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0. Introduction. Suppose that / = X anq
n is a newform of weight k on T^N). Thus

n = \

f is in particular a cusp form on TX(N), satisfying

f \ T n = a n . f

for all n3= 1. Associated with / is a Dirichlet character

such that

= so(d)fIc d\

for all ,
Lc d

Let E be the subfield of C generated by the coefficients an of /; then E is a finite
extension of Q. Let O be the integer ring of this number field. For each prime /, we let

Thus Oj is the product of the completions Ox of O at the primes A of O dividing I, and
similarly E{ is the product of its analogous completions Ex. According to Deligne [3] (for
k > 1) and to Deligne-Serre [7] (for k = 1), we can find a continuous representation

p,: Gal(Q/Q) -> GL(2, O() <= GL(2, E,),

unramified at all primes p^iJV, with the following property: for all primes pJflN, if
4>p e Gal(Q/Q) is an arithmetic Frobenius element for p, we have

trace p,(<£p) = ap, det p,(4>p) = eo(p)pk"1. (0.1)

One can show that these properties characterize pl uniquely (up to isomorphism) as an
E,-representation of Gal(Q/Q), but not necessarily as an O(-representation. For this, and
other basic facts about the p(, the reader may wish to consult [13].

Let G = Gal(Q/Q), and for each prime /, let G( = Pi(G). Then G( is a closed subgroup
of GL(2, O(), and therefore an ?-adic Lie group. Let

g(=Lie(G,)

be the Lie algebra of G(.
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186 KENNETH A. RIBET

If fc = 1, then by construction G, is a finite group independent of /; the Lie algebra g(

is thus 0. Assume, then, that fc is greater than 1. We are interested in the general problem
of "identifying" the Lie algebras gi (for all /) and the groups G( (for almost all /)• This
problem has a relatively simple and explicit solution in the case when / is a form with
"complex multiplication" (in the sense of [13, p. 34]). For instance, the Lie algebra g( is
just the abelian Lie algebra K(&QQ1 if K is the field of "complex multiplication". Thus we
shall make the further assumption that / is not such a form.

In the early 1970's, Serre and Swinnerton-Dyer considered the problem of identify-
ing the g( and the G( in the case of a form on SL(2, Z) (i.e. such that N— 1) having
integral coefficients (i.e. such that E = Q). They proved the following two statements in
this case.

(1) We have g, =gl(2, Q;) for each I: i.e. G, is open in GL(2, Z() for all I.
(2) For almost all / (i.e. all sufficiently large I) we have

Gt={Me GL(2, Z,) | det(M) e Zf 1 ^"}.

(In (2), z*(fc^1) denotes the group of (fc - l)th powers in Z*.) As interpreted by Serre and
Swinnerton-Dyer, (2) states that the coefficients ap of / satisfy no mod I congruences. (See
[15] and [18].)

Subsequently, generalizations of these results were obtained by the author and by F.
Momose. First, in [12], the author removed the restriction E = Q, but he again assumed
JV = 1. He next treated the case of arbitrary JV, but he considered only the Lie algebras g(,
and even for them obtained only a partial result [13]. Finally, Momose [11] calculated the
Lie algebras g, completely; he also obtained a result for the groups G,, generalizing (2),
under the extra assumption fc = 2.

This assumption was imposed by a technical problem: our poor understanding of the
behavior of the representations p( at the primes p ^ I which divide TV. The natural
conjecture concerning this behavior was proved by Deligne [4] and Langlands [10] in the
vast majority of cases, but was proved in general only recently, by H. Carayol [1], [2].
Now that Carayol's work is available, we are able to provide a satisfactory generalization
of (2). (See (3.1) below.) The purpose of this article is twofold: we describe the results of
Momose and Carayol, and we outline the arguments (for the most part quite standard)
which lead to this generalization.

1. For each prime number I, the decompositions

O,=r[Ox, Et = llEx
A l l A | l

lead to a decomposition of p( as a direct sum of representations

In this section, our idea is to consider a fixed prime number p and to discuss the family of
representations (px)\^p locally at p. For pXN, this local behavior is essentially given by
the equations (0.1); therefore, we are especially interested in the case p\N.

Fix a place p dividing p in Q. Let D <= G be the decomposition group associated to p,
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i.e. the stabilizer of p in G. Then D is naturally the Galois group of an algebraic closure
Qp of Qp. We let I be the inertia subgroup of D, so that the quotient D/I is the Galois
group of an algebraic closure of Fp. Thus D/I is a "cyclic" profinite group isomorphic to Z
and generated by the Frobenius automorphism x ^ f of Fp. The Weil group associated
to p is that subgroup W of D which contains I and is such that W/I consists of all integral
powers of this Frobenius substitution.

For each A, we define the representation p^ contragredient to px by the formula

Its restriction to W is a continuous A.-adic representation of W. By a construction of
Grothendieck, as reformulated by Deligne, we may interpret this representation as a
representation (o\, NK) of the Weil-Deligne group

(see [6, §8.4] or [19, §4]). This representation is well defined, up to isomorphism, as a
representation of W over E.

Now let A be the adele ring of Q, and let 17 be the automorphic representation of
GL(2, A) which is associated to / in the following way: as explained by Rogawski and
Tunnell in [14, §2 (especially pp. 21-24)], we can view / as a complex-valued function $
on GL(2, Q)\GL(2, A). We take 77 to be the representation of GL(2,A) which is
generated by this function in the space of functions on GL(2, Q)\GL(2, A), viewed as a
representation of GL(2, A) by right translation. The central character of TT is then the
product a~ke~1, where

a : A * ^ C *

is the normalized absolute value character, while e is the Dirichlet character e0 suitably
interpreted: if w is a local uniformizing parameter at a prime qJfN, then

e(o))~1=eo(q).

The representation 77 is defined over the field E.
Now 17 is a tensor product of admissible irreducible representations of the various

local components GL(2, Q,,) of GL(2, A). Let 77P be the component of 17 at the prime p:
thus 77P is a representation of GL(2, Qp) which is defined over E. Via the local Langlands
correspondence of GL(2) (see [9]), we next associate to 77P a <J>-semisimple representation
(<x, N) of W, whose isomorphism class is well defined. We do this "a la Hecke" [5, 3.2.6],
so that this isomorphism class is defined over E.

THEOREM 1.1. The isomorphism classes of (a, N) and (a\, Nx) are equal over Ek, for
each prime k of E which is prime to p.

This theorem was proved by Deligne and Langlands (cf. [4] and [10]) in various
contexts which together embrace all cases in which irp is not an extraordinary cuspidal
representation of GL(2, Qp). (An extraordinary cuspidal representation is one which does
not arise from a Grossencharacter of a quadratic extension of Qp. There are no such
representations for p>2.) Recent work of Carayol ([1], [2]) gives the general case.
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188 KENNETH A. RIBET

COROLLARY 1.2. (a) For A, jx^p, the representations (o-K,NK) and (cr^N^) are com-
patible [19, p. 23].

( b ) There is a n open subgroup U of I s u c h t h a t p x ( g ) is a u n i p o t e n t m a t r i x for all g e U
a n d all k)( p .

Proof. The first part follows immediately from the theorem. For (b), one takes U to
be the kernel of the restriction of some <xx to I; this kernel is independent of A because of
the theorem. The construction of the CTX is such that px is unipotent where o\ is trivial.

2. For the rest of this article, we will assume that the weight k is greater than 1 and
that f is not a form with complex multiplication in the sense of [13].

For each place A of E, we let px denote the "naive" reduction of px: the composite of
px and the reduction map

GL(2, O J - > GL(2, Fx),

where Fx is the residue field of A. We write /(A), or simply I, for the residue characteristic
of A, i.e. the characteristic of the field Fx. We let Gx be the image of the representation px.

THEOREM 2.1. Let H be an open subgroup of G. Then for almost all A, the following
assertions are true.

(a) The representation pK\H is an irreducible 2-dimensional representation of H over
Fx, i.e. the group Hk = px(H) is an irreducible subgroup of GL(2, Fx).

(b) The order of the group Hk is divisible by l(X.).

Proof. It suffices to prove the theorem in the special case H = G. Indeed, suppose
that (a) and (b) are almost always true for the groups Gx. Then by a well-known theorem
[8, Theorem 2.8.4], Gx contains a conjugate of the group SL(2, F(), for almost all A. A
calculation shows that all orbits of the projective line P1(FX), under the action of Gx, have
cardinality at least / in this case. For 1>(G:H), this forces the action of HK to be
irreducible, so that (a) is true for H. On the other hand, (b) is true for H whenever (b) is
true for G and the prime / is prime to the index of H in G.

Now in the case G = H, we first show that (a) is almost always true. Suppose that px is
reducible. Its semisimplification is the direct sum of two 1-dimensional representations,
given by characters which we may write eix"> £^Xv^l where the ef are Dirichlet characters
unramified outside N (viewed as characters of G in the obvious way), xi is the mod /
cyclotomic character, and n and m are integers modulo (7 — 1). Using the argument of
[18, Lemma 8], we find, when / is sufficiently large, that one of n, m is 0 and the other is
k - 1. By (1.2), the characters et are trivial on some open normal subgroup of G which we
can specify in advance (independently of A). For all primes p which split completely in the
corresponding Galois extension of Q, we have the mod A congruence

Thus if px is infinitely often reducible, the equality
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holds for an infinite number of primes p. This obviously contradicts known estimates for
the complex absolute values of the ap, since we have fc> 1.

To prove that (b) is almost always true, we consider for each A the image Px of Gx in
PGL(2, Fx). By [16, Proposition 16], if Gx has order prime to /, then Px is cyclic,
dihedral, or isomorphic to one of the three "exceptional" groups A4, S4, A5. We must
show that each of these possibilities occurs only finitely many times.

Suppose first that Px is cyclic. Then Gx is contained in a Cartan subgroup Cx of
GL(2, Fx). Assuming that / is odd, we see that Cx contains an element with distinct
rational eigenvalues: the image under px of a complex conjugation in G. Accordingly, Cx

is a split Cartan subgroup of GL(2, Fx), and px is therefore reducible. Since (a) is almost
always true, this case occurs only a finite number of times.

Next, suppose that there are infinitely many A for which Px is isomorphic to one of
the groups S4, A4, A5. For all p X N, set

Then we find easily that rp is one of the four numbers 4, 0, 1, 2, or else a root of the
quadratic equation

r 2 - 3 r + l = 0,

cf. [12, p. 264] or [16, §§2.5, 2.6]. On the other hand, when A is a place of E for which
Ex = Qi» o n e knows that the image of px is an open subgroup of GL(2, Ek) because of the
results of [13]. Let

F : G - > Z ,

be the function

F(g) = (trace Px(g))2/(det Px(g)).
Its image is then certainly an infinite subset of Zj. By the Cebotarev density theorem, the
quantities F((j>p) = rp for pJflN are dense in this image. (Here 4>p is again a Frobenius
element for p in G.) In particular, they cannot be finite in number, so we get a
contradiction.

It remains to discuss the case where infinitely many Px are dihedral. Let A be the set
of A for which Px has this property. For each A e A, we can find a Cartan subgroup Cx of
GL(2, Fx) such that Gx is contained in the normalizer Nx of Cx in GL(2, Fx), but such
that Gx is not contained in Cx. The inverse image of Gx Pi Cx in G is then an open
subgroup Hx of G of index 2 in G; it corresponds to a quadratic field KK <= Q which is
unramified a priori at all primes not dividing Nl. However, the argument on pp. 29-30 of
[18] shows that Kx is in fact unramified at I when I is sufficiently large. This implies that
the quadratic fields Kx (for A e A) are finite in number. After replacing A by an infinite
subset of A, we can assume that the Kx all coincide with a fixed quadratic extension K of
Q in Q.

Let a be the Dirichlet character which corresponds to K. We have

ap = a(p)ap (mod A)
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for all p Jf1 IN, whenever A belongs to A. The infinity of A then implies that we have the
equality

ap = a(p)ap

for almost all p, contrary to the hypothesis that / is not a form with complex multiplica-
tion. This completes the proof of Theorem 2.1.

REMARK. In two places in our argument we have invoked the Serre/Swinnerton-Dyer
theory of [18] and [15] in order to have control over the local behavior of the mod A
representations p\ at the prime /. A method due to Fontaine and Serre (cf. [17]) should
furnish a complete description of the semisimplifications of the representations pK \h where
I c G is an inertia group at /, provided that the prime I is larger than k +1 and prime to
JV. Such a description would be an alternate way of obtaining the information we need.

3. In this section, we propose to prove an analogue of the statement (2) given in the
introduction. For this, we again assume k > 1 and that / has no complex multiplication.
We begin by sketching some results of Momose [11].

For each automorphism y of the field E, we consider the newform

yf=t y(an)dn.
n = l

There may or may not exist a Dirichlet character x such that

for almost all p. If the character x exists, it is unique; we will then call it xy- Let F be the
subset of those 7 such that xy exists; then, as it turns out, F is an abelian subgroup of the
group of automorphisms of E. Let F = Er be the fixed field of F. Let n = [E:F].

We note that each character xy may be regarded as an E*-valued character on the
Galois group G; its kernel is then an open subgroup Hy of G. We let H be the
intersection of the Hy and let K be the corresponding Galois extension of Q. (Thus
H = Gal(Q/K).)

Finally, for 7, 8 e T, we can use the characters Xy a nd Xs to define a certain Jacobi
sum c(y, 8)eE. Then c(y, 8), viewed as a function of 7 and 5, is a 2-cocycle on F with
values in E*. In a well-known way, we may use this cocycle to define a central simple
algebra 36 over F such that E is a maximal commutative semisimple subalgebra of 36. It
turns out that 36 has order at most 2 in the Brauer group of F; this means that we have
either

36 = M(n, F)
or else

36 = M{\n, D),

where D is a quaternion division algebra over F. In the former case, we let D = M(2, F);
thus D is in either case a quaternion algebra over F whose image in the Brauer group of
F is the same as that of 36.
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Now the construction of the representations px of G may be very quickly summarized
in the following schematic way: there is a certain vector space V of dimension 2 over E such
that p( gives the action of G on

V, = V®QQ(,

which is then a free rank-2 module over Et. Momose showed that there is a natural action
of 36 on V which is such that the actions of £ and of H on V( commute for each I. The
commutant of 36 in EndQ(V) is naturally isomorphic to D; therefore for each prime
number I, the restriction of p, to H may be considered as a map

P,:H->(D®QQ,)*.

If we let n denote the reduced norm map in the algebra D (and its I-adic completions), we
find easily that the composition n°Pi is just the (k — l)th power of the cyclotomic
character

For each I, let us now set H( = pi(H). It follows from the above description that H( is
contained in the group

{xe(D®QQ,)*|nx6Qt}.

Momose proved that H( is an open subgroup of this latter group for each I, generalizing
statement (1) of the introduction.

We now turn to statement (2). We consider only those prime numbers such that

£><g>QQ(=M(2,F<g>QQ,). (*)

All but finitely many primes have this property. Let R be the integer ring of F, and for
each / let Rl = R®z,Zi be the completion of R at /. Replacing p, by an isomorphic
representation, we may suppose for almost all I that p( sends H to the group

A, = {x e GL(2, Ri) | det(x) e Zf*""}.

Then Ht is a subgroup of A, for almost all /.

THEOREM 3.1. We have Ht = A; for almost all I.

Proof. For each finite place v X N of the field K, let av be that element of F which is
equal to the trace of Pi{<t>v) for I prime to v; (f>v denotes a Frobenius element for v in H.
Our first task is to show that there is a place v such that a\ generates the field F over Q.
For this, let us take at random a prime number I for which (*) is satisfied; we will find a v
prime to IN such that a\ generates F<8>Qi as a Q(-algebra.

Consider

U = {xeHl | (trace x)2 generates F® Q(}.

This is obviously an open subset of Hh Also, using the fact that H{ is open in Ah it is not
hard to show that U is non-empty. By the Cebotarev density theorem, we may find
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Frobenius elements <£„ such that Pi(<t>v) belongs to U; the corresponding numbers a,, then
satisfy our requirement.

Now av is an algebraic integer because the coefficients of / are algebraic integers;
thus aveR. Since a\ generates F over Q, it generates Rt as a Z(-algebra for almost all /.
Taking x( = Pi(</>u), we find for almost all I that H, contains an element X| such that
(trace x()

2 generates R, over Z,.
Using (2.2) and (3.1) of [12], we find that the equality H, = A, holds whenever the

following conditions hold:
(i) the determinant map Ht —* zYk~1) is surjective;

GO «>5;
(iii) H, contains an element x{ as above;
(iv) for each A | /, the group pK(H) is an irreducible subgroup of GL(2, Fx) whose

order is divisible by I.
In view of the above discussion and Theorem 2.1, conditions (ii), (iii) and (iv) are satisfied
for almost all I On the other hand, we know that det ° p, coincides on H with the (k — l)th
power of the /-adic cyclotomic character xi- Since the map

is surjective for almost all /, condition (i) holds also for almost all I.

4. In this section we present a variant of Theorem 3.1, found by E. Papier,
concerning the full group

G, = ft(G).

For large enough /, we can (and will) view p, as a continuous homomorphism

, O®Z,)

whose restriction to H takes values in A| cGL(2, Rt). Given yeY, we consider the
representations ypt and pi®x-y These are isomorphic, being semisimple and having the
same character. Thus there is a matrix XeGL(2, JE,) such that we have

Since \y is trivial on H and since p^H) g A,, the matrix X commutes with the image H, of
H. This implies that X is a scalar matrix, so that we have the equality of matrices

Y(pl(g))= Pi (g)X-y(g)

for all ge G and yeT.
Meanwhile, for geG, let a(g)eE* be such that

for all yeT; such an element exists by Hilbert's theorem 90. We may certainly choose
a(g) independently of / (the prime I does not appear in the definition of a(g)) and such
that a(g) depends only on the image of g in GIH. Thus there are only finitely many
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numbers a(g), and we may assume that they are all elements of O* by choosing / large
enough.

The matrices Pi(g)a(g)~1 are then elements of GL(2, O|) which are invariant by F;
they are consequently in GL(2, R,). In the equality

0 e(g)/a(g)JlL0 a(gr/e(g)

the product enclosed in curly brackets is an element of A,, since it belongs to GL(2, R()
and has determinant equal to Xi(g)k~'- By Theorem 3.1 we obtain the following result.

THEOREM 4.1. (E. Papier). For all but finitely many primes I, the image of p( is the
subgroup of GL(2, Ot) generated by the group A,, together with the finite set of matrices

r«(g) o I
L 0 e(g)/a(e)J'e(g)/a(g)J

where g e G/H.
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