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Abstract

Plastic production has greatly increased in the past decades and has become central to modern
human life. Realization is dawning that plastics break down into smaller pieces resulting in
micro- or nanoplastics (MNP) that can enter humans directly via the environment. Indeed,
MNP have been detected in every part of the human body, including the placenta, which is
concerning for development. Early developmental stages are crucial for proper growth and
genome programming. Environmental disruptors in MNP can have detrimental effects during
this critical window as well and can increase the risk of developing disease and dysfunction. In
addition, MNP may impact situations in which developmental pathways are reactivated after
birth such as during organ repair. Currently, there is no overview of how MNP can impair
(human) development and repair. Therefore, we provide an extensive overview of available
evidence on MNP impacting developmental and regenerative processes in various organs in
humans and rodent models. In addition, we have included the impact of some additives that can
leach from these MNP. We conclude that MNP and their additives can have modulating effects
on developing and regenerating organs.

Impact statement

Plastics have become central to modern human life and have led to the new environmental
problem of microplastics. Humans are unavoidably exposed to these microplastics through air,
food and water and therefore microplastics have been detected in many different compartments of
the body. This exposure could have implications for the function of cells and organs in our bodies,
including how they develop and repair themselves when damaged. However, there is currently no
comprehensive overview of the effects of microplastics on organ development and processes
related to organ repair. Therefore, this review aims to provide an extensive overview of available
evidence present in the public domain describing how microplastics and additives leaching from
plastics can affect developing and repairing organs. The available studies suggest that we do not
have the luxury to be complacent about microplastic pollution anymore, clear effects on devel-
opment and repair have been found. It is therefore imperative that action is taken to reduce plastic
use and prevent further contamination of the environment and ourselves with microplastics.

Introduction

The global production of plastic has surged dramatically from 1.5 million tons in 1950 to over
390 million tons in 2021 (Plastics Europe, 2021). The most widely used polymers include
polyethylene, polypropylene, polystyrene, polyvinylchloride and polyamide (Pefialver et al.,
2020). Their popularity arises from their versatility, durability, ease of use and cost-effectiveness
(Wijesekara et al., 2018). Nevertheless, their lack of biodegradability results in them persisting in
the environment, causing considerable pollution (Bahl et al., 2021).

Over time, environmental factors cause plastics to break down into smaller fragments
(Gijsman and Dozeman, 1996; Andrady, 2011; Min et al., 2020; Rodriguez et al., 2020). When
these fragments are reduced to sizes smaller than 5 mm, they are classified as either microplastics
(5 mm-1 um) or nanoplastics (<1 um) (Hartmann et al., 2019). These micro- and nanoplastics
(MNP) are further categorized, based on their mode of environmental release, into primary MNP
specifically produced to be small and secondary MNP originating from degradation of larger
plastic waste (Figure 1) (Gijsman and Dozeman, 1996; Andrady, 2011; Min et al., 2020; Rodriguez
etal,, 2020; Allen et al., 2022). As a result, MNP are highly heterogeneous, varying in size, shape
and polymer composition (Koelmans et al., 2022).

High amounts of MNP have been isolated from all environmental compartments ranging
from water to soil and air (Figure 1) (Gasperi et al., 2018; Li et al., 2018; Zhou et al., 2020). In the
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Figure 1. Microplastics exposure routes. An overview of different microplastic exposure routes. Primary sources include clothes and cosmetics, whereas secondary sources include
larger pieces of plastic. Microbeads from cosmetics, microfibers from clothes and smaller plastic particles derived from plastic degradation can enter humans directly via food
and/or drinks or via the natural environment. When pregnant women are exposed, a developing fetus can be exposed too. Image created with BioRender.com.

latter case, MNP have been found both in indoor and outdoor air
(Evangeliou et al., 2020; Zhang et al., 2020; Jenner et al., 2021). The
levels of MNP indoors are higher compared to outdoors and this is
worrying because we spend 90% of our time indoors (Gaston et al.,
2020; Amato-Lourenco et al., 2022). In addition, MNP are added on
purpose to cosmetics and have been identified in our drinking water
and food (Guerranti et al., 2019; Koelmans et al., 2019; Jin et al.,
2021; Dronjak et al., 2022; Shi et al., 2022). Consequently, humans
are unavoidably exposed to MNP, that can enter the body via
ingestion, inhalation and possibly dermal contact. Indeed, MNP
have been detected in different compartments of the human body
such as the blood, colon, liver, testes and lungs (Amato-Lourengo
et al., 2021; Ibrahim et al., 2021; Horvatits et al., 2022; Jenner et al.,
2022; Leslie et al., 2022; Zhao et al., 2023). Notably, MNP were
found in human placental tissue too and this may especially be of
concern for a fetus (Ragusa et al., 2021; Amereh et al., 2022; Zhu
et al., 2023). However, to date, there is no overview of effects of
MNP on organ development and processes related to development
such as regeneration and repair. Therefore, we here provide a
comprehensive overview of current state-of-the-art knowledge
regarding effects of MNP on developmental processes, including
embryonic to childhood development and reactivation of develop-
mental processes during regeneration in humans and rodent
models.

Plastic additives

Not only the plastic particles themselves, but also plastic additives
can influence biological processes. Properties of plastic polymers
can be modified to achieve a desired material performance by the
addition of chemical additives such as plasticizers, flame retardants,
photo- and heat stabilizers, antioxidants and pigments (Fauser
etal.,, 2022). Notably, endocrine disruptors bisphenol A and phthal-
ates are commonly used as additives in plastics and can therefore
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also leach from MNP (Liu et al., 2019; Cao et al., 2022). In addition,
MNP can still contain residual monomers that failed to polymerize,
as well as unintentional byproducts of reactions during the manu-
facturing process (Lewandowski et al., 2005; Klaeger et al., 2019).
MNP can also retain toxic organic compounds, like polycyclic
aromatic hydrocarbons, polychlorinated biphenyls, pesticides and
inorganic compounds such as heavy metals from the environment
(Wu et al,, 2019; Mei et al., 2020; Lu et al., 2022). Most of these can
leach from MNP into the surrounding environment, including
inside the human body and may consequently cause damage or
affect development.

Bisphenol A and phthalates are the most studied plastic addi-
tives and have been found in human tissues and blood. Both can
also cross the placental barrier and reach a developing fetus (Tang
et al,, 2020; Mok et al., 2021; Warner et al., 2021). Bisphenol A is
thought to be the first synthetic estrogen produced and the majority
is metabolized in the liver by UDP-glucuronosyltransferase
enzymes (Hanioka et al., 2008). Bisphenol A and phthalates exhibit
endocrine effects by modulating androgen receptor and estrogen
receptors alpha and beta, thereby disturbing normal signaling
(Rubin, 2011; Engel et al., 2017). Notably, developing fetuses do
not or only lowly express UDP-glucuronosyltransferase enzymes
and are consequently exposed to higher bisphenol A concentrations
(Hines, 2008). However, the contribution of MNP to bisphenol A
and phthalate exposure may be limited as humans are already
exposed to substantial amounts of these chemicals by consuming
food and beverages that are contaminated with leachate from
reusable plastic bottles or food packages (Liu et al., 2019; da Silva
Costa et al., 2021; Sessa et al., 2021). Interestingly though, animals
exposed to MNP showed higher levels of these endocrine disrupting
chemicals compared to animals without or with less microplastic
exposure (Fossi et al., 2012; Chen et al., 2017; Barboza et al., 2020;
Lu et al.,, 2021). Recently, Lopez-Vazquez et al. (2022) showed that
over 65% of bisphenol A or phthalates in MNP can become
bioaccessible when exposed to physiologically relevant human
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digestive conditions. While precise data on the quantities of addi-
tives leaching from MNP remain unavailable, existing studies sug-
gest that it does occur. Hence, the potential contribution of MNP to
exposure levels of bisphenol A and phthalates warrants consider-
ation. Relevant data concerning the impact of bisphenol A and
phthalates on developmental and repair mechanisms will therefore
also be addressed.

Microplastic exposure on various organs and tissues
Placental and fetal development

Human gestation starts when a sperm and egg cell fuse during
fertilization to form a one-celled diploid totipotent zygote (Figure 2)
(Clift and Schuh, 2013). This initiates a highly sensitive phase of
development with the zygote maturing into a blastocyst containing
an outer layer of trophoblasts and enclosing an inner cell mass, the
precursors of the future fetus (Rossant and Tam, 2022). Tropho-
blasts will differentiate into components of the placenta, establish-
ing a critical link between maternal and fetal tissues (Cindrova-
Davies and Sferruzzi-Perri, 2022). This stage of development is
particularly vulnerable to environmental disturbances as it is sus-
ceptible to gene expression modifications in both the fetus and the
placenta (Assou et al., 2011). Perturbations in gene expression can
have deleterious consequences for the fetus, either directly or
indirectly by impacting placental development, and such risks
persist even after removal of the stressors (Nesan et al., 2018; Maitre
etal, 2022).

Research investigating the effects of MNP on fetal development
has produced important insights. Amereh et al. (2022) delineated a
potential dose—response relationship in humans between placental
plastics and reduced fetal growth, suggesting possible interference
in nutrient exchange in the placenta. This is supported by several
in vitro studies showing that microplastic exposure is toxic for a
variety of human placental cell lines (Lee et al., 2021; Dusza et al.,
2022; Shen et al,, 2022; Ragusa et al., 2022a; Dusza et al.,, 2023). In
pregnant mice exposed to polystyrene microparticles, similar out-
comes were found, demonstrating disruptions in placental metab-
olism (Chen et al., 2022; Aghaei et al., 2022a; Aghaei et al., 2022b).
Moreover, pregnant rats or mice exposed to polystyrene/polyethyl-
ene MNP showed detectable spread of particles throughout
mothers and pups within 24 h, alongside a variety of other effects
like lower fetal body weights, less vascularization of the placenta
and higher expression of genes involved in cholesterol/lipid

metabolism, the complement system and the coagulation cascade
(Fournier et al., 2020; Park et al., 2020; Huang et al., 2022; Aghaei
etal,, 2022a, b; Chen et al., 2023). These findings suggest that MNP
exposure may disrupt both placental function and fetal develop-
ment (Figure 3), thereby potentially leading to detrimental conse-
quences for embryonic development.

With respect to developmental aberrations and endocrine dis-
rupting chemicals like bisphenol A and phthalates, many more
studies have been published. These have been elegantly reviewed
by Rolfo et al. (2020) among others. In short, numerous studies,
including in vitro studies, animal models and population-based
studies, compellingly suggest that endocrine disrupting chemicals
can adversely affect fetal and placental health. These disruptors
potentially interfere with the developing embryonic epigenome,
thereby predisposing individuals to disease in adulthood. Further-
more, endocrine-disrupting chemicals may trigger or contribute to
serious pregnancy-related conditions such as preeclampsia, fetal
growth restriction and gestational diabetes. Therefore, studies into
effects of MNP should always consider additives contributing or
being responsible for any effect that is found.

Reproductive system development

Reproductive structures already begin to form in the embryonic
stage (Figure 2) (Pask, 2016). The urogenital system is bipotential
and undifferentiated until week 6 of gestation and can still develop
into female and male primary sexual organs (Makiyan, 2016;
Garcia-Alonso et al,, 2022). The presence of the sex-determining
region Y gene on the Y chromosome is the main determining factor
in development of the testes (Koopman et al.,, 1991). The testes
subsequently secrete anti-Miillerian hormone and the androgen
testosterone, which induce differentiation toward male sex organs
(Josso et al., 1993; Nassar and Leslie, 2023). In contrast, when an
embryo lacks the Y chromosome, and thus the sex-determining
region Y, there is no formation of the testes. Therefore, anti-M-
illerian hormone and testosterone are not produced and this
eventually leads toward development of female sex organs
(Healey, 2012; Cunha et al., 2018).

Effects on reproductive system development were studied for
two types of MNP, polystyrene and polyethylene. Maternal expos-
ure to polystyrene nanoplastics resulted in lower testicular weights
and altered morphology with lower sperm count in male offspring,
while polyethylene microplastics reduced oocyte maturation and
fertility in female offspring (Huang et al., 2022; Zhang et al., 2023).

Day 0 Day 5 Day 15

Week 5 Week 15 Week 25

Fertilization Zygote Blastocyte || Gastrula

Embryo Fetus Fetus

Figure 2. Early human development. An overview of human development at different time points. First, a sperm cell fuses with an egg cell during fertilization to form a zygote and
this time point is referred to as gestational day 0. The zygote develops further into a blastocyte, consisting of an inner cell mass (purple cells) and trophoblasts (pink cells) on day
5. The inner cell mass further differentiates into ectoderm (blue cells), mesoderm (red cells) and endoderm (yellow cells) on day 15 and is called a gastrula. The embryo will then

further develop and is called a fetus after week 8. Image created with BioRender.com.
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Figure 3. Effects of microplastics on various organs and tissues. Overview of effects of microplastics exposure on various organs and tissues of a developing fetus. Microplastics have
detrimental effects on development of the placenta, central nervous system, liver, intestines, lungs, reproductive system and stem cells. Image created with BioRender.com.

In both studies, oxidative stress was shown to be associated with the
effects found. Further information on the effects of MNP on
development of the male or female reproductive system is unfor-
tunately limited.

An abundance of data exists concerning the impact of various
plastic additives. For instance, bisphenol A is implicated in causing
developmental abnormalities, as evidenced in animal models.
These adverse effects seem to be particularly pronounced in the
female reproductive organs. Different rodent studies found that
fetal bisphenol A exposure resulted in abnormal follicle develop-
ment (Susiarjo et al., 2007; Rodriguez et al., 2010; Karavan and
Pepling, 2012). Human oogenesis only takes place during embry-
onic development of the ovaries, meaning that the number of
oocytes is established at birth and abnormalities during develop-
ment will therefore impact fertility later in life (Feher, 2012).
Furthermore, Hunt et al. (2012) treated pregnant rhesus monkeys
with bisphenol A and found that second trimester fetuses had more
oocytes with an abnormal number of chromosomes and abnormal
morphology. Male offspring of pregnant rats exposed to bisphenol
A during pregnancy and beyond had lower sperm counts and
motility and less expression of steroid receptors in the testes.
Worryingly this resulted in less fertility in these animals and their
offspring up to the F3 generation (Salian et al., 2009). Various other
studies have confirmed that prenatal bisphenol A exposure can lead
to sperm with abnormal morphology and to a lower sperm count
and function (Vilela et al., 2014; Hass et al., 2016; Rahman et al.,
2017). Moreover, bisphenol A exposure was also associated with a
lower anogenital distance in humans (Mammadov et al., 2018; Sun
etal., 2018). This anogenital distance is a biomarker of fetal andro-
gen exposure. A short distance in males is associated with genital
malformations and reproductive disorders later in life (Schwartz
et al,, 2019). Moreover, the anogenital distance is linked to adult
testicular function, which is defined by sperm and testosterone
production (Foresta et al., 2018; Priskorn et al., 2018, 2019). Not-
ably, prenatal exposure to phthalates has also been linked to a
smaller anogenital distance in human infants (Swan et al., 2005;
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Bornehag et al., 2015). Various animal studies confirmed these
human findings in offspring of rats or mice who were treated with
different concentrations of phthalates during pregnancy (Ma et al.,
2017; Hsu et al., 2021). The offspring of phthalate-exposed animals
also showed signs of histological damage in the testes and apoptosis
of cells in the seminiferous tubule, which is responsible for sperm
production (Ma et al., 2017). The female reproductive system was
also affected by phthalate exposure. Mice that were prenatally
exposed to phthalates had fewer healthy follicles and this effect
was found up to the F3 generation also having lower total follicle
numbers (Brehm et al., 2018; Repouskou et al., 2019).

In summary, though the evidence from animal models is
limited, it suggests that MNP could negatively affect the develop-
ment of the reproductive system in fetuses, potentially leading to
infertility or other reproductive issues (Figure 3). There is more
robust and compelling evidence for the adverse effects of additives,
indicating that MNP can harm developing reproductive organs
through these substances. Therefore, studies investigating how
much of the additive presence in humans is derived from micro-
plastics exposure will be invaluable.

Central nervous system development

One of the first steps in the development of the nervous system
begins in the third week of gestation and is the differentiation of
ectoderm into neuroectoderm (Pleasure et al., 2017). Neuroecto-
derm cells are neural stem cells that are capable of self-renewal and
can differentiate into neurons (Sansom et al., 2009; Zhang et al.,
2010; Thakurela et al., 2016). These processes can be modeled
in vitro with embryonic or pluripotent stem cells and can then be
used to study effects of MNP. Neurospheres generated from human
embryonic stem cells were exposed to polyethylene nanoplastics
and particles were found to penetrate deep into these neurospheres,
causing oxidative stress with higher levels of malondialdehyde.
Importantly, the expression of genes that play crucial roles in
embryonic neural development was lower indicating that


https://doi.org/10.1017/plc.2023.19

Cambridge Prisms: Plastics

polyethylene nanoplastics can impair neural development
(Hoelting et al., 2013). Another study used human-induced pluri-
potent stem cells and differentiated them into human forebrain
cortical spheroids. Exposing these cortical spheroids to polystyrene
MNP resulted in lower cell viability and expression of mature
neuronal markers indicating that polystyrene MNP can also affect
neural differentiation (Hua et al., 2022).

Others have investigated the effects of microplastic exposure in
mouse models. Yang et al. treated pregnant mice with polystyrene
MNP. Polystyrene nanoplastics were observed throughout the fetus
including the brain, especially in the thalamus. Excessive produc-
tion of reactive oxygen species, more apoptosis, less proliferation,
less gamma-aminobutyric acid synthesis and less expression of
mature neuronal genes were found compared to unexposed fetuses.
Moreover, mice showed more anxiety-like behavior in several tests
after nanoplastic treatment. Together these findings indicate that
polystyrene nanoparticle exposure during gestation can inhibit fetal
brain development, which may result in anxiety (Yang et al., 2022).

In addition to in utero exposure, maternally ingested polystyr-
ene nanoplastics were also found to reach the brain via breast milk
(Jeong et al., 2022). Milk-exposed pups showed less proliferation
and lower expression of mature neuronal genes in the hippocam-
pus, which indicates impairment of neuronal development. This
reduced brain development resulted in neuronal dysfunction and
cognitive deficit, which was dependent on estrogen receptor alpha
and was more severe in exposed females.

Finally, bisphenol A and phthalates also have detrimental effects
on neural development. Various studies found that these endocrine
disrupting chemicals can diminish neural differentiation, impair
neurotransmission pathways and diminish myelination (Zhou
et al., 2015; Grohs et al., 2019; Tiwari et al, 2019; Lucaccioni
et al.,, 2021). Moreover, exposure to bisphenol A and phthalates
during gestation is linked to behavioral problems (particularly in
girls), lower nonverbal IQ scores, anxiety and depression-like
behavior (Zhou et al., 2015; Ejaredar et al,, 2017; Daniel et al,,
2020; Van Den Dries et al., 2020; Guilbert et al., 2021; Rolland
et al., 2023).

Together these studies indicate that MNP and/or their additives
can directly or indirectly impair neural development. Whether this
is happening in humans will depend on the number of particles that
can reach the human brain and this information is sadly lacking
(Figure 3). Moving forward in this field, large longitudinal studies
following brain development in children in combination with
analysis of MNP exposure will be necessary. Having the possibility
to image MNP presence in brain tissue would be an enormous step
forward, but for now is still science fiction.

Intestinal development and regeneration

Intestines develop from endoderm forming a hollow cylinder sur-
rounded by cells of the mesoderm resulting in a primitive intestinal
tube, whereas the ectoderm forms the enteric nervous system
during week three of gestation (Spence et al, 2011). Then the
foregut develops into esophagus, lung, stomach, liver and pancreas
and the midgut and hindgut into the small and large intestines
(Sheaffer and Kaestner, 2012; Chin et al., 2017; McCracken and
Wells, 2017; Zhang et al., 2017). Signaling pathways controlling
intestinal stem cell self-renewal include Wnt and Notch (Van Camp
et al., 2014; Demitrack and Samuelson, 2016).

Unfortunately, no studies investigated effects of microplastics or
additives on intestinal development, but some did use organoids.
Intestinal organoids are an excellent way to study intestinal repair
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mechanisms and reactivated developmental pathways. Intestinal
mouse organoids exposed to polystyrene MNP had higher expres-
sion of Notch pathway genes, other intestinal stem cell markers and
proliferation markers compared to unexposed organoids. In con-
trast, the expression of endothelial and goblet cell markers was
lower, indicating that polystyrene MNP can stimulate stemness but
impair cell differentiation by overstimulation of Notch signaling
(Xie et al., 2023).

Effects of MNP on microbiome development were also investi-
gated and this is of relevance because the microbiome can influence
the function of the gut. Environmental stimuli in their turn can
influence development of the microbiome, especially up until the
age of 5 (Stiemsma and Turvey, 2017; Roswall et al., 2021; Wernroth
et al., 2022). Infants can be exposed to high levels of MNP through
bottle feeding, since MNP are found in various milk products and
can be released from feeding bottles (Li et al., 2020; Da Costa Filho
et al, 2021). In addition, infants can ingest MNP through breast-
feeding, as MNP have been found in human breastmilk (Ragusa
et al., 2022b; Liu et al.,, 2023). Notably, MNP were found in both
infant formula and in the feces of infants consuming these types of
milk (Zhang et al., 2021; Liu et al., 2023). Fournier et al. processed
stool of infants in a novel fermentation system that simulates
physicochemical and microbial conditions in the intestines of a
toddler. Exposing the microbiome of infants to polyethylene MNP
resulted in lower numbers of healthy microbes and more oppor-
tunistic pathogens. Consequently, an altered microbial metabolic
activity was found including a changed volatile organic compounds
profile with less butyrate production (Fournier et al., 2023). This is
of interest because higher butyrate production is associated with
protection against allergies and asthma (Roduit et al., 2019; Depner
et al,, 2020). These findings indicate that polyethylene MNP could
cause significant disturbances in the microbiota of infants
(Fournier et al., 2023).

Despite the intestinal system’s pivotal role in MNP entry into the
body, knowledge regarding their effects on intestinal development
and repair remains surprisingly sparse. A limited number of exist-
ing studies suggest that the ingestion of MNP may hinder the
differentiation of intestinal epithelial cells and cause microbiota
dysbiosis (Figure 3). Given the vital nature of the intestinal system
as a primary entry point for MNP, it is imperative that this area
receives a significantly greater level of research focus than it
currently does.

Liver development

While the intestines originate from the midgut and hindgut, the
liver develops from the more distal end of the foregut in the third
week of gestation (Sheaffer and Kaestner, 2012; Chin et al., 2017).
Endoderm-derived cells develop further in hepatoblasts, that dif-
ferentiate with hepatocyte growth factor and Wnt signaling into
hepatocytes or cholangiocytes (Shin and Monga, 2013; Giancotti
et al., 2019).

With respect to effects of MNP on liver development, offspring
of pregnant mice exposed to polystyrene MNP had higher liver
weights in comparison to control mice. Moreover, expression of
hepatic genes involved in fatty acid metabolism was lower. How-
ever, the observed results were sex-specific and dependent on the
size of the polystyrene MNP. Whereas anabolic pathways were
slower in males, females maintained the synthesis of lipids at the
costs of amino acids. Eventually, these changes induced by maternal
polystyrene microplastic exposure resulted in a higher risk of
hepatic lipid accumulation and the development of metabolic
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disorders in offspring (Luo et al., 2019a, 2019b). Interestingly, no
significant change in liver weight in offspring was found after
maternal exposure to nanoplastic in a study of Huang et al.
(2022). Therefore, the development of a higher liver weight is
probably size-dependent since it was only found after maternal
exposure of polystyrene microplastic of 5 pum (Luo et al., 2019b).
Interestingly, exposure of pregnant mice to polystyrene nanoplas-
tics did induce higher levels of malondialdehyde and pro-
inflammatory cytokines in liver tissue of their offspring indicating
oxidative stress induction. Moreover, metabolomics revealed that
levels of metabolites involved in carbohydrate metabolism were
lower. Therefore, these results show that maternal exposure to
polystyrene nanoplastics can trigger hepatic oxidative stress and
inflammation resulting in a disrupted carbohydrate metabolism in
their offspring (Huang et al., 2022).

In addition to studies on the direct effects of MNP on liver
development, some examined the effects of additives. Different
studies showed that prenatal bisphenol A and phthalate exposure
can impair liver development, resulting in metabolic disorders
including changes to glucose and lipid metabolism (Maranghi
et al., 2010; Strakovsky et al., 2015; DeBenedictis et al., 2016; Sol
et al., 2020; Long et al., 2021).

Although the evidence is not abundant, the available studies
suggest that maternal exposure to MNP and additives leaching
from plastics can detrimentally affect liver development, resulting
in metabolic disorders (Figure 3). Again, given the proximity of the
liver to a main port of MNP entry, more focus on this organ is
warranted.

Lung development and regeneration

Another organ that develops from the primitive foregut is the lung.
First, two independent outpouchings of the more proximal end of
the foregut arise and these two lung buds develop into a tree-like
system of airways ending in respiratory units called alveoli
(Warburton et al., 2005; Schittny, 2017). Eventually, airways consist
of pseudostratified epithelial cells with basal cells, ciliated cells and
secretory cells such as goblet and club cells, while alveoli are lined
with alveolar epithelial cell types I and IT (Desai et al., 2014; Li et al.,
2015). Some of these epithelial cells have progenitor functions that
reactivate developmental pathways when repair of damaged struc-
tures is needed (Levardon et al., 2018; Olajuyin et al., 2019; Davis
and Wypych, 2021). Like for the intestine, pathways important in
regulation of lung development and repair include Notch and Wnt
(Kiyokawa and Morimoto, 2020; Aros et al., 2021).

We recently generated human and mouse lung organoids that
self-assemble from isolated primary lung epithelial cells. These
developing mouse and human lung organoids were exposed to
polyester or polyamide 6,6 microfibers for 14 days. Both polyester
and polyamide 6,6 microfiber exposure resulted in lower numbers
and sizes of mouse and human organoids with the effects of
polyamide 6,6 being most profound. Interestingly, this effect of
polyamide 6,6 was mediated by compounds leaching from the
microfibers. The observed effects of the leachate did not affect
stemness of epithelial progenitors, or fully developed epithelial
cells, but specifically inhibited differentiation of progenitor cells
into airway epithelial cell types. Therefore, these results indicate
that exposure to plastic microfibers and compounds leaching from
them may affect developing lungs by impairing epithelial differen-
tiation (Dijk et al,, 2021).

Winkler et al. (2022) examined the effects of polyester micro-
fiber exposure on developing human airway organoids in more
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detail. In this study, organoid growth was not affected by exposure
to polyester microfibers and exposure did not induce oxidative
stress or cell activation. However, lower levels of club cell markers
were found, suggesting that exposure to polyester microfibers can
inhibit generation of this epithelial cell type from progenitors.

Collectively, these two studies demonstrate that MNP and com-
pounds leaching from MNP can have significant effects on differ-
entiation of lung epithelial cells (Figure 3).

Regeneration in other tissues

Fetal development is highly dependent on specific pathways that
are subsequently downregulated after birth. Interestingly, these
pathways are reactivated when tissue damage occurs and regener-
ation is required. This includes, for instance, regeneration of dam-
aged skeletal muscles after exercise, which is mainly governed by
normally quiescent satellite cells (Relaix and Zammit, 2012). After
reactivation, these stem cells proliferate and differentiate into myo-
genic cells to repair damaged myofibers (Yin et al., 2013; Zhang
et al., 2018). When mice were exposed to polystyrene MNP for
30 days and skeletal muscle injury was induced on day 25, polystyr-
ene microplastic exposure resulted in lower relative muscle weights,
less and smaller myofibers, lower gene and protein expression of
myogenic differentiation markers, more lipid deposition and more
expression of adipogenic markers after injury compared to control
mice (Shengchen et al., 2021). In another study, pregnant mice were
exposed to polystyrene nanoplastics, which resulted in an abnormal
morphology of skeletal muscles and in lower expression of genes
involved in muscle development in their offspring (Chen et al.,
2023).

Other cells capable of regeneration are mesenchymal stromal
cells (Pittenger et al., 2019). These multipotent cells can differen-
tiate into osteocytes, chondrocytes and adipocytes (Uccelli et al,,
2008). Najahi et al. exposed human bone marrow and adipose
mesenchymal stromal cells to polyethylene terephthalate MNP.
Less proliferation and self-renewal and more senescence, reactive
oxygen species and DNA damage was found in both types of
mesenchymal stromal cells after exposure. Polyethylene terephthal-
ate exposure also induced higher expression of early adipose mark-
ers in adipose mesenchymal stromal cells and expression of early
chondrocyte markers in bone marrow mesenchymal stromal cells
compared to untreated mesenchymal stromal cells. These findings
indicate that polyethylene terephthalate MNP can induce stress and
impair differentiation of mesenchymal stromal cells into more
mature cells (Najahi et al., 2022).

In a study conducted by Im et al., the exposure of human bone
marrow mesenchymal stromal cells to polystyrene nanoplastics led
to a decrease in reactive oxygen species levels and suppressed
expression of markers for osteocytes, chondrocytes and neurons.
Intriguingly, genes associated with adipogenesis were again mark-
edly elevated, suggesting a shift in differentiation toward adipocytes
(Im et al., 2022). Therefore, MNP exposure appears to slow down
muscle repair and promote adipogenic differentiation of mesen-
chymal stromal cells (Figure 3).

Perspectives and conclusion

The presence of MNP in our environment and our food and drinks
is evident and exposure to significant levels appears unavoidable
(Gasperi et al.,, 2018; Li et al., 2018; Koelmans et al., 2019; Evange-
liou et al., 2020; Zhang et al., 2020; Zhou et al., 2020; Jenner et al,,
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2021; Jin et al., 2021; Dronjak et al., 2022; Shi et al., 2022). Conse-
quently, MNP have been found throughout the entire human body
including the placenta, which is of great concern for development
(Ibrahim et al., 2021; Ragusa et al.,, 2021; Horvatits et al., 2022;
Jenner et al., 2022; Leslie et al., 2022; Zhu et al., 2023). However, the
effects of microplastic exposure on (human) development or repair
mechanisms are not well known and the absence of evidence of risk
cannot be translated into evidence for the absence of risk (Leslie and
Depledge, 2020; Gouin et al., 2021; Wardman et al., 2021).

Most studies have predominantly explored the impacts of MNP
composed of polystyrene or polyethylene terephthalate, typically
focusing on a singular size category or specific additive types such as
bisphenol A or phthalates. Yet MNPs are diverse in their polymer
composition, size and additives. As such, there is a pressing need for
broader research into the impacts of environmentally relevant
MNPs, incorporating varying types, sizes and their leachates.

The design and methodological approaches of these investiga-
tions are crucial. This includes the selection of the cell types and the
experimental setup, which should closely emulate our constant
exposure to probably low to moderate MNP levels. Regrettably,
most current experimental models do not reflect these conditions,
as they often focus on short-term, high-level exposure, resulting in
immediate toxicological outcomes such as cell death, oxidative
stress or cytokine release (Weis and Palmquist, 2021). The study
of continuous, low-dose exposure, relevant exposure routes and
developmental or repair processes are rarely prioritized and neither
are studies into mechanisms, even though they are highly pertinent
to real-life exposure scenarios. The frequent use of cancer cell lines
and culture conditions that do not represent in vivo conditions,
such as serum-free cultures, further confounds the ability to predict
the biological impact of MNP exposure accurately.

Organoids derived from primary cells could help overcome
some of these limitations by mimicking complex organ systems.
Nonetheless, they also have their own constraints, including atyp-
ical physiology, irrelevant exposure pathways and lack of interor-
gan communication. Thus, the use of animal models remains
essential to study the complex human physiological interactions.
Care should be taken to use these models in a way that represents
common human exposure with credible exposure levels and modes
and to focus on mechanisms behind any effects found in these
systems.

Another significant factor to keep in mind when evaluating
literature is the presence of a positive publication bias that also
affects the field of microplastics research. This bias tends to favor
studies demonstrating harmful effects of microplastics on bio-
logical systems, which can inadvertently skew the overall under-
standing of their impact. As a result, studies that find no significant
effects often face a higher hurdle in terms of getting published,
which can potentially silence an essential aspect of the conversation.
This imbalance can limit the diversity of our knowledge, creating a
distorted picture of microplastics’ overall influence. It is crucial to
address this bias to ensure a more comprehensive, balanced and
accurate understanding of microplastics and their effects, or lack
thereof, on biological systems. Ensuring the publication of all
research outcomes, irrespective of their direction, will help to avoid
overestimating the effects of microplastics and support the devel-
opment of effective and proportionate response strategies.

In conclusion, we have provided an extensive overview of stud-
ies investigating effects of MNP on developmental and regenerative
processes. MNP and additives commonly leaching from them can
impair differentiation and/or promote aberrant differentiation.
Therefore, MNP could have detrimental effects on a developing
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fetus and/or on repair processes in adult tissues of humans. The
scant available data indicate that for all discussed organs, there is
reason for concern (Vethaak and Legler, 2021). By addressing these
knowledge gaps in years to come, we may be able to protect
ourselves from potential health risks induced by MNP.
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