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The study of special radicals was begun by Andrunakievic [1]. A class 9 of prime
rings is called special if it is hereditary and closed under prime extensions. The upper
radicals determined by special classes are called special. In later works Andrunakievic and
Rjabuhin [2] and [3] defined the concept of a special class of modules.

A left R -module M is called prime if RM =£0 and every non-zero submodule has the
same annihilator as M (equivalently, if Im = 0, where / is an ideal of R and m eM, then
either m = 0 or IM = 0). Let SP(R) be a class of prime fl-modules and if = U # W , the
union being over all rings R. Then if is called special if it satisfies the following
conditions:

(5.1) for every ring R, R -module M, and ideal I of R with / c (0: M), Me if{R) if
and only if M e if{RH);

(5.2) if M e if{R) and / is an ideal of R with IM * 0 then M e if {I);
(5.3) if / is an ideal of R and M e if {I) then IM e if{R).

If 5̂  is a special class of modules then

& = {R :R has a faithful module in if(R)}

is a special class of prime rings. Conversely, if Sf is a special class of rings and we set

if{R) = {RM:M is a prime ^-module and R/(0:M) e 9}

then if = U y(R) is a special class of modules.
The notion of a normal class of prime rings was denned in [5], where it was also

shown that every such class is special and that a radical is normal and special if and only if
it is the upper radical determined by a normal class. In this note we introduce the idea of
a normal class of modules and prove that every normal class of prime rings is determined
as above by a normal class of modules. It is also proved that such module classes are
special and we note that the classes of prime modules, irreducible modules, and prime
modules with non-zero socle are normal.

Normal classes of rings arise in studying rings connected in a Morita context. This is a

four-tuple , where R and 5 are rings and RVS and SWR are bimodules, together

with bimodule homomorphisms V®s W-*RRR, W<S>R V-*SSS satisfying associativity

conditions which are equivalent to insisting that C = be an associative ring under
LVv b i

the usual matrix operations. We shall refer to C as the context ring. The context is called
S-faithful if 5 ^ 0 and VsW =£ 0 for all non-zero s e S. If P is an ideal of R then we denote
{seS: VsW c P} by SP.
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PROPOSITION 1 [5]. The following are equivalent for a class 9 of rings.

(a) / / is a Morita context and P is an ideal of R such that R/P e9 then
L rV u J

either SP = S or S/SP e 5P.

(b) / / is a Morita context and Re 9 then either S0 = S or S/So G 9.
L Vv o J

(c) / / A is an S-faithful Morita context, then R e & implies S e S P .
L Vv »3 J

A class 9 of prime rings is called normal if it satisfies the conditions of Proposition 1.

DEFINITION 1. Let be a Morita context. Then a context module is a pair of
L W u J

modules RM, SN with module homomorphisms a:V®SN~*RM, /3:W®RM-* SN

satisfying associativity conditions so that D = is a C-module for the context ring C

under the usual matrix operations.

Given a context and an ^-module M we can construct an 5-module M° so
L W ij J

that D = is a context module. The construction appeared in [4].

For every veV there is a Z-morphism v-:W®RM^>M defined by v(w<S>m) =
(vw)m for all w e W, m e M. Put X = C)veV ker(u-) and M° = (W <g> M)/X. Then M° is an
5-module. The map /J of Definition 1 is given by fi: w <8> m —* (w <S> m) + X and we write
this image as wm. The map a of Definition 1 is given by a: v <8> n —* v-t, where t e W <8> M

and n = t + X. This image is written as vn. Thus o is a C-module.

Some properties of this module are worth identifying here. A number of module
properties are known to pass from M to M° (see [4]). In particular if M is faithful then M°
is faithful. Also from the construction we have:

(a) if n e M° and Vn = 0 then n = 0;
(b) M°=WM;
(c) if M is faithful and VSW * 0 then SM° J= 0.
For (a), note that if n = t + X, teW®M then vt = 0 for all v e V; so t e X and

n = 0; (b) is clear from the definition of M° and wm, and (c) follows from (VS)M° =
(VSW)M.

DEFINITION 2. Let N(R) be a class of prime /^-modules and Ji= UJf(R), the union
being over all rings R. Then Jf is called normal if it satisfies (S.I) and

(N) for every context and context module D = \ \ such that
LW O J L/VJ
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(i) for all n e N, Vn - 0 implies n = 0, and

(ii) N = WM and SN ¥= 0, M e N(R) implies N e Jf(S).

THEOREM. Let Jf be a normal class of modules. Then

2P = {R:Rhas a faithful module in Jf(R)}
is a normal class of prime rings. Conversely, if Sf is a normal class of prime rings and we
define, for every ring R,

N(R) = {RM :M is a prime R-module and R/(0 :M)e&}

then Jf = U N(R) is a normal class of modules.

Proof. If Jf is a normal class of modules and M e Jf(R) is a faithful R-module, then
(0:M) = 0 is a prime ideal of R and &, as defined, is a class of prime rings. From the

comments after Definition 1, if is an 5-faithful Morita context then the context

[ A/f ~\
,0 satisfies (i) and (ii) of (N) and M° is faithful. Hence M° e Jf(S), SeW, and

M J
0* is a normal class of prime rings.

Now let ty and M be as in the statement of the converse. For (S.I), suppose that M is
an /?-module and / is an ideal of R with Ic(0:M). Put R = R/I. Note that
(0:M)/j = (0:A/)// and if reR and f = r + I then fm = rm for all m e M. Thus
R/(Q:M)R = R/(0.M) and M is a prime i?-module if and only if it is a prime ^-module.
Therefore M e Jf(R) if and only if M e Jf{R).

For (N), suppose that the context and context module are as described in Definition
2 and that M e )f(R). To see that N is a prime 5-module, let / be an ideal of S and n e N
with Jn = 0. Then (VJW)(Vn) = 0; so either (VJW)M = 0 or Vn = 0, since M is a prime
^-module. If Vn = 0 then n = 0 from (i). If (VJW)M = 0 then VJN = 0 from (ii) and
JN = 0 from (i). Thus N is a prime 5-module. To prove that 5/(0:N) e &, observe that
(0:A0 = {s eS:VsW c(0:M)} from (i) and (ii) in (N). From Proposition 1 (a), either
(0: N) = S or 5/(0 :N)e&>. Since SN =£ 0, by hypothesis, it follows that 5/(0: N) e &.

PROPOSITION 2. Every normal class of modules is special.

Proof. Let Jf be a normal class of modules. Let M e Jf(R) and / be an ideal of R

with /M^O. Consider the context , and context module D = \ \. If Im = 0,

m e M, then m = 0 since M is a prime i?-module and IM # 0. Therefore the conditions
(N) (i) and (N) (ii) from Definition 2 are satisfied and so M e JV(/). This establishes (S.2).

For (S.3), let / be an ideal of a ring R and MeJf{I). Consider the context

and context module . Since M is a prime /-module, IMi=0 and
/ R J L/MJ
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Hence R(IM)*0 and the conditions (N) (i) and (N) (ii) of Definition 2 are
satisfied; so that IM e Jf(R).

EXAMPLES. The three classes we shall consider here were shown to be special in [3].
Thus (S.I) is satisfied. We shall use the notation of (N).

1. The class of all prime modules is normal. Let M be a prime R-module, J an ideal
of 5, and n e N. As in the proof of the Theorem, Jn = 0 implies JN = 0 or n = 0; so N is a
prime 5-module.

2. The class of all irreducible modules is normal. Let M be an irreducible /?-module
and neN, n=£0. Then 0±Vn; so Vn = M and Sn=>WVn = WM = N. Thus N is an
irreducible 5-module.

3. The class of all prime modules with non-zero socle is normal. Let M be a prime
^-module with minimal submodule K. If (VW)K = 0 then (VW)M = VN = 0, which
implies that N = 0. But SN*0; so (VW)K*0. Hence WK±0. Let n*0, n e WK. Then
0 # Vn c K and, by the minimality of K, Vn = K. Therefore Sn = (WV)n = WK and WK
is a minimal submodule of N. Along with Example 1 this proves the normality of this
class.

REMARK. It was shown in [3] that the class
Examples 2 and 3 is the class of primitive rings.

determined by the module classes in
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