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Abstract

This paper considers an optimal control problem for a class of controlled hybrid
dynamical systems (HDSs) with prescribed switchings. By using Ekeland’s variational
principle and a matrix cost functional, a minimum principle for HDSs is derived, which
provides a necessary condition of the aforementioned problem. The results given in this
paper include both pure continuous systems and pure discrete-time systems as special
cases.
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1. Introduction

A hybrid dynamical system (HDS) contains continuous variable dynamical systems
(CVDSs) and discrete event dynamical systems (DEDSs) that interact with each
other. There are several classes of HDS. A typical class is the switching system,
which is capable of exhibiting simultaneously several kinds of dynamic behaviour
in different parts of the system. Optimal control problems involving HDSs have been
studied broadly in recent years. Branicky et al. [5, 7] proposed a unified framework
of hybrid optimal control and synthesized a hybrid controller for hybrid devices. Then
they demonstrated the existence of optimal (relaxed) and near-optimal (piecewise)
controls and derived “generalized quasi-variational inequalities” that can be solved
by algorithms based on a generalized Bellman equation, impulse control and linear
programming. Liu et al. [18] developed an algorithm for a class of nonlinear impulsive
HDS. Furthermore, this algorithm was recently extended by Loxton et al. [19, 20] to
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solve impulsive switched system optimizations. Pepyne and Cassandras [8, 24, 25]
constructed optimal control frameworks of HDSs for a manufacturing process model.
Schutter [26] considered a class of queueing systems and presented methods to
determine the optimal switching instants to minimize a criterion such as average
queue length, worst-case queue length, average waiting time, and so on. Then it
was shown that, if there was no upper saturation, for some objective functions the
optimal switching scheme could be computed. Hedlund and Rantzer [15] proposed a
method for optimal control of HDSs based on an inequality of Bellman and convex
optimization, then gave a lower bound for the optimal value function. Bemporad and
Morari [2] transformed a class of HDSs into a mixed logical dynamical system and
then dealt with its optimization problem by mixed integer quadratic programming.

Guia et al. [12] studied the optimal control problem of minimizing a quadratic
performance index over an infinite time horizon for a class of switched piecewise
linear autonomous systems. Tan et al. [31] concentrated on sampled data based on
linear quadratic adaptive control of continuous-time systems with unknown Markov
jump parameters, and then gave a parameter estimator and a control design method.
Bengea and DeCarlo [3] considered an optimal control problem for a class of switching
systems under the assumption that the number of switches and model sequences
are both indeterminate. Baotic et al. [1] studied the constrained finite- and infinite-
time optimal control problem for the class of discrete-time linear HDS and proposed
algorithms that compute the optimal solution. Borrelli et al. [4] worked on the
solution to optimal control problems for constrained discrete-time linear HDSs based
on quadratic or linear performance criteria and constructed the state-feedback optimal
control law by combining multi-parametric programming and dynamic programming.
Gokbayrak and Selvi [13] derived some sample path characteristics for a two-stage
serial HDS, and transformed an original nonsmooth optimal control problem into a
convex optimization problem. Spinelli et al. [28] dealt with the problem of optimal
control of continuous-time autonomous linear switched systems on a finite control
horizon and developed sufficient conditions for their optimality using Hamilton–
Jacobi–Bellman theory. Shaikh and Caines [27] studied a class of hybrid optimal
control problems for systems with controlled and autonomous location transitions and
extended the maximum principle from pure continuous systems to HDSs. Shaikh
presented a set of necessary conditions of hybrid system trajectory optimality and a
class of general hybrid maximum principle based algorithms.

Gao et al. [10, 11] studied optimal control problems concerning a class of HDSs
with a pre-specified sequence of switched subsystems over a local interval for both free
terminal states and restricted terminal states. Other problems related to HDSs have also
been widely studied. Guan et al. [14] studied a class of hybrid impulsive and switching
systems, and applied these systems to nonlinear control. Trecate et al. [32] presented
methods for the analysis of discrete-time piecewise affine and hybrid systems. Stability
of HDSs is an important research area. Branicky [6] proposed Lyapunov function
analysis tools for switched and hybrid systems. Michel et al. [23, 30, 35] discussed
stability theory for general HDSs. Xu and Zhai [33] considered practical stability
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and stabilization of hybrid and switched systems. Chai and Teel [9] proved that the
existence of smooth Lyapunov functions for HDSs is equivalent to their robustness.
Liu and Shen [17] studied the stability theory of HDSs with time delay. For the
controllability of switching linear HDSs, Yang [34] proposed an algebraic approach,
and Stikkel et al. [29] studied necessary and sufficient conditions for its applicability.
Lazar et al. [16] studied stabilizing model predictive control for HDSs. Margaliot [21]
did stability analysis of switched systems by variational principles. Meng and
Zhang [22] studied output feedback based admissible control of the switched linear
singular system.

In this paper, we continue the work of [10, 11]. We impose an outer restriction
upon the terminal states of the HDS and extend the aforementioned results from a
certain continuous time interval to the whole time horizon. Also, we present the
minimum principle of global HDSs and prove it by means of Ekeland’s variational
principle. The rest of the paper is organized as follows. In Section 2 we describe a
general controlled model of HDSs and formulate the optimal control problem. Then
we propose, in Section 3, a mathematical tool, that is, the minimum principle of
HDSs, which can be used to establish the necessary conditions for the optimal control
problems mentioned above. In the proof, Ekeland’s variational principle and matrix
cost functional expression are applied. In Section 4 we consider, as applications of our
main results, some special cases and obtain some corresponding results for switched
linear time-variant systems and pure discrete-time systems. The conclusion of the
paper is set out in Section 5.

2. Preliminaries

2.1. Notation The set R+ represents the nonnegative real numbers, Z+ denotes the
set of all nonnegative integers, and meas(9) denotes the measure of the set 9. Also
useful is the differential operator ∇ = (∂/∂x, ∂/∂q).

2.2. Description of optimal control problems in global HDSs The controlled
model of an HDS is given by{

ẋ(t)= f (t, x(t), q(τk), u(t)), t ∈ [τk, τk+1), k ∈ Z+,

q(τk+1)= v(x(t−), q(τk), u(t−)), t = τk+1,
(2.1)

where x(t) ∈ Rn denotes the state of the CVDS at t , and q(τk) ∈ Rs denotes the
state of the DEDS at τk . τk denotes the kth given switching instant, at which the
state of the DEDS q(·) changes. We consider the HDS (2.1) evolving over [τ0, t f

].
We suppose that τl =max{τk ∈ R+ | τk ≤ t f , k ∈ Z+}, and define the finite set of
switching instants

E , {τk ∈ R+ | k = 0, 1, . . . , l; 0≤ τ0 < τ1 < · · ·< τl ≤ t f
}.

Moreover, (t, τk) denotes a time element of the HDS, which satisfies t ∈ [τk, τk+1). In
particular, we denote the switching instant by (τk, τk). Corresponding to any (t, τk)

T ,
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the state of the HDS is denoted by (x(t), q(τk)). We define the control range as

U , {(u1, u2, . . . , um)
T
∈ Rm

: |ui | ≤ 1, i = 1, 2, . . . , m}. (2.2)

The control input of the system is u(t) ∈U ⊂ Rm for all t ∈ R. The mapping
f : R+ × Rn

× Rs
×U → Rn is integrable with respect to t and satisfies Lipschitz

conditions with respect to u. Furthermore, f has bounded partial derivatives with
respect to x and q . The mapping v : Rn

× Rs
×U → Rs is continuous with respect

to u, and has bounded partial derivatives with respect to x and q .
Without loss of generality, we define the initial instant (0, 0) and the terminal instant

(t f , τl). Then, the terminal state of the HDS is (x(t f ), q(τl)). We assume that the
HDS (2.1) runs from the initial state (x(0), q(0)), which ensures the existence and
uniqueness of the solution of the system equation. Moreover, the time horizon can be
divided into l + 1 continuous subintervals, that is,

[τ0, t f
] =

l−1⋃
k=0

[τk, τk+1) ∪ [τl , t f
].

DEFINITION 1 (Admissible control). Let HDS (2.1) evolve over [τ0, t f
] to terminal

state (x(t f ), q(τl)). The control u(·) is called an admissible control if u(·) : [τ0, t f
] →

U is bounded and quadratically integrable and G(x(t f ), q(τl))= 0, where G(·, ·) :
Rn
× Rs

→ Rn1 (n1 ≤ n + s) is continuously differentiable in its arguments. The set
of admissible controls is denoted by

Uad
4
= {u(·) ∈ L[τ0, t f

;U ] | G(x(t f ), q(τl))= 0 under u(·)}. (2.3)

Suppose that the HDS evolves under the controls uk(·) ∈Uad (k = 0, 1, . . . , l).
The trajectories of its CVDS and the discrete events are denoted by x(·, uk(·)) and
q(·, uk(·)), respectively. We define the control input by

u(·)= (u0(·), u1(·), . . . , ul(·))
T
∈U l+1

ad ,

and defining, for α = 0, . . . , l − 1,

Tα =
l−1∑
k=α

[∫ τk+1

τk

L(s, x(s, uα(s)), q(τk, uα(s)), uα(s)) ds + La(q(τk+1, uα(·)))

]

+

∫ t f

τl

L(s, x(s, uα(s)), q(τl , uα(s)), uα(s)) ds

+ g(x(t f , uα(·)), q(τl , uα(·)))

and

Tl =

∫ t f

τl

L(s, x(s, ul(s)), q(τl , ul(s)), ul(s)) ds + g(x(t f , ul(·)), q(τl , ul(·)))
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allows the definition of the cost functional

J (u(·))= diag{T0, T1, . . . , Tl−1, Tl}, (2.4)

where diag(·) denotes a diagonal matrix and L : R+ × Rn
× Rs

× Rm
→ R+

describes the running expenses of the HDS. For arbitrary [τk, τk+1) for k =
0, 1, . . . , l − 1 or [τl , t f

], the function L is integrable with respect to t and is
continuous with respect to u. L is continuously differentiable with respect to x
and q . The function La : Rs

→ R+ describes the switching cost of a DEDS, and La
is continuously differentiable in all its variables. Considering the terminal state of the
HDS, we define a mapping function g(·, ·) : Rn

× Rs
→ R+, which is smooth in its

arguments.
Then the optimal control problem of the HDS can be described as follows.

We assume that there exists the optimal control ū(·) ∈Uad, and we define ū(·)=
(ū(·), ū(·), . . . , ū(·))T , a vector of l + 1 identical components, so that under the
control of ū(·) the cost functional (2.4) reaches its “minimum”. That is, for any control
vector u(·) ∈U l+1

ad , the condition that J (u(·))− J (ū(·)) is positive semi-definite is
satisfied.

In the following section, we will derive a necessary condition for the above global
HDS optimal control problem—the minimum principle of HDS over the interval
[τ0, t f

].

3. The minimum principle for HDSs with restricted terminal states

DEFINITION 2 (Lebesgue point [36]). Given a Lebesgue integrable function f , a
point t in the domain of f is a Lebesgue point if

lim
r→0+

1
|B(t, r)|

∫
B(t,r)

| f (s)− f (t)| ds = 0,

where B(t, r) is the ball centred at t with radius r and Lebesgue measure |B(t, r)|.

LEMMA 3.1 (Ekeland’s variational principle). Let V be a complete metric space and
F : V → R a lower semi-continuous function not identically equal to +∞. Assume
that F is bounded below and that ū ∈ V is an ε-minimum of F. That is, for a given
ε > 0 it satisfies

F(ū)≤ inf
ν∈V

F(ν)+ ε.

Then there exists ũ ∈ V and ũ 6= ū such that F(ũ)≤ F(ū) and d(ū, ũ)≤ ε. For any
ν ∈ V , F(ν)≥ F(ũ)−

√
εd(ν, ũ).

LEMMA 3.2. Let f : [a, b] → Rn be a Lebesgue integrable function, λ ∈ (0, 1), for
any ε > 0; then there exists a measurable set Eλ(ε)⊂ [a, b], such that

meas(Eλ(ε))= λ(b − a), λ

∫ b

a
f (t) dt =

∫
Eλ(ε)

f (t) dt + η, ‖η‖< ε.

For more details about Lemmas 3.1 and 3.2, the interested reader is referred to [36].
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THEOREM 3.3 (Minimum principle of global HDS). Let ū(·) be a solution of
the HDS (2.1). We suppose that x(·)= x(·, ū(·)) and q(·)= q(·, ū(·)) are the
optimal trajectories of the continuous subsystems and optimal discrete events’ states,
respectively, corresponding to the optimal control ū(·). Then there exist hk and
piecewise continuous yk(·) that satisfy the adjoint equations

−
d

dt
yk(t)=

∂T

∂x
f (t, x(t), q(τk), ū(t))yk(t)+ hk

∂

∂x
L(t, x(t), q(τk), ū(t)),

over [τk, τk+1) for k = 0, 1, . . . , l − 1, or over [τl , t f
] for k = l. There exists an

n1-dimensional vector ψk , which satisfies

h2
k + ‖ψk‖

2
= 1, (3.1)

such that at t f , yk(·) satisfies

yk(t
f )=

∂T

∂x
G(x(t f ), q(τl))ψk + hk

∂

∂x
g(x(t f ), q(τl)).

Over the same interval, the minimum condition

hk L(t, x(t), q(τk), ū(t))+ 〈yk(t), f (t, x(t), q(τk), ū(t))〉

=min
u∈U
{hk L(t, x(t), q(τk), u)+ 〈yk(t), f (t, x(t), q(τk), u)〉} (3.2)

holds almost everywhere.

PROOF. We define Ekeland’s distance in Uad: for any u1(·), u2(·) ∈Uad,

d(u1(·), u2(·))=meas{t ∈ [0, t f
] : u1(t) 6= u2(t)}, (3.3)

and it has been proven that Uad is complete under this measure when the control set U
is defined by (2.2) [36].

Let ρ > 0; for a given u(·) ∈U l+1
ad we define a new cost functional

J 2
ρ (u(·))

= diag{‖G(x(t f , u0(·)), q(τl , u0(·)))‖
2, . . . , ‖G(x(t f , ul(·)), q(τl , ul(·)))‖

2
}

+ [J (u(·))− J (ū(·))+ E
√
ρ]2,

where E is the (l + 1)× (l + 1) identity matrix. We have that Jρ(u(·)) :U l+1
ad → Rl+1

is a continuous matrix functional, and J 2
ρ (u(·))≥ 0 for all u(·) ∈U l+1

ad . Then

J 2
ρ (ū(·))≤ inf

u(·)∈Uad
{J 2
ρ (u(·))} + Eρ.

By Lemma 3.1, there must be uρ(·) 6= ū(·) such that Jρ(ū(·))− Jρ(uρ(·)) is positive
definite and

d(uρi (·), ū(·))≤ ρ, i = 0, 1, . . . , l. (3.4)
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For any u(·), we obtain that

Jρ(u(·))− Jρ(uρ(·))+ E
√
ρ d(uρ(·), u(·)) (3.5)

is positive semi-definite. Now for sets Ekε (k = 0, 1, . . . , l − 1) measurable on
[τk, τk+1) and Elε measurable on [τl , t f

] such that

meas(Ekε)= ε(τk+1 − τk), k = 0, 1, . . . , l − 1,

meas(Elε)= ε(t
f
− τl),

construct a new set of controls uερ(·)= (u
ε
ρ0(·), uερ1(·), . . . , uερl(·))

T by

uερk(t)=

{
u0

k(t), t ∈ Ekε ⊂ [τk, τk+1),

u0
ρk(t), t ∈ [τ0, t f

] \ Ekε,
k = 0, 1, . . . , l − 1, (3.6)

and

uερl(t)=

{
u0

l (t), t ∈ Elε ⊂ [τl , t f
],

u0
ρl(t), t ∈ [τ0, t f

] \ Elε.
(3.7)

If uk(·) ∈Uad and ε is small enough, we know that uk(·) is square integrable in Ekε.
That is, uερk(·) ∈Uad. By (3.5),

Jρ(uερ(·))− Jρ(uρ(·))+ E
√
ρ d(uρ(·), u(·)) (3.8)

is positive definite. For simplicity, we discuss only the kth diagonal element.
We suppose that the continuous states of the subsystems are xερk(·), x0

ρk(·), and

the discrete events’ states are qερk(·), q0
ρk(·), corresponding to the controls uερk(·) and

u0
ρk(·), respectively. For t ∈ [τk, τk+1), xερk(·) and x0

ρk(·) both start at the initial state

x0
ρk(τk) (because of the continuity of the CVDS trajectories and uερk(t)= u0

ρk(t) for
t ∈ [0, τk)), and defining

f φ,ξ (·, τk)= f (·, xφρk(·), q0
ρk(τk), uξρk(·)), φ, ξ = 0, ε,

they satisfy

xφρk(t)= x0
ρk(τk)+

∫ t

τk

f φ,φ(s, τk) ds, φ = 0, ε, t ∈ [τk, τk+1).

Let

1xk(·)= xερk(·)− x0
ρk(·), zεk(·)=

1
ε
1xk(·),

1 fk(·)= f (·, x0
ρk(·), q0

ρk(τk), u0
k(·))− f 0,0(·, τk)

and
f̂k(·)= f (·, x0

ρk(·)+ λ(x
ε
ρk(·)− x0

ρk(·)), q0
ρk(τk), uερk(·)).
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By Lemma 3.2, we get

zεk(t) =
1
ε

∫ t

τk

[ f ε,ε(s, τk)− f 0,0(s, τk)] ds

=
1
ε

∫ t

τk

[ f ε,ε(s, τk)− f 0,ε(s, τk)] ds +
1
ε

∫ t

τk

[ f 0,ε(s, τk)− f 0,0(s, τk)] ds

=

∫ t

τk

∫ 1

0

∂ f̂k(s)

∂x

1
ε
1xk(s) dλ ds +

1
ε

∫
Ekε

⋂
[τk ,t)

1 fk(s) ds

=

∫ t

τk

[∫ 1

0

∂ f̂k(s)

∂x
dλ

]
zεk(s) ds +

∫ t

τk

1 fk(s) ds + o(ε). (3.9)

Letting ε→ 0, the integral of the first term in (3.9) has a limit∫ t

τk

∂

∂x
f 0,0(s, τk)δxρk(s) ds,

where we let limε→0 zεk(·)= δxρk(·). From (3.9) it follows that

δxρk(t)=
∫ t

τk

{
∂

∂x
f 0,0(s, τk)δxρk(s)+1 fk(s)

}
ds. (3.10)

Then
d

dt
δxk(t)=

∂

∂x
f 0,0(t, τk)δxρk(t)+1 fk(t), t ∈ [τk, τk+1).

Similarly, we consider the discrete event state at τk+1,

q ιρk(τk+1)= v(x
ι
ρk(τ

−

k+1), q0
ρk(τk), u0

ρk(τ
−

k+1)), ι= 0, ε.

We define

1qk(·)= qερk(·)− q0
ρk(·) and δqρk(τk+1)= lim

ε→0

1
ε
1qk(τk+1),

which denotes the perturbation of the discrete event at τk+1. We obtain that

δqρk(τk+1)=
∂

∂x
v(x0

ρk(τk+1), q0
ρk(τk), u0

ρk(τk+1))δxρk(τk+1). (3.11)

Over the following [τh, τh+1) (h = k + 1, k + 2, . . . , l), the variational equation
of the HDS’s continuous subsystem is written as

d

dt
δxρk(t)=∇ f 0,0(t, τh) · (δxρk(t), δqρk(τh)). (3.12)
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By (3.11) and (3.12) we know that

δqρk(τh) =

h−1∑
i=k+1

[h−i−1∏
j=0

∂

∂q
v(x0

ρk(τh− j ), q0
ρk(τh− j−1), u0

ρk(τh− j ))

]
×

∂

∂x
v(x0

ρk(τi ), q0
ρk(τi−1), u0

ρk(τi ))δxρk(τi )

+
∂

∂x
v(x0

ρk(τh), q0
ρk(τh−1), u0

ρk(τh))δxρk(τh), (3.13)

where h = k + 2, k + 3, . . . , l + 1.
We study the kth principal diagonal entry of J 2

ρ (u
ε
ρ(·))− J 2

ρ (uρ(·)). It follows that

J 2
kρ(u

ε
ρk(·))− J 2

kρ(u
0
ρk(·))

= ‖G(xερk(t
f ), qερk(τl))‖

2
− ‖G(x0

ρk(t
f ), q0

ρk(τl))‖
2

+ [Jk(u
ε
ρk(·))− Jk(ū(·))+

√
ρ]2 − [Jk(u

0
ρk(·))− Jk(ū(·))+

√
ρ]2.

(3.14)

For the first two items of the right-hand side of (3.14), we note that

‖G(xερk(t
f ), qερk(τl))‖

2
− ‖G(x0

ρk(t
f ), q0

ρk(τl))‖
2

= 2〈G(x0
ρk(t

f ), q0
ρk(τl)), ∇G(x0

ρk(t
f ), q0

ρk(τl)) · (1xk(t
f ), 1qk(τl))+ o(ε)〉.

(3.15)

For the final two terms on the right-hand side of (3.14),

[Jk(u
ε
ρk(·))− Jk(ū(·))+

√
ρ]2 − [Jk(u

0
ρk(·))− Jk(ū(·))+

√
ρ]2

= 2[Jk(u
0
ρk(·))− Jk(ū(·))+

√
ρ][Jk(u

ε
ρk(·))− Jk(u

0
ρk(·))] + o(ε).

According to (3.8), then

2ε
〈
G(x0

ρk(t
f ), q0

ρk(τl)),
1
ε
∇G(x0

ρk(t
f ), q0

ρk(τl)) · (1xk(t
f ), 1qk(τl))

〉
+ 2ε[Jk(u

0
ρk(·))− Jk(ū(·))+

√
ρ]

1
ε
[Jk(u

ε
ρk(·))− Jk(u

0
ρk(·))]

+ o(ε)+ ερ(τk+1 − τk)≥ 0. (3.16)

Defining

L0,0(·, τk)= L(·, x0
ρk(·), q0

ρk(τk), u0
ρk(·)),

1Lk(·)= [L(·, x0
ρk(·), q0

ρk(τk), u0
k(·))− L0,0(·, τk)],
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then by (2.4),

lim
ε→0

1
ε
[Jk(u

ε
ρk(·))− Jk(u

0
ρk(·))]

=

∫ τk+1

τk

{
∂

∂x
L0,0(s, τk)δxρk(s)+1Lk(s)

}
ds

+

l∑
i=k+1

{∫ τi+1

τi

∇L0,0(s, τi ) · (δxρk(s), δqρk(τi )) ds

+
d

dq
La(q

0
ρk(τi ))δqρk(τi )

}
+ ∇g(x0

ρk(t
f ), q0

ρk(τl)) · (δxρk(t
f ), δqρk(τl)). (3.17)

Define

ψερk =
2G(x0

ρk(t
f ), q0

ρk(τl))

Jkρ(uερk(·))+ Jkρ(u0
ρk(·))

and hερk =
2(Jk(u0

ρk(·))− Jk(ū(·))+
√
ρ)

Jkρ(uερk(·))+ Jkρ(u0
ρk(·))

.

(3.18)
Then limε→0(‖ψ

ε
ρk‖

2
+ hε 2

ρk )= 1. When ε→ 0, we have a subsequence of (ψερk, hερk)

converging to (ψρk, hρk), which satisfies ‖ψρk‖
2
+ h2

ρk = 1. By (3.17) and (3.18),
taking ε→ 0 allows (3.16) to be rewritten as

〈ψρk, ∇G(x0
ρk(t

f ), q0
ρk(τl)) · (δxρk(t

f ), δqρk(τl))〉

+ hρk

[∫ τk+1

τk

{
∂

∂x
L0,0(s, τk)δxρk(s)+1Lk(s)

}
ds

+

l∑
i=k+1

{∫ τi+1

τi

[∇L0,0(s, τi ) · (δxρk(s), δqρk(τi ))] ds

+
∂

∂q
La(q

0
ρk(τi ))δqρk(τi )

}
+∇g(x0

ρk(t
f ), q0

ρk(τl)) · (δxρk(t
f ), δqρk(τl))

]
+
ρ(τk+1 − τk)

4J 2
kρ(u

0
ρk(·))

≥ 0. (3.19)

We define the costate equation of the continuous subsystems as follows. Whenever
t ∈ [τk, τk+1), the costate equation of (3.10) is

−
d

dt
yρk(t)=

∂

∂x
[ f 0,0(t, τk)yρk(t)+ hρk L0,0(t, τk)]. (3.20)
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Based on the conjugate relation between (3.10) and (3.20),

〈yρk(τk+1), δxρk(τk+1)〉 − 〈yρk(τk), δxρk(τk)〉

=

∫ τk+1

τk

{
−hρk

∂

∂x
L0,0(s, τk)δxρk(s)+ 〈yρk(s), 1 fk(s)〉

}
ds. (3.21)

Whenever t ∈ [τh, τh+1) for h = k + 1, k + 2, . . . , l − 1, or t ∈ [τl , t f
] for h = l, the

costate equation of (3.12) is

−
d

dt
yρk(t)=

∂T

∂x
f 0,0(t, τh)yρk(t)+ hρk

∂

∂x
L0,0(t, τh). (3.22)

Then there exists a conjugated relationship between (3.12) and (3.21) with

〈yρk(τh+1), δxρk(τh+1)〉 − 〈yρk(τh), δxρk(τh)〉

=

∫ τh+1

τh

{
−hρk

∂

∂x
L0,0(s, τh)δxρk(s)

+

〈
∂T

∂x
f 0,0(t, τh)yρk(s), δqρk(τh)

〉}
ds. (3.23)

And at the terminal time t f , we get

yρk(t
f )=

∂T

∂x
G(x0

ρk(t
f ), q0

ρk(τl))ψρk + hρk
∂

∂x
g(x0

ρk(t
f ), q0

ρk(τl)). (3.24)

Combining (3.21) with (3.23), we get

〈yρk(t
f ), δxρk(t

f )〉

= 〈yρk(t
f ), δxρk(t

f )〉 − 〈yρk(τl), δxρk(τl)〉

+

l−1∑
h=k

{〈yρk(τh+1), δxρk(τh+1)〉 − 〈yρk(τh), δxρk(τh)〉}

=

l∑
h=k+1

∫ τh+1

τh

{
−hρk

∂

∂x
L0,0(s, τh)δxρk(s)

+

〈
∂T

∂q
f 0,0(t, τh)yρk(s), δqρk(τh)

〉}
ds

+

∫ τk+1

τk

{
−hρk

∂

∂x
L0,0(s, τk)δxρk(s)+ 〈yρk(s), 1 fk(s)〉

}
ds. (3.25)

We assume that u ∈U is fixed, and that t is a Lebesgue point of the functions

ψk L0,0(t, τk)+ 〈yρk(t), f 0,0(t, τk)〉

and
ψk L(t, x0

ρk(t), q0
ρk(τk), u)+ 〈yρk(t), f (t, x0

ρk(t), q0
ρk(τk), u)〉.
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Then for ε > 0, we take uk(·) ∈Uad, defined by

uk(s)=

{
u, |s − t | ≤ ε,

uρk(s), otherwise.
(3.26)

Because f has bounded partial derivatives with respect to x on [τk, τk+1), we choose
to let the upper bound be C for all k. Then f satisfies Lipschitz’s condition with
respect to u. Let D be the Lipschitz constant. Then for t ∈ [τk, τk+1),

‖δxρk(t)‖ ≤
∫ t

τk

∥∥∥∥ ∂∂x
f 0,0(s, τk)

∥∥∥∥‖δxρk(s)‖ ds +
∫ τk+1

τk

‖1 fk(s)‖ ds

≤

∫ t

τk

C‖δxρk(s)‖ ds +
∫ t+ε

t−ε
D‖u − uρk(s)‖ ds.

As the input control uρk(·) ∈Uad is bounded, by Gronwall’s inequality [36],

sup
t∈[τk ,τk+1)

{‖δxρk(t)‖} ≤ C ′ε,

where

C ′ = 2 DeC(τk+1−τk) max{‖u − uρk(s)‖ : uρk(·) ∈Uad, |s − t | ≤ ε}.

Hence limε→0 ‖δxρk(τk+1)‖ = 0. By (3.11), since v has bounded partial derivatives
with respect to x , limε→0 ‖δqρk(τk+1)‖ = 0. Using (3.12) and (3.13), we discuss
all the states of the CVDS and the DEDS at all the following τk . Finally, we
obtain limε→0 ‖δxk(τh)‖ = 0, limε→0 ‖δq(τh)‖ = 0, where h = k + 2, k + 3, . . . , l.
Employing (3.19), (3.24) and (3.25), we let ε→ 0 and derive∫ τk+1

τk

{hρk1Lk(s)+ 〈yρk(s), 1 fk(s)〉} ds ≥−
ρ(τk+1 − τk)

4J 2
kρ(uρk(·))

. (3.27)

Similarly, when ρ→ 0, (ψρk, hρk) have a subsequence converging to (ψk, hk),
which still satisfies ‖ψk‖

2
+ h2

k = 1. By (3.4), we get that limρ→0 uρk(·)= ū(·), and
then limρ→0 δxρk(·)= δxk(·). Introducing the costate equations as

−
d

dt
yk(t)=

∂T

∂x
f (t, xk(t), qk(τh), uk(t))yk(t)+ hk

∂

∂x
L(t, xk(t), qk(τh), uk(t)),

t ∈ [τh, τh+1) for h = k, k + 1, . . . , l − 1 or t ∈ [τl , t f
] for h = l,

at the terminal instant t f , we obtain

yk(t
f )=

∂T

∂x
G(xk(t

f ), qk(τl))ψk + hk
∂

∂x
g(xk(t

f ), qk(τl)).
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Then we obtain easily limρ→0 yρk(·)= yk(·). According to (3.27), whenever ρ→ 0,∫ τk+1

τk

{hk[L(s, xk(s), qk(τk), uk(s))− L(s, xk(s), qk(τk), ū(s))]

+ 〈yk(s), f (s, xk(s), qk(τk), uk(s))− f (s, xk(s), qk(τk), ū(s))〉} ds ≥ 0.

By (3.26), we get∫ t+ε

t−ε
{hk L(s, xk(s), qk(τk), u)+ 〈yk(s), f (s, xk(s), qk(τk), u)〉} ds

≥

∫ t+ε

t−ε
{hk L(s, xk(s), qk(τk), ū(s))

+ 〈yk(s), f (s, xk(s), qk(τk), ū(s))〉} ds. (3.28)

On dividing both sides of (3.28) by 2ε and letting ε→ 0, it follows that

hk L(t, xk(t), qk(τk), u)+ 〈yk(t), f (t, xk(t), qk(τk), u)〉

≥ hk L(t, xk(t), qk(τk), ū(t))+ 〈yk(t), f (t, xk(t), qk(τk), ū(t))〉.

Because the set of all Lebesgue points can be fully measured over [τk, τk+1) or over
[τl , t f

], the aforementioned inequality is true almost everywhere on [τk, τk+1) or
on [τl , t f

]. Based on the generality of k and the identity of the HDS’s trajectory
corresponding to the optimal control ū(·), we obtain that the minimum condition (3.2)
holds a.e. t ∈ [τk, τk+1) or t ∈ [τl , t f

]. This concludes the proof. 2

In [10], the optimal control problem of HDSs with restricted terminal states was
studied and the minimum principle established. That is, for a class of HDSs, if
there is an optimal control input, then we propose a minimum principle over a certain
continuous time interval. However, the result is local instead of globally evolved over
time. In the theorem proposed in this section, we have generalized the previous results
and have stated a minimum principle of global HDSs. In the proof, we have constituted
the cost functional as a diagonal matrix, where each diagonal entry corresponds to the
cost function on the relevant continuous time interval. Here we have concentrated on
the effects of switches in the system. Specially, if the dimension of the matrix is one,
in other words, the cost functional is scalar, the above principle reduces to the classical
formulation of Pontryagin’s maximum principle for pure continuous systems [36].
Then the cost functional is changed to

J (u(·))=
∫ t f

0
L(s, x(s, u(s)), u(s)) ds + g(x(t f , u(·)), q(τl , u(·))).

The dynamics of the continuous system are defined by

ẋ(t)= f (t, x(t), u(t)), (3.29)

and the restricted condition of the system’s terminal state is G(x(t f ))= 0. Then we
obtain the classical formulation of the minimum principle for pure continuous systems
as follows.
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COROLLARY 3.4. Let ū(·) be a solution to the optimal control problem of
system (3.29). Suppose that x(·)= x(·, ū(·)) is the optimal trajectory of the system
corresponding to the optimal control ū(·). Then over the evolving interval [0, t f

]

there exist a scalar h and piecewise continuous yk(·) that satisfy the adjoint equation

−
d

dt
y(t)=

∂T

∂x
f (t, x(t), ū(t))y(t)+ h

∂

∂x
L(t, x(t), ū(t)).

There exists an n1-dimensionalψ such that h2
+ ‖ψ‖2 = 1. At the terminal instant t f ,

y(t f )=
∂T

∂x
G(x(t f ))ψ + h

∂

∂x
g(x(t f )).

At the same time, the minimum condition

hL(t, x(t), ū(t))+ 〈y(t), f (t, x(t), ū(t))〉

=min
u∈U
{hL(t, x(t), u)+ 〈y(t), f (t, x(t), u)〉}, a.e. t ∈ [0, t f

],

is satisfied on the same interval.

4. Application towards linear switched systems and pure discrete-time systems

We consider a class of switched systems composed of limited controlled
subsystems. The system is described as{

ẋ(t)= Aq(τk)(t)x(t)+ Bq(τk)(t)u(t), t ∈ [τk, τk+1) or t ∈ [τl , t f
],

q(τk+1)= v(x(τk+1), q(τk), u(τk+1)), k = 0, 1, . . . , l,
(4.1)

where Aq(τk)(t) and Bq(τk)(t) are matrices of appropriate dimensions and we suppose
that τl+1 = t f . The restricted condition of the system’s terminal state is

xT (t f )W f x(t f )+ qT (τl)M f q(τl)= c,

where W f and M f are positive-definite symmetric matrices of appropriate dimensions
and c is a positive real number. The kth diagonal entry of the evolving cost functional
of (4.1) is defined by

Jk(uk(·)) =

l∑
i=k

∫ τi+1

τi

1
2
[xT

k (s)Qk xk(s)+ uT
k (s)Vkuk(s)] ds

+

l∑
i=k+1

La(q(τi , uk(·)))+ xT
k (t

f )Rxk(t
f ),

where Qk , Vk and R are positive-definite symmetric matrices. Then the minimum
principle for (4.1) can be stated as follows.
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THEOREM 4.1. Let ū(·) be a solution of the optimal control problem for (4.1).
We suppose that x(·)= x(·, ū(·)) is the optimal continuous trajectory and q(·)=
q(·, ū(·)) is the optimal discrete event state corresponding to ū(·). Then over [τ0, t f

],
there exist a scalar hk and piecewise continuous yk(·) that satisfy the adjoint equation

−
d

dt
yk(t)= Aq(τk)(t)yk(t)+ hk Qk xk(t),

over all [τk, τk+1) for k = 0, 1, . . . , l − 1, or over [τl , t f
] for k = l. There exist

scalars ψk (k = 0, 1, 2, . . . , l) such that h2
k + ψ

2
k = 1. At t f , yk(·) satisfies

yk(t
f )=W f x(t f )ψk + hk Rx(t f ).

At the same time, the minimum condition

H(t, x(t), q(τk), yk(t), ū(t)) = min
u∈U

H(t, x(t), q(τk), yk(t), u),

a.e. t ∈ [τk, τk+1) or [τl , t f
], (4.2)

holds, where

H(t, x(t), q(τk), yk(t), u(t)) = 1
2 hk[x

T (t)Qk x(t)+ uT (t)Vku(t)]

+ yT
k (t)[Aq(τk)(t)x(t)+ Bq(τk)(t)u(t)]. (4.3)

REMARK 3. In the case of u ∈U , the minimum condition (4.2) and (4.3) stated in
Theorem 4.1 can be expressed as

min
u∈U
{

1
2 hkuT Vku + yT

k (t)Bq(τk)(t)u} =
1
2 hk ūT (t)Vk ū(t)+ yT

k (t)Bq(τk)(t)ū(t). (4.4)

From the minimum condition of (4.4), we get the optimal control input over the kth
interval by differential calculation. Let

H̃(yk(t), u(t))= 1
2 hkuT (t)Vku(t)+ yT

k (t)Bq(τk)(t)u(t).

Then differentiate H̃ at u(t)= ū(t),

0=
d

du
H̃ |u=ū(t) = hk Vk ū(t)+ yT

k (t)Bq(τk)(t),

and we obtain the optimal control input as

ū(t)=−
1
hk

V−1
k yT

k (t)Bq(τk)(t), t ∈ [τk, τk+1).

REMARK 4. If the HDS (4.1) reduces to a pure linear time-variant system with no
switching, described by

ẋ(t)= A(t)x(t)+ B(t)u(t), t ∈ [0, t f ), (4.5)
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then we suppose that the evolving cost functional of (4.5) corresponds to its potential
energy. That is, the cost functional is defined by its states as

J (u(·))=
∫ t f

0
xT (s, u(·))Qx(s, u(·)) ds + xT (t f )Rx(t f ), (4.6)

which is the minimum principle of pure continuous linear time-invariant systems. This
is similar to Theorem 3.3 so we will omit it here, but we note that the optimal control
will be written in a simpler form for the systems and cost functional above. The new
Hamiltonian will be denoted by

H(t, x(t), y(t), u(t))= hxT (t)Qx(t)+ yT (t)[A(t)x(t)+ B(t)u(t)]. (4.7)

In (4.7) x(t) is the optimal trajectory corresponding to ū(t), and so the minimum
condition becomes

min
u∈U
{yT (t)B(t)u} = yT (t)B(t)ū(t).

Here we let ϕ(t)= yT (t)B(t)= (ϕ1(t), ϕ2(t), . . . , ϕm(t)). Then by the definition
of U , there exists

min
u∈U

ϕ(t)u =
m∑

i=1

min
|u|≤1

ϕi (t)ui =−

m∑
i=1

|ϕi (t)|.

Then the i th component of the optimal control ū(t) can be denoted by ūi (t)=
−sign(ϕi (t)), where the function sign denotes that the component of the optimal
control will take values in the set {−1, 1}. Then it follows that we can solve the optimal
control problem of a pure continuous linear time-invariant system using a “switching
control”.

Our result can also be used in the case of pure discrete-time systems. Since the
class of systems considers their dynamics only at the discrete sampling instants, we
state the dynamics of pure discrete-time systems with fixed switches as

q(τk+1)= v(τk+1, q(τk), u(τk+1)), k = 0, 1, 2, . . . , l − 1, (4.8)

where we let τ0 = 0. Then the discrete-time systems run over the interval [0, t f
]. We

suppose that there exists a discrete admissible control sequence u(τk)|k=0,1,...,l , under
which the terminal state of (4.1) yields G(q(t f ))= 0. We define the cost functional

J (u(·))=
l+1∑
i=0

L(τk, q(τk), u(τk))+ g(q(t f )).

Then by Theorem 3.3, we get the minimum principle for discrete-time systems.

COROLLARY 4.2. System (4.8) is a discrete-time system. Let ū(τk)|k=0,1,...,l be a
solution. We suppose that q(τk)= q(τk, ū(τk−1)) is the optimal state of system (4.8)
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corresponding to the optimal control ū(τk). Then over the global evolving interval
[0, t f

], we get the discrete adjoint equation

λ(τk+1) = λ(τk)− (τk+1 − τk)

[
∂

∂q
v(τk+1, q(τk), ū(τk+1))λ(τk)

+ h
∂

∂q
L(τk+1, q(τk), ū(τk+1))

]
.

There exists ψ such that h2
+ ‖ψ‖2 = 1. λ(t f ) satisfies transversal conditions

λ(t f )=
dT

dq
G(q(t f ))ψ + h

d

dq
v(q(t f )).

At every switching instant, the minimum conditions are satisfied. That is,

H(τk, q(τk), y(τk+1), ū(τk))=min
u∈U

H(τk, q(τk), y(τk+1), u),

where

H(τk, q(τk), λ(τk+1), u(τk))

= hL(τk, q(τk), u(τk))+ 〈λ(τk+1), v(τk, q(τk), u(τk))〉.

REMARK 5. Through the above applications, we see that the result proposed in this
paper covers both pure continuous systems and pure discrete-time systems. The HDS
model put forward here is a powerful model, and the theoretical solution of its optimal
control problems, the hybrid minimum principle, is a generalization from the optimal
control problems of two classical systems.

5. Conclusions

In this paper, we have introduced an optimal control problem for a general
class of global hybrid dynamical systems with restricted terminal states. We have
established the necessary conditions for the aforementioned optimal control problem,
the minimum principle of global HDSs, and then proved the theorem. In the proof,
Ekeland’s variational principle and matrix cost functional structure expression are
applied. The results offer a research method to deal with optimal control problems
of switched systems.

Acknowledgements

The authors would like to thank the editor and the reviewers for their constructive
comments and valuable suggestions which improved the quality of the paper.
This work was supported in part by the China Postdoctoral Science Foundation
under grant 20090451314, the Outstanding Young Scientists Incentive Funding of
Shandong Province under grant BS2009DX041, the Postdoctoral Creative Foundation
of Shandong Province under grant 200703085, and NSERC Canada.

https://doi.org/10.1017/S1446181110000799 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181110000799


348 R. Gao and X. Liu [18]

References

[1] M. Baotic, F. J. Christophersen and M. Morari, “Constrained optimal control of hybrid systems
with a linear performance index”, IEEE Trans. Automat. Control 51 (2006) 1903–1919.

[2] A. Bemporad and M. Morari, “Control of systems integrating logic, dynamics, and constraints”,
Automatica 35 (1999) 407–427.

[3] S. C. Bengea and R. A. DeCarlo, “Optimal control of switching systems”, Automatica 41 (2005)
11–27.

[4] G. Borrelli, M. Baotic, A. Bemporad and M. Morari, “Dynamic programming for constrained
optimal control of discrete-time linear hybrid systems”, Automatica 41 (2006) 1709–1721.

[5] M. S. Branicky, “Studies in hybrid systems: modeling, analysis and control”, Ph.D. Dissertation,
Massachusetts Institute of Technology, 1995.

[6] M. S. Branicky, “Lyapunov functions and other analysis tools for switched and hybrid systems”,
IEEE Trans. Automat. Control 43 (1998) 475–482.

[7] M. S. Branicky, V. S. Borkar and S. K. Mitter, “A unified framework for hybrid control: model
and optimal control theory”, IEEE Trans. Automat. Control 43 (1998) 31–45.

[8] C. G. Cassandras, D. L. Pepyne and Y. Wardi, “Optimal control of a class of hybrid systems”,
IEEE Trans. Automat. Control 46 (2001) 398–415.

[9] C. H. Chai and A. R. Teel, “Smooth Lyapunov functions for hybrid systems. Part I: existence is
equivalent to robustness”, IEEE Trans. Automat. Control 54 (2006) 1264–1277.

[10] R. Gao and Y. Z. Wang, “Study on optimal control of HDS by Ekeland’s variational principle”,
Chin. J. Electron. 15 (2006) 487–491.

[11] R. Gao, L. Wang and Y. Z. Wang, “Study of optimal control problems for hybrid dynamical
systems”, J. Syst. Eng. Electron. 17 (2006) 147–155.

[12] A. Giua, C. Seatzu and C. Van Der Mee, “Optimal control of switched autonomous linear
systems”, Proceedings of the 40th IEEE Conference on Decision & Control 12 (2001) 2472–2477.

[13] K. Gokbayrak and O. Selvi, “Optimal hybrid control of a two-stage manugacturing system”, in
Proceedings of the 2006 American Control Conference, 2006, 3364–3369.

[14] Z. H. Guan, D. J. Hill and X. M. Shen, “On hybrid impulsive and switching systems and
application to nonlinear control”, IEEE Trans. Automat. Control 50 (2005) 1058–1062.

[15] S. Hedlund and A. Rantzer, “Optimal control of hybrid systems”, Proceedings of the 38th IEEE
Conference on Decision & Control 10 (1999) 3972–3976.

[16] M. Lazar, W. P. M. H. Heemels, S. Weiland and A. Bemporad, “Stabilizing model predictive
control of hybrid systems”, IEEE Trans. Automat. Control 51 (2006) 1813–1818.

[17] X. Z. Liu and J. H. Shen, “Stability theory of hybrid dynamical systems with time delay”, IEEE
Trans. Automat. Control 54 (2006) 620–625.

[18] Y. Liu, K. L. Teo, L. S. Jennings and S. Wang, “On a class of optimal control problems with state
jumps”, J. Optim. Theory Appl. 98 (1998) 65–82.

[19] R. C. Loxton, K. L. Teo and V. Rehbock, “Computational method for a class of switched system
optimal control problems”, IEEE Trans. Automat. Control 54 (2009) 2455–2460.

[20] R. C. Loxton, K. L. Teo, V. Rehbock and W. K. Ling, “Optimal switching instants for a switched-
capacitor DC/DC power converter”, Automatica 45 (2009) 973–980.

[21] M. Margaliot, “Stability analysis of switched systems using variational principles: an
introduction”, Automatica 42 (2006) 2059–2077.

[22] B. Meng and J. F. Zhang, “Output feedback based admissible control of switched linear singular
system”, Acta Automat. Sinica 32 (2006) 179–185.

[23] A. N. Michel and B. Hu, “Towards a stability theory of general hybrid dynamical systems”,
Automatica 35 (1999) 371–384.

[24] D. L. Pepyne and C. G. Cassandras, “Modeling analysis and optimal control of a class of hybrid
systems”, Discrete Event Dyn. Syst. 8 (1998) 175–201.

[25] D. L. Pepyne and C. G. Cassandras, “Optimal control of hybrid systems in manufacturing”, Proc.
IEEE 88 (2000) 1108–1123.

https://doi.org/10.1017/S1446181110000799 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181110000799


[19] Optimal control problems for hybrid dynamical systems 349

[26] B. D. Schutter, “Optimal control of a class of linear hybrid systems with saturation”, Proceedings
of the 38th IEEE Conference on Decision & Control 10 (1999) 3978–3983.

[27] M. S. Shaikh and P. E. Caines, “On the hybrid optimal control problem: theory and algorithms”,
IEEE Trans. Automat. Control 52 (2007) 1587–1603.

[28] W. Spinelli, P. Bolzern and P. Colaneri, “A note on optimal control of autonomous switched
systmes on a finite time interval”, in Proceedings of the 2006 American Control Conference, 2006,
5948–5952.

[29] G. Stikkel, J. Bokaor and Z. Szabo, “Necessary and sufficient condition for the controllability of
switching linear hybrid systems”, Automatica 40 (2004) 1093–1097.

[30] Y. Sun, A. N. Michel and G. S. Zhai, “Stability of discontinuous retarded functional differential
equations with applications”, IEEE Trans. Automat. Control 50 (2005) 1090–1105.

[31] S. P. Tan, J. F. Zhang and L. L. Yao, “Optimality analysis of adaptive sampled control of hybrid
systems with quadratic index”, IEEE Trans. Automat. Control 50 (2005) 1044–1051.

[32] G. F. Trecate, F. A. Cuzzola, D. Mignone and M. Morari, “Analysis of discrete-time piecewise
affine and hybrid systems”, Automatica 38 (2002) 2139–2146.

[33] X. P. Xu and G. S. Zhai, “Practical stability and stabilization of hybrid and switched systems”,
IEEE Trans. Automat. Control 50 (2005) 1897–1903.

[34] Z. Y. Yang, “An algebraic approach towards the controllability of controlled switching linear
hybrid systems”, Automatica 38 (2002) 1221–1228.

[35] H. Ye, A. N. Michel and L. Hou, “Stability theory for hybrid dynamical systems”, IEEE Trans.
Automat. Control 43 (1998) 461–474.

[36] X. M. Zhang, X. J. Li and Z. H. Chen, The differential equation theory of optimal control systems,
1st edn (Higher Education Press, Beijing, 1989).

https://doi.org/10.1017/S1446181110000799 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181110000799

