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ABSTRACT. First, equilibrium structure and maximum mass of a rotating 
isothermal cloud are described. Second, growth rate of fragmentation 
instability in an infinite disk and filament is presented. Finally, 
results of 2D and 3D simulations of collapse and fragmentation of rota­
ting isothermal clouds are reviewed and comments are given. 

1. INTRODUCTION 

Structure and evolution of interstellar clouds have features which 
are quite different from those of opaque stars. First, the clouds are 
open systems where the effects of environment such as gravity, pressure, 
radiation and magnetic field cannot be neglected. Furthermore, mass is 
not conserved; they experience fragmentation, mass accretion and ejec­
tion. Second, they have very diffuse boundaries because they are com­
posed of very soft gases with a polytropic index N ranging from -3 to 
infinity. Contrary to the case of opaque stars with N < 3, the bounda­
ries of clouds are determined by external pressure. Third, in general, 
clouds have non-spherical structures because they are collapsing, ro­
tating or under the influence of magnetic field. Gravity field in a 
flattened disk or an elongated cylinder is not so simple as in a sphere. 
Finally, contrary to the case of opaque stars where we have only to 
consider evolution through quasi-static equilibria except supernova 
explosion, we have to taken into account dynamics of clouds such as 
collapse, fragmentation and even many-body interactions of fragments. 

The above features of clouds seem to be too much complicated for 
us to construct, at present, a consistent theory of evolution and star 
formation in clouds. We may have to disentangle many factors as 
described above and for each factor find a simple and precise physical 
law or theory, from which we can construct a whole theory of evolution. 

As examples of such constituent theories, we first review on the 
equilibrium structure of a rotating isothermal cloud. Compared with a 
non-rotating case, we have to deal with a problem which has one more 
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degree of freedom, i. e., the distribution of specific angular momentum. 
It is important to know how much mass can be sustained by rotation 
against gravity. Second, to show the essence of fragmentation condition 
for a flattened or elongated cloud, the growth rate of instability 
occurring in an infinite disk and filament will be described. Finally, 
results of recent numerical simulations of collapse and fragmentation of 
rotating isothermal clouds will be reviewed. The results will show that 
fragmentation occurs through formation of a very flattened disk which 
develops into one or more filaments, in accord with the above simple 
theory of fragmentation of an infinite disk and filament. 

2. EQUILIBRIUM STRUCTURE OF A ROTATING AXISYMMETRIC CLOUD 

In order to find an equilibrium structure of an isothermal cloud 
with mass, M, angular momentum, J, and constant sound velocity, c, we 
have to impose a boundary condition on the surface of the cloud, contra­
ry to a case with a polytropic index N smaller than 5 where a cloud has 
a free boundary. Namely, isothermal clouds are subject to the effect of 
a surrounding medium and, as a simple representation of this effect, here 
we assume that constant external pressure, P , is acting on the cloud 
surface. 

For a rotating cloud, we have to specify the distribution of angu­
lar momentum with mass, i. e., a j-m relation. Here, in a cylindrical 
coordinates (r, <t), z) where z denotes the rotation axis, j is a spe­
cific angular momentum on the surface of a cylinder with radius r and m 
is a mass contained inside this cylinder. We adopt here a j-m relation 
which is the same as in a rigidly-rotating homogeneous sphere. This will 
be called the standard j-m relation hereafter. 

It was shown by Stahler (1983) that equilibrium solutions are 
specified by the two non-dimensional parameters, 

P c/P e and B Q = 3.36(P e/c 2) 1 / 3(J/M 5 / 3) 2, (1) 

where P c is the central pressure and 6 Q is the ratio of rotational 
energy to gravitational energy of the above-mentioned sphere. With 
numerical computations, solutions for @ 0 ^ 0.33 were obtained by Stahler 
(1983) and, more extensively, those for 3 Q ^ 1.31 by Kiguchi, Narita, 
Miyama and Hayashi (1986) with results as summarized in the following. 

2.1. Mass (M/MQ) - central pressure (P /P ) relation 

For the units of pressure and mass, we use P e and M Q where 

M Q = c 4 / ( G 3 P e ) 1 / 2 , (2) 

which is nearly equal to the Jeans mass. Relations between M/M 0 and 
P c/P e for different values of $ 0

 a r e shown in Fig. 1. The curve for a 
well-known non-rotating case ($ Q = 0) has an infinite number of maxima 
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and minima as shown in Fig. 
2. In regions above and 
below this curve, gravity 
is too large and too small, 
respectively, for a cloud 
to be in equilibrium. Name­
ly, the dotted curves in 
Fig. 2 represent solutions 
unstable to global contrac­
tion and expansion and the 
first maximum point gives 
the maximum stable mass, M 
= 1.18 M G. 

The dashed line in Fig. 
1 indicates the position of 
such maximum stable masses 
for rotating cases, while 
the dotted curve denotes a 
limit such that ring forma­
tion occurs in a region 
above this curve. 

It is to be noticed 
that a rotating axisym-
metric cloud with mass as 
large as 34 M Q can be sus­
tained by centrifugal force 
against gravity. Further­
more, if isotropic turbu­
lences with velocity v t 

exist, all the results are 
to be modified in such a 
way that c 2 is replaced by 
c 2 + v t

2 . 

2.2. Density distribution 
and flatness 

The equilibrium struc­
ture is, in most cases, 
composed of a small core 
nearly rigidly rotating and 
a large envelope which is 
differentially rotating and 
has an equatorial density 
proportional to r~2. How­
ever, in a case of 3 Q> 0.6, 
an outermost envelope with 
nearly uniform density is existing outside the envelope with the above-
mentioned density distribution. The ratio of a mean density of a cloud 
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to the boundary density (= P e/c^) is always less than 3.8, i. e., the 
degree of central condensation of mass is small, reflecting the nature 
of an isothermal gas. 

Equi-density contours for a fixed value of P c/P e (=100) are shown 
in Fig. 3. With the increase of 3 0 (or the total angular momentum, J), 
the radius, R, increases while the half-thickness in the z-direction is 
nearly constant. Let the maximum value of z on the cloud surface be 
denoted by z m a x . Then, we have approximately 

max = 0.3 c 2 / ( G P e ) 1 / 2 . 

Now, we define the flatness, f, of the surface by 

f = R/z, max 

(3) 

(4) 

We find that f is as large as 15 on the critical curve of ring formation 
shown in Fig. 1. The results are briefly summarized in Table 1. 

We can understand 
the above constancy of 
zmax D V considering 
the half-thickness, z, 
of an infinite disk 
with a uniform surface 
mass density, 0. In 
this disk, pressure 
balances with gravity 
in the z-direction. 

For a case where 
a constant external 
pressure is acting on 
this uniform disk, it 
will be easily found 
that, with an increase 
of a , z first in­
creases, takes a maxi­
mum value given by 
Eq. (3) and decreases 
afterwards. 

Fig. 3. Equi-density contours in the 
r-z plane for P c/P e = 100. 

Table 1. Rotating clouds with maximum masses (<v> is a 
root mean square velocity averaged with respect to mass). 

So 
e (= E r o t/|E, 
<vrot>/c 
f (= R/z m a x) 
M/M G 

grav I) 
0 0.32 1.31 
0 0.30 0.44 
0 1.3 2.7 
1 3.9 16 
1.2 4.6 34 
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The above results were obtained by two-dimensional axisymmetric 
computations and, hence, instability to bar formation has not yet been 
studied. According to the well-known instability criterion for the 
Maclaurin spheroid, bar formation is expected to occur in the isothermal 
cloud if the value of (3 is greater than 0.27 (see Table 1). 

2.3. Remarks 

Kiguchi et al.(1986) obtained equilibrium solutions for several j-m 
relations besides the standard one. Results for a case where j/m is 
constant is similar to the case of the above standard j-m relation. In 
cases where, compared with the above two cases, the value of j/m is too 
large near the center or near the outer boundary, ring formation with a 
central hole or that with a central core, respectively, was found to 
occur for a slightly large value of total angular momentum. 

Furthermore, they have computed a case where y of the gas is 2/3, 
i. e., the polytropic index is -3, considering that the y value of 
molecular clouds surrounded by HI regions is about 0.7 ( Larson, 1985). 
They found that equilibrium structure is similar to the isothermal case. 

3. FRAGMENTATION OF A UNIFORM DISK AND FILAMENT 

Consider the collapse of a triaxial cloud. In general, inequality 
of the three axes is enlarged with the progress of collapse. First, the 
shortest axis decreases most rapidly (Zel'dovich 1970) and this decrease 
is stopped by gas pressure, forming a very flattened disk. The disk 
begins to fragment as will be shown later but, if the fragmentation is 
slow, the middle axis of the ellipsoid decreases to form an elongated 
cylinder which finally fragments. In the following, we consider the 
growth rate |oo| of density perturbations, 6p <* exp (icot + ikx), as a 
function of the wave number, k (see also a review by Larson, 1985). 

3.1. An infinite sphere with a uniform density p0 

This is the case of well-known Jeans1 instability (Jeans 1928) and 
the dispersion relation for the growth rate is written as 

0) 2/4TTGP 0 = (k/kj) 2 - 1, where kj = ( 4 T T G P O ) 1 / 2 , (5) 

which shows that the most rapidly growing wavelength is infinite (i. 
e., k = 0) if the magnitude of initial perturbation is independent of 
the wavelength. Namely, density contrast is hardly produced in the 
case of a sphere even if fragmentation occurs. 

3.2. An infinite disk with a uniform surface density 0 

The dispersion relation was obtained by Goldreich and Lynden-Bell 
(1965), Elmegreen and Elmegreen (1978), and many others. First we 
consider a case of zero external pressure. Density distribution in the 

https://doi.org/10.1017/S007418090009611X Published online by Cambridge University Press

https://doi.org/10.1017/S007418090009611X


408 C HAYASHI 

z-direction in an equilibrium disk is given by 

p(z) = p Qcosh" 2(z/z 0), where z Q = o/2pQ (6) 

is an effective half-thickness of the disk. For a density perturbation 
of the form 

6p oc + k x x + V}, (7) 

the dispersion relation for a non-rotating disk is expressed in a very 
good approximation as 

U> 2/2T TGP 0 = ( k z Q ) 2 - 2kz0/(l + kz Q), (8) 

where 

k = (k 2 + K P 1 / 2 . (9) 

In the case of a rotating disk, an additional term representing a tidal 
effect appears on the right-hand side of Eq. (8) but this term is rela­
tively small, because the centrifugal force should not be too large as 
to destroy an equilibrium condition assumed for the r-direction. 

Exact dispersion relations for 
isothermal and incompressible fluids 
are shown in Fig, 4, Contrary to 
the case of a sphere, the curves 
have minimum points at finite wave­
lengths. Namely, for the most rap­
idly growing mode in the isothermal 
disk, the value of kz Q is about 0.5 
(i. e., the flatness of fragments is 
about 2TT) and the growth time is 
about z 0/c. 

If the external pressure is in­
creased from zero to a large value, 
the curve for the isothermal case in 
Fig. 4 approaches that for the in­
compressible case if we use Eq. (6) 
for the definition of z Q in terms of 
the surface density O and the cen­
tral density p Q of a disk. 

The most rapidly growing mode 
is degenerate in the k-space as 
shown by Eq.(9). For example, in 
the case of k x = k v we have in the 
x-y plane a checkered pattern of fragmentation composed of squares. In 
the case of k x = 3kv, we have a pattern composed of rectangles with an 
axial ratio of 3. Recently, non-linear growth of perturbations with 
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Fig- 4. Dispersion relations 
for non-rotating disks with 
polytropic index N = 0 and °°. 
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such patterns has been numerically simulated by Miyama, Narita and 
Hayashi (1986). The result shows that in the case of the square pattern 
each square collapses to form a spheroid, while in the case of the 
rectangular pattern each rectangle collapses to form a thin filament 
because of faster contraction of a shorter axis. 

Now, we consider a statistical problem as to the k-dependence of 
initial perturbation. If we assume that the magnitude of initial den­
sity perturbations is uniform in the k-space, the probability of form­
ing square-like patterns is much lower than that of rectangular patterns 
Namely, in view of the result of non-linear growth, formation of thin 
filaments is much more probable than that of roundish spheroids. Fur­
thermore, it is to be noticed that the mass of a square is smaller than 
that of a rectangle and that the peak of the growth rate shown in Fig. 4 
is not so sharp but broad. These features will be important in studying 
the mass spectrum of star formation. 

3.3. An infinite cylinder with a uniform line mass density M L 

We consider a circular cylinder which extends to infinity in the z-
direction. In equilibrium, gas pressure balances with gravity in the r-
direction and in the case of zero external pressure we have for the den­
sity distribution and the line mass density 

p(r) = p0/(l + r2/a2)2, 

Mr = 2TT p(r)rdr = 2c2/G, J o 
where 

a = ( M L / T T P 0 ) 1 / 2 , (12) 

is an effective radius of the cylin­
der. In the case of P e = 0, the 
line mass takes a maximum value 
given by Eq. (11). This is a char­
acteristic of an isothermal filament 
which is similar to an equilibrium 
of a polytropic sphere with N = 3, 
where Chandrasekhar1s limiting mass 
exists. 

Now, we consider a density 
perturbation of the form 

6p « ei(u)t + kz + m<t>)# (13) 

The mode for m = 1 is a kink which 
is always stable and here we consi­
der only a sausage-type instability 
corresponding to m = 0. Dispersion 

(10) 

(11) 

- 0.2 1 1 1 1 1 L 

Fig. 5. Dispersion relation 
for a non-rotating cylinder. 
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relations for an isothermal as well as incompressible cylinder are shown 
in Fig. 5 . The most rapidly growing mode has a wave-length (= 2TT/1C) of 
about 27ra, a flatness of about 2TT and a growth time of about a/c. 

In a case where external pressure is acting on the surface of a 
cylinder, the curve for an isothermal, cylinder in Fig. 5 approaches that 
for incompressible one with the increase of the external pressure, as it 
should be. Furthermore, in a large wave-length limit, ka 0, both of 
the curves in Fig. 5 are expressed in the form 

|O)2|/2TTGP0 = (ka)2 log(ka/2). (14) 

It is to be noticed that the right-hand side of Eq. (14) is equal to 2 
and 2kz Q in the cases of a sphere and a disk, respectively, as will be 
seen in Eqs. ( 5 ) and (8). This means that, in the case of a cylinder, 
the growth of perturbations with large wave-lengths is much slower than 
in the case of a disk and, accordingly, density contrast is more easily 
produced by fragmentation. 

In conclusion, if a very thin disk or filament is formed, it soon 
fragments into a number of small clouds with flatness of about 2TT (see 
Eq.(4) for the definition of flatness). The main reason for this is 
that the total gravitational energy of a system is greatly reduced by 
such fragmentation. 

4. COLLAPSE AND FRAGMENTATION OF A ROTATING ISOTHERMAL CLOUD 

Dynamics of a cloud is a problem more complicated than eouilibrium 
of a cloud since it contains one more degree of freedom, i. e., it 
depends on the initial density distribution besides the j-m relation as 
mentioned in Section 2. On the collapse of a rotating isothermal cloud, 
a great number of numerical 2D and 3D computations have been made since 
Larson (1972) started his 2D computation. As for the initial condition 
of a cloud, a homogeneous rigidly-rotating sphere has been adopted in 
most of the computations. For papers before 1980, see a review by 
Bodenheimer (1981) and, as the later papers until now, see Boss and 
Harber (1982), Wood (1982), Narita, McNally, Pearce and S^rensen (1983), 
Miyama, Hayashi and Narita (1984), and Narita, Hayashi and Miyama 
(1984). 

In the above computations, results for the same initial condition 
were not always in agreement with each other. This seems to be due to 
mathematical errors including, for example, an artificial transport of 
angular momentum. It was difficult, especially in early days, to elimi­
nate such errors and there remained questions as to precise conditions 
for ring formation, central runaway and fragmentation. 

In the following, we will summarize mainly the recent results of 
Miyama et al.(1984) and Narita et al. (1984), who have provided answers 
to the above questions by using, respectively, two different numerical 
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methods, i. e., (1) a Lagrangian "Smoothed-Particle Method" with 1000 -
4000 particles representing spherical equal-mass fluid elements with 
Gaussian density distributions and (2) an Eulerian "Fluid-In-Cell Method" 
with 10^ Lagrangian test particles to prevent the artificial transport 
of angular momentum. They adopted for initial condition a homogeneous 
rigidly-rotating sphere, which is specified by the two non-dimensional 
parameters 

a = Eth/|Egravl a n d 6 = Erot/|Egrav 
(15) 

It is to be noticed that the product, a$, is independent of the cloud 
size and written in the form 

aB = (125/24)(cJ/GM2)2, (16) 

which means that a@ is a conserved quantity during collapse if the 
transport of angular momentum is negligible, i. e., if the effects of 
viscosity and also departure from axisymmetry can be neglected. 

4.1. Results of Miyama et al. with the Smoothed-Particle method 

Miyama et al. (1984) made 3D computations of collapse for initial 
conditions with 17 different sets of (a, 3) values, initial density 
fluctuations being smaller than 5 per cent. Computations were stopped 
at t = 2 - 3 tff, where a maximum density in a cloud became 10 4 times 
the initial density. As a result they found that the characteristic of 
dynamics is determined by one parameter, a(3, and all the 17 cases are 
grouped into the following 3 classes. This classification is consistent 
with the results of computation by Wood (1982). 

1. a@ ^ 0.20 (no collapse). A cloud begins to expand after slight 
contraction and, afterwards, oscillates around an equilibrium state as 
described in Section 2. 

2. 0.20 > a3 ^ 0.12 (collapse without fragmentation). A cloud 
first collapses in the z-direction and this is stopped by the increase 
of gas pressure. Then a central part of the cloud collapses in the r-
direction and bounces weakly with a subsonic velocity, forming a flat 
disk. This disk is not so flattened (the flatness being less than 8) as 
to be able to fragment and begins to collapse again. The gas remaining 
in the outer region with a large part of the total mass is nearly in 
equilibrium and has a density distribution proportional to r""2 and an 
angular velocity distribution proportional to r~l. Afterwards, collapse 
of the disk will be stopped by gas pressure when it will become opaque 
to form a stellar core. Finally a single star will be formed by accre­
tion of the remaining gas onto the core. 

3. 0.12 > a|3 (collapse and fragmentation). After collapse in the 
z-direction, a central part of a cloud collapses in the r-direction and 
then bounces strongly with a supersonic velocity, forming a very flat 
disk containing about 30 per cent of the total mass. The disk soon de-
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velops into one or more filaments and each filament finally fragments 
into small clouds, in accordance with the fragmentation condition de­
scribed in Section 3. It was found that in a case where a(3 is smaller 
the disk has a greater flatness and the number of fragments is larger. 
For example, in a case with a = 0.4 and 3 = 0.3, the disk has a flatness 
of about 7 and it develops into a S-shaped filament (Fig, 6) which 
finally fragments into 3 clouds. On the other hand, in a case with a = 
0.2 and 3 = 0.3, the disk has a flatness as large as 14 and develops 
into multi-armed filaments (Fig. 7), which finally fragment into 8 
pieces. The above fragments are interacting gravitationally with each 
other and it is expected that, through virialization and sticking as 
well as accretion of the remaining gas, finally double stars or triple 
stars will be formed. 

- i l .OO - 0 - 6 0 - 0 . 2 0 0. 20 
X 

Fig. 6. Projections of particles on equatorial and meridional 
planes at a stage immediately before fragmentation for a case 
of a = 0.4 and 3 = 0.3. 

Fig. 7. The same as in Fig. 6 for a case of a = 0 . 2 and 3 = 0 . 3 
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4.2. Results of Narita et al. with the Fluid-In-Cell method 

In order to solve a runaway problem on the collapse of the center 
of a cloud and also to clarify the mechanism of bounce forming a flat 
disk as mentioned in Section 4.1, Narita et al. (1984) performed 2D 
computations of collapse together with ID computations using a thin-disk 
approximation. As to initial condition, besides the case of a sphere 
they took into account a case of a rigidly-rotating disk which is al­
ready in equilibrium in the z-direction. 

As a result they found that, for almost all of plausible initial 
conditions (i. e., except for cases of a sphere with a < 0.1), collapse 
proceeds with such a structure as composed of the three parts: 

(1) a rigidly-rotating homogeneous core with a flatness between 4 
and 6 and with a radius, a c, which decreases continuously with time, 

(2) an inner envelope which has nearly the same flatness as the 
core and distributions of density, surface density and angular velocity 
proportional to r~2, r~l and r~l, respectively, and 

(3) an outer envelope with a structure depending upon the details 
of initial condition in the surface region. 

The time variation of surface 
density in the core and in the inner 
envelope is schematically shown in 
Fig. 8. The relation, o a r"1, 
holding in the inner envelope re­
sults from a balance of gravity and 
gas pressure, reflecting the nature 
of an isothermal cloud. The surface 
density of the core, O c , increases 
with time as 

O c(t)a c(t) = constant. (17) 

Namely, with the decrease of the 
core radius, a c, the central density 
tends to infinity as a£ 2

# This 
central runaway was first found by 
Norman, Wilson and Barton (1980). 
It is to be noticed that the core 
mass, 7 r a c a c

2 , is proportional to a c 

and it is always of the order of 
Jeans' mass. 

The reason for why the above runaway occurs instead of a centrifu­
gal bounce will be understood in the following way. Let us consider 
motion of a Lagrangian fluid element in the core, r = r(t), which is 
lying on a cylindrical surface with a fixed interior mass, m, i. e., 

A 

t 2 

P v v 

\ \ CJoc r - ' 

\ V 

\ \ \ 
\ L a g r a n g \ X 
\ Path \ > 

£og Y 

Fig. 8. Distribution of surface 
density in the core and the in­
ner envelope at two times tj 
and t2- The thin lines denotes 
Lagrangian paths. 

m = 7TO c(t)r^(t). (18) 
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In the case of a flattened core considered, gravity acting on the ele­
ment is written in the form 

Fgrav = -k(Gm/r2)(r/ac) for r/ac < 1, (19) 

where k is a constant of the order of unity. On the other hand, centri­
fugal force is given by 

Fcent = J 2/r 3, (20) 

where the specific angular momentum, j, is proportional to m, according 
to the initial condition. From Eqs. (19) and (20) we have 

lFcent/Fgravl = constant x a c(t)o c(t), (21) 

which is constant according to Eq. (17) and always less than unity if 
initially less than unity, i. e., if a cloud does begin collapsing. 

Narita et al. showed that the central runaway occurs in cases where 
y of the gas is equal to or less than unity, while bounce occurs at 
a finite central density in cases where y > 1. In reality, the core 
becomes opaque to thermal radiation at a density of about 1 0 " ^ g/cm^ 
and y changes to a value of about 1.4. As a result, the core stops 
contraction and the gas exterior to the core forms a very flat disk 
rotating around the core. Gravity of this disk acts on the core to 
expand it in the r-direction and this is a mechanism of central bounce 
in the collapse of a rotating "isothermal" cloud. Indeed, in the 3D 
computations by Miyama et al. described in Section 4.1, they used an 
equation of state such that y changes into 4/3 when the density becomes 
greater than 10 4 times the initial density. 

4.3. Remarks on the fragments of a cloud 

4.3.1. Reduction of spin angular momentum. The 3D computations by 
Miyama et al., as described in Section 4.2, show that each fragment of a 
cloud has spin angular momentum which is smaller than orbital angular 
momentum by a factor of 10 to 20. This indicates that fragmentation is 
a very efficient process for conversion of spin into orbital angular 
momentum, as was pointed out by Boss and Bodenheimer (1979) and 
Bodenheimer, Tohline and Black (1980). 

4.3.2. Refragmentation of a fragment. Miyama et al. found in their 3D 
computations that, in the case of fragmentation into three clouds with 
masses of about one tenth of a parent cloud, the initial value of a|3 is 
0.12 while the a3 value of each fragment is about 0.02. Note that, as 
shown by Eq.(16), a$ is conserved during collapse but changed by frag­
mentation. Now, let us consider a very flat disk just before fragmenta­
tion, which is rotating with supersonic velocities. From a condition 
that gravity balances with gas pressure in the z-direction and gravity 
balances with centrifugal force in the r-direction in the disk, we 
obtain the following approximate formulas for the rotation velocity, 
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vrot» t n e radius, R, the half-thickness, z, and the mean density, p, of 
the disk. 

For the above-mentioned values of aB, we can expect from Eq. (23) 
that the second fragmentation occurs when the mean density of a fragment 
becomes 10^ times the density just before the first fragmentation. This 
means that, if a parent cloud starts collapsing at a density of 10~"20 
g/cm3, refragmentation may occur once or twice before fragments become 
almost completely opaque. 

4.3.3. Minimum mass of a fragment and formation of a s t e l l a r core. If 
the last fragmentation occurs at a density of 10"* 3 g/cm^, mass of a 
fragment is of the order of Jeans 1 mass for this density, i. e., the 
mass of Jupiter. The fragment mass is smaller if the last fragmentation 
occurs at higher densities. Anyhow, the total mass of all the fragments 
may be of the order of 1/10 of the original cloud. These fragments will 
interacts gravitationally with each other and, through scattering (i.e., 
virialization) and accumulation, they will finally form a stellar core, 
onto which the remaining gas is accreting relatively slowly. 

5. CONCLUSION 

In the above, we have reviewed recent studies of equilibrium struc­
ture, dynamical collapse and also fragmentation of rotating isothermal 
clouds, which are under a simplified environment condition that constant 
external pressure is acting on the cloud surface. It has been shown 
that rotating clouds have features very different from non-rotating 
spherical clouds. For example, rotation can sustain a cloud with mass 
much greater than that of a spherical cloud. Non-spherical collapse 
with rotation gives rise to a flattened disk and, in a case of a very 
flattened disk, it forms one or more filaments which soon fragment into 
a number of small clouds. In order to understand these features, we 
have to notice that gravity field in a very flattened disk is consider­
ably different from that in a spheroidal configuration with internal 
equi-density surfaces as given by similar spheroids and it rather resem­
bles that in a toroidal configuration where gravity of matter existing 
in exterior regions cannot be neglected. 

We have neglected the effect of magnetic field, which will be 
important in understanding various evolutionary processes occurring in 
interstellar clouds until the formation of pre-main-sequence stars. 
However, our present knowledge on this effect is very limited, especial­
ly for clouds with internal shear motion, e. g., differentially rotating 
clouds. Furthermore, there is a problem on the boundary condition for 
magnetic field; when clouds are interacting with neighboring clouds 
through rapid propagation of Alfven waves in a tenuous intercloud medium 

<v 2
o t> = c 2(aB)" 1, R * (GM/c2)a3, 

z * (GM/c 2)(ag) 2, and p = (c 6/G 3M 2)(a6) -4 (23) 

(22) 
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we may have to deal with a many-body problem if the magnetic interac­
tions are too strong. In other words, for a cloud with internal and 
external shear motion, we have to solve difficult but important problems 
as to amplification and dissipation (i. e., decay and reconnection) of 
magnetic fields. 
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SHU: What is the fraction of total mass which ends up in fragments? 
My impression is that it is fairly large, and therefore this picture 
predicts a fairly large star formation efficiency. Is this correct? 

HAYASHI: The results of the 3D simulation show that the fragments as a 
whole contain 20-30% of the total mass. It seems difficult to de­
crease this percentage by orders of magnitude by adopting different 
initial conditions. However, if we take into account the re-fragmen­
tation of each fragment, the above percentage will be reduced by a 
factor of about 5. 
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