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LOCALLY NILPOTENT SKEW LINEAR GROUPS II

by B. A. F. WEHRFRITZ
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Our paper [6] studied in some depth certain locally nilpotent skew linear groups, but
our conclusions there left some obvious gaps. By means of a trick, which now seems
obvious, but then did not, we are able to tidy up the situation very satisfactorily. This
present paper should be viewed as a follow up to [6]. In particular we do not repeat the
motivation, basic definitions and references to related work given here.

The following was conjectured in [6], where substantial steps were taken towards its
solution.

1. Theorem. Let H be a locally nilpotent normal subgroup of the absolutely irreducible
skew linear group G. Then H is centre by locally-finite and G/CG(H) is periodic.

As pointed out in [6] this reduces the study of such groups H to considering
unipotent-free locally nilpotent skew linear groups over locally finite-dimensional
division algebras, about which much is known, see for example Chapter 3 of the forth-
coming book [4]. It follows immediately from 1 and [6] 1.4 that if H is a radical (in the
sense of Plotkin, i.e. H e PLit) normal subgroup of the absolutely irreducible skew linear
group G, then H and G/Ca(H) are both abelian-by-periodic. More generally these two
results with Theorem A of [7] yield the following.

2. Corollary. Let H be a normal subgroup of the absolutely irreducible skew linear
group G, where HePL(9lu5). Then there is an abelian normal subgroup A^H of G with
H/A locally finite and G/CG(H) is abelian by periodic.

The symbolism here and above is part of P. Hall's calculus of group classes, see the
opening pages of [3] for an account of this. Results 1 and 2 above focus attention on
the class of locally soluble groups and our techniques make a small dent into the
corresponding problem for this class. For any group X let T(X) denote the maximal
periodic normal subgroup of X and let B(X)/T(X) be the Hirsch-Plotkin radical of
X/T(X). We are able to prove the following.

3. Let G be an absolutely irreducible skew linear group of degree 1.

(a) / / G is locally soluble then G is abelian by locally-finite.

(b) Let H be a locally soluble normal subgroup of G and set B = B(H), K = C,^B) and
A = Bn K. Suppose that K/A can be made into an ordered group. Then H and
G/CG(H) are both abelian by periodic.
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The orderable condition here seems quite out of place. It does not show up explicitly
in the locally nilpotent case since every torsion-free locally nilpotent group is orderable
(e.g. [2] 13.1.6 and 13.2.2).

We start our proofs with the trick we missed in [6]. Let K be a normal subgroup of
the group H with H/K an ordered group, and suppose that R = £[//] is a crossed
product of the division ring E by H/K, so K = EnH. Pick a transversal To of K to H
and let D be the set of all formal sums

teT

where T^T0, the £teE*, the set of non-zero elements of E, and {tK:teT} is a well-
ordered subset of the ordered group H/K. (If T = 0 then x = 0.) Then the obvious
addition and multiplication on D is well-defined and makes D into a division ring
containing R as a subring. This may be proved in a similar way to 13.2.11 of [2]; in
particular the crucial lemmas 13.2.9 and 13.2.10 apply directly to H/K.

4. With the notation above assume also that H centralizes E. Then

ND.(H)=HCD.(H).

Proof. Trivially N^H) 2 HCD,(H). Let x = £ r t£, e N^H) and h e H. Then k = hxeH
and hx = xk. Thus

Now left and right multiplication in H/K preserves the order and of course the supports
of these two sums are equal subsets of H/K. Consequently htK = tkK for all t e T. But
then h'K = kK = h'K and tTl eCH(hK/K) for all t, t'eT. This is for all heH and so
t't~ieCH(H/K) for all s u c h t a n d t'. T h u s c h o o s i n g a fixed teT w e h a v e x = ( Z c e c c £ c t ) f

where C = Tt~l SCH(H/K).
Trivially t normalizes H and hence so does y = xt~l. But then for heH and l=hysH

we have fry = y/ and

Consequently chK = clK for any ceC and h~1leK. Comparing coefficients we obtain
[/J,C]^C, = /I~1/^C, and so hc = l for all ceC. Hence e'er1 centralizes h for all C,C'EC, and
this is for all h in H. Therefore if we pick any one ceC, then yc~1eCD,(H) and so

xeCD.{H)ctciHCD,{H).

The proof of the lemma is complete.

The theorem follows easily from 4 and Section 5 of [6]. It follows even quicker using
the following result, which we need for the locally soluble case.
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5. Let F be a field, R = F[G~\ an F-algebra, generated as such by the subgroup G of its
group of units, K a normal subgroup of G and L a division F-subalgebra of R generated as
such by K. Let C denote the centre of L and set A = Kr\C. Assume that K/A is orderable
and that C[K] ̂  L is both an Ore domain and a crossed product of C by K/A. Then

Proof. Set X = GnL*CL.G(K). Then R is a crossed product of L[CR(K)~\ by G/X by
[6] 2.6. But R = F[G], so L[C«(/C)] = F[Z]. Trivially X = Gr\NL^K)CL.G(K) in fact,
so L[CR(K)~\ = C[NL4K),CR(Ky]. Now L/C is central simple. Hence L®CCR{K)^
L[CR(K)]^R by [1] p. 363, Theorem 2. Therefore L = CrjVt.(K)].

By hypothesis C[K] is a crossed product of C by the orderable group K/A. By 4
there is a division ring D containing C[X] as a subring such that N ^K)
But C[/C] is also Ore. Consequently L is embedded naturally in D and NL^K) =
Then L = C[K~\ is a crossed product of C by K/A and the orderable group K/A is
periodic ([5] 2.2). This implies that K = A, as required.

6. The Proof of the Theorem.
Assume the notation of [6] Section 5, which is consistent with that of 5 above. Then

K/A is torsion-free, locally nilpotent and hence orderable. L exists by [6] 5.5 and 4.4
and C[K~\ is Ore by Goldie's Theorem. Further C[K] is a crossed product of C by K/A
by [6] 2.5. Therefore K = A by 5 and the theorem is a trivial consequence of [6] 5.3 and
1.1.

7. Let R = F[G] be an F-algebra, where F is a field and G is a locally soluble
subgroup of the group of units of R such that for every infinite subgroup X of G the left
annihilator ofX-l in R is {0}. Then R is a crossed product of F\_B(G)~] by G/B(G).

Proof. Let H, K and L be finitely generated subgroups of G. Set B(H) = f]L3HB(L).
Then B(H)^E(K) whenever H^K and so B= \JHB(H) is a normal subgroup of G. Also
as B(H)/T(H) is locally nilpotent, T(H) is the set of elements of B(H) of finite order.
Consequently T(E(H)) = E(H) n T(B(K)) whenever H^K, and so B is periodic by
locally nilpotent. That is B^B{G). Trivially LnB(G)^B(L), so H nB(G)^B{H)g,B
and B = B(G).

Suppose YH=i ti<*i = Q where the t, are distinct elements of a transversal of B to G and
the a, are non-zero elements of F[B]. Then there is a finitely generated subgroup H of
G such that tl,...,treH and alJ...,a,eF[B(//)]. By a theorem of Zalesskii, F[7C] is a
crossed product of F[B(/C)] by K/B(K) for all finitely generated subgroups K of G
containing H, see [2] 11.4.10. Then for each K there exists ij=j with tfltjeB(K). Since
there are only a finite number of i and j there exists a pair i, j with i ̂  j such that the
set of all finitely generated subgroups K of G containing // with ti~ltjeB(K) is a local
system for G. Then B(H) = Hnf)suclkKB(K) and so t^tjeB. This contradiction
completes the proof.

8. 77ie Proof of 3. By hypothesis there is a division ring D, with centre F say,
containing G such that Z) = F[G].

(a) Let B = B(G). Then D is a crossed product of F[B] by G/B by 7 and therefore G/B
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is periodic by [5] 2.2. But then G is locally-finite by locally-nilpotent by locally-finite
and the desired conclusion follows from 2 for example.

(b) Trivially F[K]^D is a domain and K is locally soluble, so F[K~\ is an Ore
domain. Let L be its division ring of quotients in D and let C be the centre of L. Note
that

B(K) ^ B(H) n K = 4 g CH(K) n K g B{K),

so A = B(K) is the centre of K. Thus C[K] is a crossed product of C by K/A by 7.
Clearly C\_K] is also an Ore domain. Hence K = A by 5. But G/CG(B) is abelian-by-
periodic by 2 and so H is metabelian by locally-finite. The conclusion now follows from
2 again.
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