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A generalized model for dense axisymmetric
grains flow with orientational diffusion
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The flow of non-spherical grains is strongly affected by the orientation of the grains, as
observed in experiments and simulations. An existing model that predicts the orientation
of grains as a function of the flow field and shape of the grains, is limited to
homogenous orientational fields where the interaction of the grains with their surroundings
is negligible. To address this limitation, we generalized the model to account for
inhomogeneous orientational fields in the form of spatial non-convective orientational
flux. The orientational flux accounts for the interactions of grains with their surroundings
and the boundaries. The proposed model is used to study the influence of orientational
diffusion and boundary conditions on the flow of dense granular material down an incline.
It is shown that the boundary conditions can play a significant role in the orientation of
grains in such flows.

Key words: dry granular material

1. Introduction

The study of granular flow in the liquid phase is an active research area with many
open questions. Classical kinetic theory has shown successful predictions of granular
flows with certain range of volume fraction (Garzó & Dufty 1999). However, alternative
models such as non-local inertia rheology and other phenomenological models, have
been used for dense granular flows (MiDi 2004; Jenkins & Berzi 2010; Gollin, Berzi &
Bowman 2017). Our understanding of dense granular flow was advanced by important
contributions (MiDi 2004; Campbell 2006; Jop, Forterre & Pouliquen 2006; Jiang &
Liu 2009; Kamrin & Koval 2012; Zhang & Kamrin 2017), but it is mainly limited to
spherical grains for which the orientation does not play a role. Although most of the
naturally occurring granular media present a certain degree of asphericity (Cleary &
Sawley 2002; González-Montellano, Ayuga & Ooi 2011; Matsushima & Chang 2011),
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still, for the majority of research, granular flows are composed of spherical grains
(Silbert et al. 2001; Delannay et al. 2007; Katsuragi, Abate & Durian 2010; Weinhart
et al. 2012; Fall et al. 2015).

The rheology of axisymmetric grains was shown to have a complex response due to
their tendency to align with respect to the flow and each other. It was observed that
shear flows induce grains alignment which depends on the shape of the grains. The
alignment was examined both experimentally, including photo-elastic particles (Tang &
Behringer 2016), and numerically, using discrete element method (DEM) simulations in
Wegner et al. (2012), Börzsönyi et al. (2012) and Hidalgo et al. (2018). To mathematically
model the tendency of axisymmetric grains to align, a kinematic continuum model
that captures the evolution of grains orientation subjected to homogenous flow was
introduced in Nadler, Guillard & Einav (2018). In addition, the rheology of axisymmetric
grains was investigated in Berzi et al. (2016, 2017), Trulsson (2018), Nath & Heussinger
(2019), Nagy et al. (2017) and Nagy et al. (2020) using DEM, where it was shown
that the rheological response has a strong dependency on the microstructure contacts
and collisions which are primarily a function of the grains’ orientation, alignment and
shape. Based on these observations, an anisotropic rheology model (Nadler 2021) was
proposed that accounts for the microstructure orientation. Typically, homogenous simple
shear flows are used to investigate the response of non-spherical granular media, hence,
we have fairly limited knowledge of the response to general inhomogeneous flows. The
orientation and velocity fields of hopper flows were measured in Guillard, Marks & Einav
(2017) using advanced X-ray radiography techniques. A steady-state flow of non-spherical
grains down an incline was studied in Hidalgo et al. (2018) both experimentally and
using DEM. This is a much simpler flow that is inhomogeneous and, as such, provides
important observation that can enhance our understanding of more complex flows. This
includes the role of interactions between the grains and their surroundings as well as the
boundaries.

It is essential to obtain a realistic model which can predict the orientation and alignment
of grains as they are identified as important factors in dense flow of non-spherical grains.
The model proposed in Nadler et al. (2018) is able to well predict the orientation based on
the grain’s shape and the velocity field, however, it does not account for the interactions of
grains with their surroundings and the boundaries. In this paper, we address this limitation
by generalizing the model to include a non-convective spatial orientation flux. We also
propose a jump boundary condition which incorporates the influence of the boundary
flux to account for the interaction of grains with the boundaries. The performance of the
proposed model and the influence of the model parameters are studied by simulating flows
down an incline. It is shown that the generalized model can well capture the effect of
inhomogeneous orientational fields.

The outline of the paper is as follows. Section 2 develops the proposed generalized
orientation model and the associate boundary conditions. Section 3 presents the balance
laws and the anisotropic inertia rheology model. Simulations of granular flows down an
incline and the study of the model parameters are included in § 4. Finally, § 5 discusses the
conclusions.

2. Orientation of axisymmetric grains

The ability of axisymmetric grains to orient and align introduces an additional degree
of complexity to their mechanical response. Experimental and numerical measurements
suggest that the orientation and alignment of these grains react to the flow and the
boundary conditions. A convenient representation of the grains’ orientation can be
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constructed by taking the second moment of the orientation distribution

A =
∮

s2
f (k)k ⊗ k da, (2.1)

where ±k is the orientation, f (k) ≥ 0 is the probability density function, s2 denotes the
unit sphere and

∮
s2 f (k) da = 1. It follows from (2.1) that the orientational tensor A is a

second-order symmetric positive semi-definite tensor with a unit trace. It was proposed in
Nadler et al. (2018) that the tendency of axisymmetric grains to align, when subjected to
flow, can be well described by the evolution equation of the orientational tensor

Ȧ = W A − AW + λ [AD + DA − 2 [D · A] A] − ψD′[A − I/3], (2.2)

where Ȧ is the material time derivative of the orientational tensor, W is the vorticity tensor,
D is the rate of deformation, I is the identity tensor, A · D = tr(ADT) is the tensor scalar
product, λ and ψ are constitutive model parameters and D′ =

√
D′ · D′ is the magnitude

of the deviatoric part of the rate of deformation. Here we assume that the rate of collisions
that drives the gains toward disorder is proportional to the magnitude of the deviatoric
part of the rate of deformation. The phenomenological model parameters were determined
by numerical simulations of simple shear flows using DEM (Nadler et al. 2018). It was
assumed that the model parameters are only functions of the grain shape rg = (l − d)/(l +
d), where l and d are the grain’s geometrical length and diameter, respectively, and take
the forms

λ(rg) = (2/π) tan−1 (5.5 rg
)
, ψ(rg) = 0.85 exp(−4 r2

g). (2.3a,b)

As simple shear flow is primarily homogeneous, the role of orientational field could not
be studied using these simulations and was not included in (2.2). In general, flow is not
homogenous and, hence, orientational diffusion can play a significant role.

2.1. Orientational diffusion
The evolution law (2.2) was shown to perform well for homogeneous orientation and rate
of deformation (grad A = 0, grad D = 0). In this case, the interaction through collisions
and contacts with the surroundings was neglected. However, there are evidences that
orientational diffusion is important (Guillard et al. 2017; Hidalgo et al. 2018). This is
supported by Hidalgo et al. (2018) where flows down an incline were investigated and
an inhomogeneous orientational field through the height was measured. We relate the
inhomogeneous orientation field through the height of the flow to orientational diffusion.
To include such orientational diffusion, the evolution equation (2.2) is generalized by
adding a diffusion contribution. Recall that a general balance law has the form

Ȧ = P + div G, (2.4)

where P is a source term and G is a non-convective flux term. In general, the source term
includes supply and production, however, on physical ground, we eliminate the supply
term and consider the source term to be only due to production. By comparison of (2.4)
and (2.2), the right-hand side of (2.2) includes only the production term P whereas the
diffusion term div G is not included. Analogous to Fick’s law for diffusion, we propose
the non-convective flux G to be proportional to the spatial gradient of the orientational
tensor and the magnitude of the deviatoric part of the rate of deformation in the form

G = αD′ grad A, (2.5)

where α is an orientational diffusion coefficient that has the dimensions of length squared.
As diffusion occurs due to collisions, the diffusion flux is taken to be proportional to the
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deviatoric part of the rate of deformation. The generalized evolution law takes the form

Ȧ = W A − AW + λ [AD + DA − 2[ A · D ]A] − ψD′ [A − I/3
]+ div

[
αD′ grad A

]
.

(2.6)

This generalized evolution law (2.6) must satisfy two requirements that are studied in the
following section.

2.2. Admissibility of the modified evolution law
The generalized evolution law is admissible if it guarantees that A is positive semi-definite
and it has a unit trace, tr A = 1, for all processes. Utilizing the spectral representation of
A, these requirements can be verified by analyzing the evolution of the eigenvalues. The
spectral representation of the symmetric orientational tensor A has the form

A =
3∑

i=1

ai ai ⊗ ai, (2.7)

where ai are the eigenvalues and ai are the associated orthonormal eigenvectors. The
Eigenvalues of the orientational tensor A represent the portion of grains in the direction
of the associated eigenvectors. The two requirements are satisfied if and only if all
eigenvalues are non-negative, ai ≥ 0, and the summation of eigenvalues equals one,
a1 + a2 + a3 = 1. In the following sections, we prove that for all initial conditions that
satisfy these two requirements, the generalized evolution law (2.6) guarantees that tr A = 1
and all eigenvalues remain non-negative, for all processes. To show these, we utilize
Cartesian coordinates {xi} and use the standard convenient notation �,i = ∂�/∂xi for
partial derivatives. In the following derivations the summation convention does not apply.
First, it is necessary to show that tr A = 1, which can be achieved by verifying that the
evolution law (2.6) satisfies tr Ȧ = 0 for all processes.

PROPOSITION 2.1. The evolution law satisfies tr Ȧ = 0 for all processes.

Proof . It was already shown in Nadler et al. (2018) that the production term is traceless,
that is

tr
[
W A − AW + λ (AD + DA − 2 (D · A)A)− ψD′ (A − I/3)

] = 0. (2.8)

Hence, it is only necessary to show that the diffusion term is traceless

tr
[
div

[
D′α grad (A)

]] = 0, (2.9)

which can be expressed as

3∑
j=1

[
(αD′),j

( 3∑
i=1

ai,j

)
+ αD′

( 3∑
i=1

ai,jj

)]
= 0, (2.10)

where the detailed derivations are provided in the Appendix A. Recall that
∑3

i=1 ai = 1,
hence by taking the spatial derivatives, the following identities hold

3∑
i=1

ai,j = 0,
3∑

i=1

ai,jj = 0. (2.11a,b)
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Substitutions of these identities into (2.10) yields

tr
[
div

[
αD′ grad (A)

]] = 0, (2.12)

which shows the desirable property

tr Ȧ = 0, (2.13)

for all processes.
To show that the evolution law (2.6) does not yield negative eigenvalues, we consider the

case when an eigenvalue vanishes. In this case, if the rate of evolution of that eigenvalue is
non-negative, it cannot become negative. Given an admissible state, that is, all eigenvalues
are non-negative, when an eigenvalue vanishes, ai = 0, this is either a local minimum or
it vanishes at some neighbourhood. For both cases we have the properties

ai = 0, ai,j = 0, ai,jj ≥ 0, (2.14a–c)

for all j. It should be noted that (2.14a–c) are necessary conditions but not sufficient for a
minimum. Next, it is necessary to show that if an eigenvalue vanishes, ai = 0, the evolution
law (2.6) guarantees that ȧi ≥ 0 for all processes. �

PROPOSITION 2.2. The evolution law guarantees that all eigenvalues are non-negative
for all processes.

Proof . Consider the evolution of the orientational tensor defined in (2.2) and the spectral
representation (2.7) where the eigenvectors form orthonormal basis such that ai · aj = δij.
The material time derivative of the orientational tensor is

Ȧ =
3∑

i=1

ȧi ai ⊗ ai +
3∑

i=1

ai
˙ai ⊗ ai. (2.15)

Orthonormality of the eigenvectors can be expressed as ȧi · ai = 0 and ai,j · ai = 0. Taking
the scalar product of (2.15) with ai ⊗ ai yields expression for the time derivative of the
eigenvalues as

ȧi = Ȧ · ai ⊗ ai. (2.16)

Substitution of (2.6) and (2.14a–c) into (2.16) yields the instantaneous evolution law of the
vanishing eigenvalue as

ȧi = 1
3
ψD′ + αD′

3∑
j=1

[
ai,jj + 2

3∑
k=1

ak
(
ak,j · ai

)2]
, (2.17)

where more details of the derivation are included in Appendix A. As D′ > 0, ψ > 0
and the term in the brackets is non-negative, then taking α > 0 guarantees that ȧi > 0
when ai = 0. This shows that given α > 0, all the eigenvalues are non-negative for all
processes. More specifically, because

∑3
i=1 ai = 1 and ai ≥ 0, then all the eigenvalues are

bounded, i.e. 0 ≤ ai ≤ 1, as required. In general, the coefficient α can be function of all
the invariants of D, A and grad A as well as the pressure, p, and the aspect ratio, rg, and
other properties of the grains. �
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2.3. Initial and boundary conditions
The evolution law in (2.6) is an initial boundary-valued problem, giving a first-order
differential equation in time and a second-order differential equation in space. Therefore,
proper initial and boundary conditions for A are required. The initial value of A in the
domain must be specified as the initial conditions. In addition, the boundary conditions
must be specified and can significantly change the orientational field and the associate flow.
The boundary condition can be Dirichlet (imposing the value of A), Neumann (imposing
the value of the spatial derivative of A) or mixed type. The interaction of the grains with
the boundary is governed by the surface properties, grain orientation and the flow. Such
interactions drive the grains to align with the boundary surface by providing orientational
flux. Motivated by the orientational flux term proposed in (2.5) and the commonly used
jump boundary condition, we introduce an orientational jump boundary condition, where
we assert that the jump is proportional to the rate of collisions, that is, the deviatoric part of
the rate of deformation, D′, and the gradient of A in the normal direction to the boundary

[[A]] = −ν D′ ∂A

∂n
, (2.18)

where [[A]] = A+ − As is the jump, A+ is the orientation of grains in contact with the
boundary, As is the orientation of boundary surface, n is the normal direction to the
boundary and ν is a scalar with dimensions of time × length that characterizes the
properties of the boundary interaction with the grains in contact. This jump boundary
condition suggests that the orientational flux is proportional to the orientation jump, that
is, the orientation of the grains in direct contact with the boundary depends on the flow
and the properties of the boundary. The limit cases can be identified where ν → 0, yields
no jump on the boundary, that is, the orientation of the grains in contact with the boundary
is completely aligned with the boundary and ν → ∞, yields ∂A/∂n = 0, that is, the
orientational flux from the boundary vanishes. On physical ground, ν ≥ 0 such that the
orientational flux is in the same direction as the jump. In general, the coefficient ν can
be a function of all the invariants of D, A and ∂A/∂n as well as the pressure, p and the
properties of the grains and the boundary surface.

The orientation evolution law (2.6) and the jump boundary conditions (2.18) complete
the governing equations of the orientational tensor, given the vorticity, W and the rate of
deformation D. Next, to close the set of governing equations, conservation of mass and the
balance of linear momentum supplemented by a constitutive law are introduced, where the
constitutive law is an explicit function of the orientational tensor and couples the response
of the system.

3. Anisotropic μ(I) rheology of axisymmetric grains

The conservation of mass and balance of linear momentum are respectively used to solve
for the density ρ and the velocity v fields

ρ̇ + ρ div v = 0, ρv̇ = ρb + div σ , (3.1a,b)

where b is the body force and σ is the Cauchy stress. The rheological response of granular
media is described by a constitutive law for the stress σ developed in flowing grains.
Physically, the rheological response is a macro-scale manifestation of the characteristic
of the contacts and collisions between grains in the microstructure. The characteristic of
the contacts and collisions strongly depends on the grains shape, roughness, orientation
and flow which was investigated in Börzsönyi et al. (2012); Börzsonyi et al. (2016),
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Guillard et al. (2017) and Nagy et al. (2017). It was observed (Nagy et al. 2017) that
for simple shear flows, the required shear traction to maintain the flow, dramatically
decreases as the grains become more aspherical. This response is contributed to the ability
of axisymmetric grains to align with respect to the flow (Nadler 2021), which, in turn,
yields a decrease in the resistance of grains to slip with respect to each other. Here, we
adopted the simple form of anisotropic inertia rheology for incompressible flow, proposed
in Nadler (2021) as

σ = σ̃ (I, p,D,A; rg) = −pI + pμ(I)φ(rg)
[
D̄ + η(rg)

[
AD̄ + D̄A − 2/3

(
D̄ · A

)
I
]]
,

(3.2)

where D̄ = D/D is the direction of the rate of deformation and μ(I) is the friction. The
construction of (3.2) is a generalization of the isotropic inertia rheology (Jop, Forterre
& Pouliquen 2006) which depends on the dimensionless inertia number I = Dd/

√
p/ρs,

where D = √
D · D, d, p and ρs are the magnitude of the rate of deformation, grain

diameter, pressure and the solid density, respectively. The phenomenological inertia
rheology relation is μ(I) = μs + μ1Iβ , where μs, μ1 and β are model parameters. The
parameters φ and η are assumed to be only functions of the aspect ratio, rg. The proposed
inertia rheology is valid for incompressible flow, hence the conservation of mass is
satisfied and the pressure is a Lagrange multiplier. For further discussion of the form
(3.2) see Nadler (2021). The associate initial and boundary conditions of the velocity and
stress fields are required for the solution of the conservation of mass and the balance
of linear momentum. Two types of boundary conditions are considered which should be
decomposed to the normal direction, n, and the tangential direction to the boundary. In the
normal direction, the boundary conditions have the form

[[ρv]] · n = 0 or σn · n = −pb, (3.3)

which are the mass flux or the traction boundary conditions, respectively, and pb is the
prescribed pressure. In the tangential directions, the boundary conditions have the form

P[[v]] = −Pνtσn or Pσn = τ b, (3.4)

where P = I − n ⊗ n is the projection, [[v]] is the velocity jump, νt is a model parameter
characterizing the interaction between the boundary surface and the flow and τ b is the
prescribed tangential traction. The special case of the no-slip condition is νt = 0, however,
in general, the coefficient νt can be a function of the invariants of v and σ as well as the
properties of the grains and the boundary surface.

4. Flow down an incline

The evolution law (2.6) can capture inhomogeneous orientational field for general flow,
and can accommodate orientational boundary conditions. The standard experiment to
study granular flows is a simple shear flow, however, such flow is primarily homogeneous
which is too simple for our interest. Granular flow down an incline, depicted in figure 1,
is relatively a simple flow that exhibits inhomogeneous fields. Flow down an incline
was investigated experimentally and numerically in Hidalgo et al. (2018), where the
orientational field was measured. We use the observations in Hidalgo et al. (2018) to
examine the performance of the proposed model. However, the data provided in Hidalgo
et al. (2018) does not include the orientation near the surface and, hence, cannot be
compared with the prediction of the proposed model to understand the diffusion response
and the orientational boundary conditions. For a steady flow, the inclination angle is
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y

x

g

γ

Figure 1. Schematic of flow of axisymmetric grains down an incline of angle γ .

bounded by a small angle below which no flow occurs, and a large angle above which no
steady flow is possible because gravity overcomes the friction and acceleration persists. We
investigate only an inclination angle where a steady-state flow exists. For our analysis, we
consider a steady-state flow where the orientation, velocity and pressure are only functions
of the height and are independent of time

p = p( y), v = v( y)i, A = A( y). (4.1a–c)

It follows that at steady state

v̇ = ∂v

∂t
+ (grad v) v = 0, Ȧ = ∂A

∂t
+ (grad A) v = 0, (4.2a,b)

and the governing equations are

Ȧ = 0, ρb + div σ = 0, (4.3a,b)

where Ȧ is defined in (2.6), the body force is b = g(sin θ i + cos θ j) and σ has the form
in (3.2). By (4.1a–c) and using the notation v′ = dv/dy, the vorticity and the rate of
deformation take the forms

W = v′

2
(i ⊗ j − j ⊗ i) , D = v′

2
(i ⊗ j + j ⊗ i) . (4.4a,b)

The boundary conditions (2.18), (3.3) and (3.4) are specified at the boundaries as

[[A]] = ν D′ dA

dy
, v = νtσ j · i, at y = 0, (4.5)

dA

dy
= 0, σ j = 0, at y = h, (4.6)

where (4.6)1 imposes no orientational flux, and the free surface boundary condition is
(4.6)2. These provide a complete set of equations to solve for the unknown fields (4.1a–c).
As this system of ordinary differential equations (ODEs) is nonlinear, numerical solutions
are obtained using standard finite differences method. Convergence of the solution is
verified by a sequence of grid refinements.

Here we are interested in studying the influence of the coefficients α and ν in the
proposed generalized orientational model on the orientation, velocity and pressure fields.
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Due to the lack of data, we do not attempt to relate the model coefficients directly to the
grain’s properties and the flow, but rather consider them as constants and investigate their
influence on the model predictions. It should be noted that when α is taken to be a constant,
then (2.6) becomes rate independent. Similar to Hidalgo et al. (2018), we consider the flow
of cylindrical glass rods of diameter d = 1.9 mm and length l = 3.5 d down an incline.
The height of the steady state flow is set large enough compared to the size of grains,
i.e. H/d ≈ 102, such that a continuum model is valid. It follows that the aspect ratio is
rg = 0.55 and the value of the model parameters, λ = 0.8 and ψ = 0.25, are taken from
Nadler et al. (2018). Although the evolution law of the orientation (2.6) is rate independent,
the orientational boundary condition (2.18) is rate dependent for non-vanishing ν, hence,
for ν > 0, there is a coupling between the velocity and the orientational fields. In the
following simulations, the values of the model parameters are

φ = 1, η = −0.9, ρs = 2500 kg m−3, μs = 10−1, μ1 = 102, β = 1,

ρ = 0.1 kg m−3, γ = 30◦, (4.7a–h)

where the values of φ and η are taken from Nadler (2021), and for simplicity we adopt the
no-slip condition, νt = 0, for the velocity jump at the contact boundary. The properties of
the particular grains including, shape (ellipsoidal, true cylinder), aspect ratio and internal
friction are represented by the six model parameters.

To represent the orientational field, we define the preferred orientation as the angle of
the largest eigenvalue with respect to the incline direction, calculated by

θ = tan−1 a3 · j
a3 · i

, (4.8)

where 0 � a1 � a2 � a3 � 1 are the sorted eigenvalues of A, and {a1, a2, a3} are the
associated eigenvectors. For the measure of alignment, we consider the nematic order
(Nagy et al. 2017) defined as the largest eigenvalue 1/3 ≤ a3 ≤ 1. Additional useful
alignment measure is the ordering (Nadler et al. 2018; Nadler 2021) defined as

ζ =
√

1
2

(
(a1 − a2)2 + (a1 − a3)2 + (a2 − a3)2

)
, (4.9)

where 0 � ζ � 1, such that, ζ = 0 represents no alignment (a1 = a2 = a3 = 1/3) and
ζ = 1 represents a full alignment (a1 = a2 = 0, a3 = 1).

The following results are normalized with respect to the flow height

ȳ = y
h
, v̄ = v

h
, ᾱ = α

h2 , ν̄ = ν

h
, (4.10a–d)

and the inclined plane is considered to be perfectly flat in the xz plane, hence its orientation
is described by

As = 1
2 (i ⊗ i + k ⊗ k) . (4.11)

The boundary orientation, As, represents the topology and orientation of the boundary
surface, that is, for irregular boundary surface the boundary orientation should take a
more isotropic form As → I/3.

Figures 2 and 3 show the influence of the diffusion coefficient, ᾱ, and the jump
coefficient, ν̄, on the orientational field represented by the preferred orientation θ ,
the nematic order, a3, and the ordering ζ . These figures show results for ᾱ =
{0.001, 0.005, 0.01} and ν̄ = {0, 0.02, 0.05}. Figure 2 depicts the influence of the diffusion
coefficient and figure 3 depicts the influence of the orientational boundary jump.
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ᾱ = 0.005

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

0.50 0.55 0.60 0.65
a3

0.70 0.75 0.50 0.55 0.60 0.65
a3

0.70 0.75
0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

0.40 0.45 0.50 0.55 0.60 0.40 0.45 0.50 0.55 0.60
0

0.2

0.4

0.6
ȳȳ
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Figure 2. The influence of the diffusion coefficient, ᾱ, on the orientational angle, nematic order and ordering
fields for ν̄ = 0 and ν̄ = 0.05: (a) ν̄ = 0, (b) ν̄ = 0, (c) ν̄ = 0, (d) ν̄ = 0.05, (e) ν̄ = 0.05 and ( f ) ν̄ = 0.05.

Larger values of the diffusion coefficient are not presented because the orientation does
not reach an equilibrium state, and larger values of the orientational boundary jump are
not presented because they eliminate the influence of the boundary. Figures 2(a,d) and
3(a,d) show, as expected, that a larger diffusion coefficient enhances the influence of the
boundary, where the equilibrium orientation is obtained further away from the boundary. It
is very interesting to note that the orientational angle θ shows a non-monotonic response,
where the angle increases as the grains located at some distance from the boundary
reach a maximum value and then decreases to the equilibrium angle far enough from
the boundary as depicted in figure 2(a,d). This non-monotonic field, predicted by the
model, is consistent with the orientational angle observed in Hidalgo et al. (2018). This
non-monotonic field is due to the orientational flux from the boundary and, hence, reduces
with a larger orientational boundary jump as depicted in figure 3(a,d). In these figures, for
ν̄ = 0 (no orientational boundary jump), the grains in contact with the boundary plane are
completely aligned with the plane, but for larger ν̄, the orientation of grains in contact with
the boundary plane approaches the equilibrium orientation yielding a more homogenous
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Figure 3. The influence of the jump coefficient, ν̄, on the orientational angle, nematic order and ordering
fields for ᾱ = 0.001 and ᾱ = 0.01: (a) ᾱ = 0.001, (b) ᾱ = 0.001, (c) ᾱ = 0.001, (d) ᾱ = 0.01, (e) ᾱ = 0.01 and
( f ) ᾱ = 0.01.

orientational field. It is observed that the diffusion coefficient controls the location of the
maximum angle, and the orientational boundary jump coefficient controls the magnitude
of the maximum angle. Figures 2(b,e) and 3(b,e) show that the nematic order measured by
the largest eigenvalue is minimum at the boundary and converges to the equilibrium away
from the boundary, where the diffusion coefficient controls the rate of convergence. The
equilibrium state is associated with vanishing orientational flux; hence, the orientation
of the grains is governed only by the production term in (2.6) as was studied in Nadler
et al. (2018) for homogeneous fields. As the orientational flux from the boundary reduces,
for increasing values of ν̄, the nematic order becomes more homogeneous. Figures 2(c, f )
and 3(c, f ) show a non-monotonic field of the ordering ζ , which accounts for the overall
alignment. For ν = 0, the grains in contact with the boundary are forced by the no-jump
orientational boundary condition to be in a state of isotropic distribution in the xz plane
(transverse isotropy). As grains that are oriented in the k ⊗ k direction near the boundary
rotate toward the equilibrium state away from the boundary, the overall ordering shows a
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Figure 4. The influence of the diffusion coefficient, ᾱ, and orientational boundary jump coefficients, ν̄, on
the velocity profile: (a) ν̄ = 0 and (b) ᾱ = 0.01.

non-monotonic field with the minimum near the boundary where the diffusion coefficient
governs the distance from the boundary. This non-monotonic response diminishes, as
depicted in figures 2(c, f ) and 3(c, f ), for larger values of the boundary orientational jump
ν̄ associated with decrease of the boundary flux the equilibrium state is obtained closer to
the boundary. In addition, figures 2 and 3 demonstrate that the jump boundary condition
(2.18) yields flow-dependent orientation of the grains in direct contact with the boundary.
As can be observed in figures 2 and 3, the size of the boundary layer increases with the
orientation diffusion coefficient as the boundary flux diffuses further into the bulk. Here
we limit the values of the orientational diffusion, ᾱ, such that the equilibrium orientation
is obtain within the domain. However, for larger values of the orientation diffusion the
equilibrium orientation is not obtained within the domain.

It is demonstrated that the generalized model can well capture an inhomogeneous
orientational field and accounts for the boundary condition. The response is complex with
non-monotonic orientational field which is enhanced by the influence of the boundaries.
The orientational diffusion coefficient models the microstructure interaction between
grains that drives the grains to align with respect to the surroundings, and is expected
to increase as the grains become more aspherical. In addition, the boundary affects the
orientational field by means of orientational flux from the boundary. This boundary flux
accounts for the interaction between the boundary and the grains, which is characterized
by the orientation of the boundary, As, and the orientational boundary jump coefficient.

The rheological model (3.2) has an explicit dependency on the orientation, therefore, the
velocity profile depends on the orientational field. Figure 4 depicts the velocity profiles for
various diffusion coefficients and orientational boundary jump coefficients. In figure 4(a),
it is shown that the velocity decreases as the diffusion coefficient increases, which is
directly related to the rheological property that the flow resistance decreases as grains
become more aligned with the flow. With increasing orientational diffusion the grains
are more affected by the orientational boundary flux and, hence, less aligned. Similarly,
as the orientational boundary jump coefficient increases, the orientational boundary flux
decreases, yielding a higher grains alignment that induces lower flow resistance, hence
higher velocity, as depicted in figure 4(b). At steady state, the balance of linear momentum
(3.1a,b)2 takes the form

dσ12

dy
= −ρg sin γ,

dσ22

dy
= −ρg cos γ, (4.12a,b)
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Figure 5. The influence of the diffusion coefficient, ᾱ, and boundary jump coefficients, ν̄, on the pressure
profile: (a) ν̄ = 0 and (b) ᾱ = 0.01.

hence, σ12 and σ22 are linear in height together with the boundary conditions (4.6) and
(4.7a–h) take the forms

σ12 = (ȳ − 1)hρg sin γ, σ22 = (ȳ − 1)hρg cos γ. (4.13a,b)

It should be noted that due to the anisotropy of the rheological model (3.2), the
orientation and flow contribute to the normal stress in addition to the pressure. Hence,
although the normal stress, σ22, is linear, the pressure field is not. Figure 5 depicts
the normalized pressure p̄ = p/(ρgh), where it can be seen in figure 5(a) that the
pressure deviation from linear profile increases as the diffusion coefficient decreases and
the orientational field becomes more inhomogeneous. Similarly, as the boundary jump
coefficients increases the pressure deviation from linear profile decreases due to the
decrease in orientational boundary flux, which yields a more homogenous orientational
field, as depicted in figure 5(b).

5. Conclusion

In this paper, we have generalized a previously developed kinematic model for the
orientation of axisymmetric grains by including orientational diffusion that accounts for
the interactions of grains with their surroundings. This has been obtained by introducing
a new non-convective orientational flux term, inspired by the classical transport approach.
The flux is taken to be proportional to the orientation gradient, the magnitude of the
deviatoric part of the rate of deformation, and is characterized by a single diffusion
coefficient. In the present model granular temperature is not included explicitly, however,
in a more complete theory that includes velocity fluctuations, the orientational flux should
be driven by the granular temperature.

It has been proved mathematically that the proposed model complies with all the
properties of the orientational tensor. An orientational jump condition is also introduced
to model the interaction with the boundary. To investigate the performance of the model,
flows down an incline are studied. We have adopted an anisotropic inertia rheology as a
constitutive law for the stresses. It has been shown that the proposed model is simple, but
capable of predicting the complex behaviour of the orientation of axisymmetric grains
subjected to inhomogeneous flows. Comparison with experiments on flows down an
incline has shown that the model provides a realistic description of the orientational field.
However, more experimental data of the grains orientation near the boundary surface is
required to further evaluate the accuracy of the model.
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The influence of the granular properties, such as grains shape and internal friction,
on the orientational diffusion is an open questions that we do not have supporting data
to answer. However, from a consideration of the microstructure contacts and collisions
between grains, we anticipate that the diffusion coefficient increases as the axisymmetric
grains become more aspherical. The influence of the internal friction on the orientational
diffusion is even more complex to envision. To answer these important questions we need
more experimental data and DEM simulations to understand the influence of shape and
friction on the orientational diffusion.
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Appendix A

Establishing the following identities are useful to prove propositions 2.1 and 2.2. The terms
in the modified evolution law (2.6) can be expressed using the spectral representation of
the orientational tensor and the associate evolution of the eigenvalues (2.16). Using the
skew-symmetry of the vorticity tensor, W , the following identities can be established

W A · ai ⊗ ai =
⎛
⎝ 3∑

j=1

aj W aj ⊗ aj

⎞
⎠ · ai ⊗ ai = ai (W ai · ai) = 0, (A1)

and similarly AW · ai ⊗ ai = 0. The symmetry of the rate of deformation, D, yields

AD · ai ⊗ ai =
⎛
⎝ 3∑

j=1

aj aj ⊗ Daj

⎞
⎠ · ai ⊗ ai = ai (Dai · ai) = aiDii, (A2)

and similarly DA · ai ⊗ ai = aiDii. Direct results are (A · D)A · ai ⊗ ai = ai(A · D) and
ψD′(A − I/3) · ai ⊗ ai = ψD′(ai − 1/3). Finally,

div[αD′ grad(A)] =
3∑

j=1

3∑
i=1

[(αD′),j (ai,jai ⊗ ai + ai(ai,j ⊗ ai + ai ⊗ ai,j))

+ αD′(ai,jjai ⊗ ai + 2ai,j(ai,j ⊗ ai + ai ⊗ ai,j)

+ ai(ai,jj ⊗ ai + 2ai,j ⊗ ai,j + ai ⊗ ai,jj))]. (A3)
The following identities can be established using ai · aj = δij by taking spatial derivatives

ai,m · aj + ai · aj,m = 0, ai,mn · aj + ai,m · aj,n + ai,n · aj,m + ai · aj,mn = 0 (A4a,b)
for all i, j,m and n. Taking j = i and n = m yields the useful identities ai,m · ai = 0 and
ai,mm · ai + ai,m · ai,m = 0. Substituting (A3) and (A 4) into (2.16) yields

tr
[
div

[
D′α grad (A)

]] =
3∑

j=1

[
(αD′),j

( 3∑
i=1

ai,j

)
+ αD′

( 3∑
i=1

ai,jj

)]
, (A5)
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div
[
D′α grad (A)

] · ai ⊗ ai

=
3∑

j=1

[
(αD′),j ai,j + αD′

(
ai,jj + 2ai(ai,jj · ai)+ 2

3∑
k=1

ak
(
ak,j · ai

)2)]
. (A6)

Substituting (A1), (A2), (A3), (A6) and (2.6) into (2.16) yields

ȧi = 2λ (Dii − (A · D)) ai + ψD′ (1/3 − ai)

+
3∑

j=1

[
(αD′),j ai,j + αD′

(
ai,jj + 2ai(ai,jj · ai)+ 2

3∑
k=1

ak
(
ak,j · ai

)2)]
. (A7)
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