗ 0.119 0.349∗∗∗ 0.121
Season * x2 −0.118 0.099 −0.119 0.081 −0.024 0.111 −0.023 0.111 −0.297∗∗ 0.12 −0.295∗∗ 0.122
Season * x3 −0.194∗∗∗ 0.069 −0.078 0.058 −0.136 0.121 −0.137 0.122 −0.062 0.103 −0.061 0.103
Season * x4 0.115∗∗ 0.055 0.035 0.045 0.097 0.101 0.098 0.101 −0.006 0.075 −0.006 0.075
CA 0.359∗∗∗ 0.026
ρ −0.128∗∗ 0.053 −0.115∗∗ 0.047
Log likelihood −65.444∗∗∗ −96.561∗∗∗ −36.423∗∗∗ −44.441∗∗∗ −33.569∗∗∗ −33.579∗∗∗
No. of observations 372 202 170

Notes: Coefficients followed by ∗,∗∗ and ∗∗∗ indicate significance at the 10%, 5% and 1% levels, respectively.
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χ2 = 3.05 against a critical value of σu = 0. Thus, the null hypothesis is
rejected, suggesting that most of the farmers are producing below the
production frontier.15

In the selectivity-corrected model estimates, the coefficient for the selec-
tivity term (ρ) for adopters and non-adopters is significant at the con-
ventional level. This suggests that estimating the SPF model without
accounting for selection bias in this study will lead to biased TE and EE
scores (Bravo-Ureta et al., 2012; Villano et al., 2015).

As indicated earlier, the reported coefficients of the first-order terms are
elasticities. The reported partial elasticities for most of the variables in the
selectivity-corrected models for adopters and non-adopters are lower com-
pared to those of the conventional models, suggesting that sample selection
bias tends to overestimate average partial elasticities (Villano et al., 2015).
The first-order term estimates indicate positive and significant effects of
land, seeds and nitrogen on maize output, fulfilling the regularity condi-
tion of monotonicity. These results are consistent with the MF estimates of
Moreira and Bravo-Ureta (2010) for dairy farms in Argentina, Uruguay and
Chile.

The coefficient for the nitrogen surplus variable is, however, negative
and significantly different from zero. Cuesta et al. (2009) also report a
negative coefficient for the first-order term of the environmental burden
product (sulphur-oxide) for US electricity firms. The estimates of nitrogen
in the output and nitrogen surplus are intuitive and have both economic
and environmental interpretations. Specifically, while increasing levels of
nitrogen uptake by the crop contribute to higher output (or economic
returns) and lower environmental burden from nitrogen, increasing levels
of nitrogen surplus tend to reduce economic returns and increase potential
environmental burden from nitrogen.

In line with Battese et al. (2004), the LR test of the null hypothesis of
homogenous technology is calculated after estimating the stochastic fron-
tier by pooling the data from both technologies. The LR statistic is 152.92
and significant at the 1 per cent level (using a chi-square distribution with
26 degrees of freedom). The null hypothesis of technology homogeneity is
therefore rejected, supporting the use of the MF approach in the estimation
of TE and EE.

6.2. Technical and environmental efficiency
To compute the MF estimates, we first estimate individual group fron-
tiers, which are simulated to derive the MF estimates for the entire sample.
Results for the group frontiers as well as parameter estimates for the MFs
(quadratic programming) and the simulated standard errors are presented
in table 3.16 The estimates for CA and non-CA technology adopters and the
quadratic programing indicate that the coefficients of all the inputs signifi-
cantly influence the level of output, hence the tendency to influence TE and

15 We used the Stata Frontier program for the estimates in table 2.
16 Group frontiers and the MF were estimated using Ox v.7.01 (© J.A. Doornik, 1994–

2013).
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Table 3. Stochastic production frontier estimates

Meta (quadratic
CA adopter CA non-adopters programming)

Variable Coeff. S.E. Coeff. S.E. Coeff. S.E.

Production frontier model
Constant 1.779∗∗∗ 0.080 1.315∗∗∗ 0.083 1.910∗∗∗ 0.129
Land (ln x1) 0.873∗∗∗ 0.097 0.514∗∗∗ 0.107 0.542∗∗∗ 0.1
Seed (ln x2) 0.093∗∗ 0.048 0.181∗∗∗ 0.092 0.240∗∗ 0.114
Nitrogen in output (ln x3) 0.568∗∗∗ 0.127 0.598∗∗∗ 0.121 0.299∗∗∗ 0.117
Nitrogen surplus (ln x4) −0.402∗∗∗ 0.105 −0.340∗∗∗ 0.098 −0.293∗∗∗ 0.107
0.5(ln x1)2 −0.23 0.316 −0.200 0.248 −0.216 0.263
0.5(ln x2)2 −0.117 0.253 −0.058 0.251 0.243 0.633
0.5(ln x3)2 −0.242 0.454 0.890∗∗ 0.397 0.847∗ 0.496
0.5(ln x4)2 −0.044 0.440 0.462 0.304 −0.469 0.467
ln x1 * 1n x2 0.173 0.264 0.157 0.23 −0.265 0.379
ln x1 * 1n x3 −0.267 0.238 0.205 0.148 0.050 0.366
ln x1 * ln x4 0.284 0.192 −0.052 0.099 0.535∗ 0.288
ln x2 * ln x3 0.303 0.241 −0.428∗∗∗ 0.142 −0.626∗∗∗ 0.199
ln x2 * ln x4 −0.347∗ 0.198 0.165∗ 0.097 −0.785∗∗∗ 0.249
ln x3 * ln x4 0.129 0.456 −0.629∗ 0.346 0.152 0.330
East −0.060 0.04 0.001 0.048 −0.063 0.060
West −0.005 0.036 0.069 0.04 0.196 0.129
South 0.025 0.039 0.057 0.053 0.104 0.079
Season 0.019 0.035 0.046 0.04 0.031 0.066
Season * ln x1 0.060 0.139 0.331∗∗∗ 0.119 0.607∗∗∗ 0.193
Season * ln x2 −0.058 0.134 −0.266∗∗ 0.115 0.192 0.289
Season * ln x3 −0.114 0.102 −0.084 0.1 −0.593∗∗ 0.241
Season * ln x4 0.073 0.085 0.008 0.07 0.184 0.165
ρ −0.170∗∗∗ 0.015 −0.252∗∗∗ 0.122

Inefficiency model
Constant −1.308∗∗∗ 0.309 0.632 0.102
Age −0.327 0.212 −0.273 0.338
Gender 0.232 0.312 −0.434 0.832
Education −0.783∗∗ 0.382 −0.123∗∗ 0.062
Credit −0.554 0.522 −0.285 0.489
Soil quality 0.408 0.885 0.462 0.493
Extension 0.300 0.611 0.438 0.518
Market 0.429∗∗ 0.214 0.104 0.135
Log likelihood −58.909 −42.515
No. of observations 202 170

Notes: Coefficients followed by ∗,∗∗ and ∗∗∗ indicate significance at the 10%, 5% and 1%
levels, respectively.

EE. For instance, while higher levels of nitrogen utilized to produce output
contribute to increased output and TE, higher levels of nitrogen surplus
tend to reduce output and increase environmental inefficiency.

As indicated previously, the MF function is used in the estimation of
meta-technology ratio, as well as TE and EE for CA and non-CA technolo-
gies. The parameters of the MF are used in the estimation of MTR and TE
and EE. Table 4 reports a summary of TE and EE scores for the pooled, CA
and non-CA technology group frontiers, respectively. The group-specific

https://doi.org/10.1017/S1355770X16000309 Published online by Cambridge University Press

https://doi.org/10.1017/S1355770X16000309


194 Abdul-Nafeo Abdulai and Awudu Abdulai

Table 4. Meta-frontier technical and environmental efficiency estimates

CA Adopters Non-CA adopters

Pooled Group MTR MF Group MTR MF

Technical efficiency
Mean 0.821 0.854 0.940∗∗∗ 0.803∗∗∗ 0.781 0.759 0.593
Minimum 0.456 0.650 0.337 0.336 0.420 0.174 0.164
Maximum 0.995 0.995 1.000 0.995 0.925 1.000 0.925
SD 0.096 0.520 0.086 0.100 0.084 0.151 0.174

Environmental efficiency
Mean 0.493 0.548 0.940∗∗∗ 0.515∗∗∗ 0.427 0.759 0.324
Minimum 0.266 0.322 0.337 0.226 0.266 0.174 0.140
Maximum 0.876 0.876 1.000 0.770 1.000 0.818 0.448
SD 0.113 0.082 0.086 0.065 0.127 0.151 0.045

Notes: Coefficients followed by ∗∗∗ indicate significance at the 1% level.

inefficiency scores relate to individual group frontiers with no common ref-
erence between groups. For a reasonable interpretation and comparison of
the differences in efficiencies between CA and non-CA technology farms,
we use the meta-technology ratio and MF scores.

The estimates indicate statistically significant differences in the meta-
technology ratio, TE and EE between CA and non-CA technology farms.
The reported meta-technology ratios indicate the specific technology-
related productivity gaps between CA and non-CA technologies relative
to the MF, with a higher score indicating better returns from the technol-
ogy. The results show an average meta-technology ratio score of about 0.94
for CA farms, ranging from 0.34 to 1.00. On the other hand, an average
meta-technology ratio of 0.76 is reported for non-CA farms, ranging from
0.17 to 1.00.

The MF scores indicate that, on average, while CA technology farms are
about 80 per cent technically efficient, their non-CA technology counter-
parts are 59 per cent technically efficient. These findings suggest that with
the same level of inputs the CA technology tends to contribute to increas-
ing average farm output by 19 per cent more than conventional farming.
Similarly, while average EE for CA farms is about 52 per cent (48 per cent
inefficient), average EE for non-CA farms is 32 per cent (68 per cent inef-
ficient). This indicates that CA technology is more likely to contribute to
reducing potential environmental degradation and GHG equivalent from
nitrogen sources by 20 per cent more than non-CA technology farms. These
differences can be attributed to better production technologies associated
with CA technology, which includes incorporating fertilizers into the rip
lines, minimum tillage and retention of crop cover to conserve soil and
water, as well as reducing nitrogen losses resulting from volatilization,
runoff and leaching.

As suggested by Wei et al. (2010), the estimates can be related to social
cost in terms of equivalent impacts of a tonne of CO2 emission into the
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atmosphere. The relatively higher EE from CA compared to conventional
technology indicates that CA technology tends to lower carbon dioxide
and GHG emission equivalence from N fertilizers; hence CA technology
will generate less social cost. Coupled with better TE, CA technology is
likely to enhance the desired prosperity, people and planet synergies of the
Sustainable Development Goals of agriculture (UN, 2015).

6.3. Determinants of technical and environmental efficiency
The determinants of efficiency indicate the potential sources of efficiency
that could enhance policy, irrespective of technology. In table 5 we present
translog maximum likelihood estimates of the determinants of techni-
cal inefficiency, as well as the FRM estimates of the determinants of
environmental efficiency. The translog maximum likelihood frontier esti-
mates are from a single-stage selectivity-corrected pooled sample SPF and
inefficiency models. Given that there were no environmentally efficient
households at unity in our sample, we use one-part models for our estima-
tion of the determinants of EE. The results obtained for the one-part FRM
for logit, Probit, loglog and cloglog follow the second-stage procedure of
Ramalho et al. (2010).17

For each FRM, we report the R2 and test statistic. The R2 is calculated
as the square of the correlation between the actual and predicted efficiency
scores. We find that most of the R2 values are similar – evidence that all the
competing models fit the data. Consistent with Ramalho et al. (2010), the
test statistic results clearly show that only the cloglog model is not rejected
at the 10 per cent level.18 We therefore select the cloglog model as the most
suitable model and for the interpretation of our results. The coefficients are
interpreted by their signs, such that a positive (negative) coefficient for the
technical inefficiency results indicates a positive (negative) effect on ineffi-
ciency, and the opposite for the EE determinants. In the interest of brevity,
we only discuss the determinants focusing on variables that are statistically
significant at conventional levels.19

The inefficiency model estimates show that, while technical inefficiency
is influenced by education, access to credit and distance to markets, EE
appears to be influenced by age, education, access to extension, access to
credit and distance to markets. The coefficient of the variable represent-
ing education in the TE (EE) model is negative (positive) and significantly
different from zero, indicating that higher levels of education have the
potential to reduce inefficiency. The result of the TE model is consis-
tent with findings from other studies like Kibaara (2005) for Kenya, and
Ng’ombe and Kalinda (2015) for Zambia.

The variable age is used as a proxy for experience of the farm house-
hold head, especially in the study area where farming is the main source

17 The Tobit and linear models are available upon request.
18 Based on one fitted power of the response index, the RESET test is used in this

study (Ramalho et al., 2010).
19 Estimates of the deterministic component as in tables 2–4 are available upon

request.
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Table 5. Determinants of efficiency Environmental efficiency (fractional regression model estimates for one-part models)

Technical inefficiency (MLE) Logit Probit Loglog Cloglog

Variable Coeff. S.E. Coeff. S.E. Coeff. S.E. Coeff. S.E. Coeff. S.E.

Constant −0.334 0.870 0.007 0.005 0.005 0.003 0.006 0.004 0.005 0.004
Age −0.022 0.015 0.003∗∗ 0.002 0.002∗∗ 0.001 0.002∗∗ 0.001 0.002∗∗ 0.001
Gender −0.288 0.334 −0.024 0.030 −0.015 0.019 −0.016 0.020 −0.018 0.023
Education −0.180∗∗ 0.087 0.004∗∗ 0.002 0.003∗∗ 0.001 0.004∗∗ 0.002 0.003∗∗ 0.001
Extension −0.214 0.458 0.195∗∗∗ 0.075 0.121∗∗∗ 0.047 0.131∗∗ 0.054 0.148∗∗∗ 0.055
Credit −1.610∗∗ 0.584 0.474∗∗∗ 0.073 0.296∗∗∗ 0.045 0.336∗∗∗ 0.052 0.348∗∗∗ 0.053
Soil quality 0.108 0.313 0.001 0.034 0.001 0.021 −0.002 0.025 0.003 0.024
Market 0.033∗∗ 0.014 −0.374∗∗∗ 0.101 −0.234∗∗∗ 0.063 −0.110∗∗ 0.055 −0.651∗∗∗ 0.070

R2 0.454 0.454 0.453 0.456
Test-statistic 2.887 2.906 3.227 2.641
p-value 0.089 0.088 0.072 0.140
Log likelihood −48.210 −168.094 −168.095 −168.110 −168.080
No. of observations 372 372 372 372 372

Notes: Coefficients followed by ∗∗ and ∗∗∗ indicate significance at the 5% and 1% levels, respectively.
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of livelihood for most households. The estimate for age is positive and
significantly different from zero for the EE model, suggesting that more
experienced farmers are environmentally efficient. This is related to the fact
that advancing years of farming experience improve farmers’ ability to pro-
cess relevant farm information for decision making. The results also reveal
a negative (positive) and significant relationship between the variable rep-
resenting access to credit and technical (environmental) inefficiency model,
suggesting that liquidity-constrained farmers tend to be less efficient. This
finding is in line with the results reported by Ng’ombe and Kalinda (2015),
who showed that access to credit reduces farmers’ cash constraints for farm
input in Zambia, thereby increasing farm efficiency.

The access to extension variable also has positive relationship with
EE, indicating the significance of information from extension services to
improving EE. The reported positive (negative) and statistically significant
relationship between the distance to market and technical (environmen-
tal) inefficiency suggests that farmers closer to markets tend to be more
environmentally efficient. The reason for this could be linked to lower
transaction cost in acquiring information from input markets on environ-
mentally friendly inputs and acquiring the needed farm implements for
soil and water conservation measures.

7. Conclusions
In this study, we examined EE among maize farmers in Zambia, with par-
ticular reference to N fertilizers. In generating a nitrogen balance sheet,
we used a NITZ tool to establish that the quantity of applied N fertilizers
is split into quantity of nitrogen that yielded the output and quantity of
nitrogen surplus. We employed a MF approach to account for technol-
ogy differences among farmers practising CA technology and those using
conventional farming technology. We accounted for observable and unob-
servable selection bias, using PSM and Greene’s (2010) sample selection
SPF approach.

The empirical results revealed that CA technology farmers are tech-
nically and environmentally more efficient than conventional farming
technology farmers, a finding that suggests that CA has the potential
to reduce the economic drain and environmental burden that may arise
from nitrogen surplus. The MF estimates also showed that CA technology
farms are technically and environmentally more efficient than the non-CA
technology farms. This demonstrates that CA technology has a potential
to improve farm economic returns from farm output and reduce envi-
ronmental burden from nitrogen losses. Less environmental burden from
CA technology is an indication of less social cost from CA technology
(Wei et al., 2010).

The findings also established statistically significant differences in key
determinants of TE and EE. In particular, we found positive and statis-
tically significant relations between TE and access to credit, as well as
education of the household head and shorter distance to markets. Sim-
ilarly, EE was found to be positively related to access to credit, access
to extension services, age, years of education and shorter distances to
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markets, indicating that there is scope for using policy measures to influ-
ence TE and EE.

In terms of policy, this study revealed that policy makers should con-
tinue with encouraging farm households to adopt CA technology, which
has the potential to fulfil synergies between reducing social cost, enhancing
economic empowerment and reducing environmental pollution. Specifi-
cally, encouraging soil and water conservation measures such as minimum
tillage and retaining permanent crop cover would contribute to improving
soil nutrients and water conservation. Also crop rotation, including the use
of legumes in the rotation, could enhance nitrogen fixation, and timely land
preparation would help to take advantage of nitrogen flush, hence improv-
ing output and reducing environmental pollution. Moreover, investment
in rural infrastructure, including better roads and transport, will reduce
farm transaction costs and improve the economic wellbeing of farmers.
Improving farmers’ access to timely credit packages, including cash and
input credit, would also contribute to decreasing farm-level technical and
environmental inefficiency.

Supplementary material and methods
To view supplementary material for this article, please visit https://doi.
org/10.1017/S1355770X16000309.
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