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Abstract

R. Paré and W. Schelter (1978) have extended the Cayley-Hamilton theorem by showing that
for each n=1 there is an integer k such that all » x » matrices over any (possibly noncommu-
tative) ring satisfy a monic polynomial of degree k. We give a lower bound for this degree,
namely 7(n), which is defined as the shortest possible length of a sequence with entries from
{1, 2, ..., n} which contains all the permutations of {1, 2, ..., n}.
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1. Introduction and statements of results

Let R denote the free associative Z-algebra generated by the set {a;;: i,jeN} of
indeterminates, and, for all n>1, let R, denote the subalgebra generated by the
n? indeterminates {a;;: 1 <i,j<n}. It has been shown by Paré and Schelter (1978)
that for each n> 1 there exists an integer k (depending on n) and a monic (homo-
geneous) polynomial f(x) € R,{x) (see below for a precise definition of R,{x)>) of
degree k such that f(«) = 0, where o is the n X n matrix (a;;). (This means, of course,
that for all rings S and for all nx»n matrices 4 over S there is a polynomial
g(x) e S{x> of degree k such that g(4) = 0.) For each n>1, we are concerned here
with the Jeast such k, denoted by k(n). The proof in Paré and Schelter (1978) is by
induction on n and yields upper bounds for k(n), namely that k(1) = 1 and, for
all n21, k(n+1) <(k(n)+ 1)%. In particular this shows that k(2) <4, but in fact the
existence of Robson’s cubic (see Robson (1979)) shows us that k(2) = 3. The
value of k(n) for n>3 is unknown.
430
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The purpose of this paper is to give a lower bound for k(n) for all n.

Of all the sequences with entries from {1,2,...,n}, consider ones of shortest
length containing all permutations of {l,2,...,n}. For example, the sequence
1231231 contains the 6 permutations of {1, 2, 3} (note that a given permutation, for
example 213, does not have to have its elements appearing consecutively) while no
string of 6 digits contains all the permutations. For each n> 1 we denote the shortest
length by #(n). (Then 7(3) = 7.) The number #(7) has already arisen in combinatorics.
While no precise formula for it has been derived, it is known that n(n)<n?—2n+4
(see, for example, Adleman (1974) or Koutas and Hu (1975)) and that, for each
A >0, there exists ¢ such that m(n) > n? — cn2+74 (Kleitman and Kwiatkowski (1976)).
For small values of n, m(n) is easy to calculate: thus n(1) =1, #(2) =3, #(3) =7,
m(4) = 12, »(5) = 19.

We prove the following result.

THEOREM. For all n> 1, k(n)>=(n).

In particular, this means that k(3)>7. This lower bound for k(3) was already
known as a result of some rather complicated calculations made by the present
author (as reported in Robson (1979)). However, these calculations shed no real
light on the reason for this lower bound. The methods used in the present paper not
only apply for all n> 1, but are also rather intuitive and so give a certain amount
of insight into what is going on.

Note that the indeterminate x in the polynomials considered cannot be assumed
to commute with the entries from the noncommutative ring R. For this reason we
consider polynomials in R{x), the free associative Z-algebra generated by x and
{ay;: i,jeN}. (R{x) is also the coproduct of R and Z[x].)

The proof of the theorem depends on three lemmas which follow. In Section 2
we give the proof of the theorem (assuming these lemmas) while we prove the
lemmas in Section 3.

DEFINITION. A monomial in R{x) is called almost Eulerian (see the proof of
Lemma 1 for the reason for this name) if all the g;;’s in it (if any) can be rearranged
into an expression of the form

(3,4, Oyt - B, 13, 05,6) (@5, gy - Big,) - (Arygey Dy - D)

LeMMA 1. Let n>1 and suppose that f(x) € R,{x) contains a term x™ and let g(x)
be the sum of all the almost Eulerian monomials in f(x) of total degree m. (Then g(x)
also contains the term x™.) If f(o) = O then g(«) = 0.
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LEMMA 2. Consider the generic upper triangular matrix

au 012 Ry aln
0 ay .. ay,

oy =
0 0 .. a,,

Let T be the subring of R generated by {a;;: i e N} and let w(x) € T{x). Then w(ay) = 0
if and only if
W(X) EXx—ay ) (X —ay) ... <X~y

(where {f> denotes the ideal of T{x) generated by f).

LEMMA 3. Let n> 1, let o be a permutation of {1,2, ...,n} and let ao denote the nxn
matrix whose (i,]) entry is a;, ;,. If g(x) € R{x) is such that g(o) = O then g(ac) = 0
also.

2. Proof of the theorem

In this section we show how the theorem is a consequence of Lemmas 1, 2 and 3.

PrOOF OF THEOREM. Let n>1 and let m = k(n). Then there is a polynomial
f(x)e R,{x> containing a term x™ such that f(«) = 0. By Lemma 1, if g(x) is the
sum of all the almost Eulerian monomials in f(x) of total degree m then g(a) = 0.
Let A(x) denote the sum of all the monomials in g(x) which involve only x, ay,,
Qy9, ..., Gy, Then h(x) can be obtained from g(x) by setting all a;’s with i#j
equal to 0.

For any nxn matrix A, let A, denote the upper triangular part of A: that is
(Ag)i; = Ay; if i<jand (4g); =0if i>).

Let o be a permutation of {1, 2, ..., n}. We claim that A((«c),) = 0. For,by Lemma
3, g(ao) = 0, and so, if we consider the homomorphism ¢ from R,{x)> to R,{(x)
which maps g;; to 0 if io=1> jo~1 and leaves x and all other a4y, fixed, then ¢ maps
ac to (ao), and, because all monomials in g are almost Eulerian, ¢ maps g to h.
(For if we consider a monomial which is in g but not in A, it contains (in some
order) a factor

Bisiy Dty - By, Fiiyy
where i) # ly, ly# iy, ..., I,_1#1,, i;7 i and clearly for at least one ¢, jj6e™ >, 07!
(where i, = i) so that this term is mapped to zero by ¢.) Now ¢ also acts as an

endomorphism of the ring of nxn matrices over R, and it is easy to see that,
for all weR,{(x) and for all nxn matrices B over R,, w?(Bp) = (w(B)) . In
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particular,
h((ao)e) = g°((a0) @) = (g(x0)) ¢ = 0p =0,

as claimed. We also have an automorphism 7 of R,{x) mapping x to x and a;; to
;51 ;,-1. Notice that (xo), 7 = oy So, as above,

h(ag) = h"((a0)y 7) = (A((x0)p)) 7 =0

and we see from Lemma 2 that

hedx—an){x—as)...{X=apy)
which means that

h= (hf)-r"‘ € <x - alo‘,la’> <x - a2¢1,2zr> ver <x - amr,1w>'

The elements

Yo=X, 1 =X—Qyy o5 Vo =X OppsQuiint1s Inton4s -+

form a free generating set for the free algebra 7(x) freely generated by x, @, ays, - - -
We have seen above that, for each permutation o of {1,2, ..., n},

he <yla'> <y20'> <y1w>

so that, when / is expressed in terms of x, yy, ..., ¥,, every term has a y,, to the
leftof a y;,1), foreach 1 <i<n—1. Thusifk contains the term y; y, ... y;, (0<i;<n)
with a nonzero coefficient we see that the nonzero integers in {i}, i, ..., i,,} are a
sequence from {1,2,...,n} which contains all permutations of {1,2,...,n}; hence
mzm(n).

3. Proofs of Lemmas 1, 2 and 3

I am very grateful to Dr. J. C. Robson for suggesting the following proof of
Lemma 1 which is much shorter and neater than the one I originally submitted
with this paper.

ProoF OoF LEMMA 1. (J. C. Robson.) Suppose that the matrix g(«) contains a
nonzero (k, /) entry, and let » be one of the monomials (in the g;,’s) with nonzero
coefficient in this entry. Then v is one of the monomials in the (k,/) entry of one
of the monomials, say w;, in g(x); so v has degree m. Let h(x) = f(x)—g(x). Then,
since f(a) = 0, h(o) = —g(a) and so A(o) has a nonzero (k,!) entry in which v is
one of the monomials with nonzero coefficient. Thus v is one of the monomials
in the (k,!) entry of one of the monomials, say w,, in A(x). We will show below
that w, has total degree m and is almost Eulerian which means that it should have
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been included in g(x) (not A(x)) and so is a contradiction. Because w; is almost
Eulerian, we can rearrange the terms in w; so that they are of the form A, A, ... A, x"
where each A; is a monomial in a diagonal entry of some power of «. Then after
rearrangement, v becomes A, A,... ;6 where 0 =ay, a,.,...a, ;. Because v is
also one of the monomials in the (k,/) entry of w,, w, must be obtained from v
by singling out certain of the a;;’s in v, say ay4,, 444, ---, d,_y and replacing each
of them by x. Clearly w, has total degree m.

It is Robson’s good idea to associate with each monomial « in the a;;’s a directed
graph with »n vertices 1,2, ...,n and with one arrow from vertex i to vertex j for
each letter a;; in . If the set of arrows in this directed graph can be decomposed as
a disjoint union of cycles, we call the directed graph almost Eulerian. Notice that a
monomial in R{x) is almost Eulerian precisely when the a;;’s in it give rise to an
almost Eulerian graph. A simple modification of Euler’s Theorem (see, for example,
Wilson (1972), Theorem 23A or Harary et al. (1965), Theorems 12.5 and 12.6)
shows that a directed graph is almost Eulerian if and only if the number of arrows
to each vertex equals the number from the vertex (that is, if and only if each
connected component is Eulerian). In particular, if any cycle is removed from
an almost FEulerian graph, the remaining graph is still almost Eulerian.

Clearly the monomial vay, is almost Eulerian and so, when we delete the cycle
iy Aaydys > Aq,_y» Oy fTom its graph we are left with an almost Eulerian graph.
As this is the graph of the g;;’s in w, we see that w, is almost Eulerian, which is the
desired contradiction.

PROOF OF LEMMA 2. An element w(x) of (x—a;;> ... {x—a,,,> is a sum of terms
of the form

4(x) = po(x) (x = 1) p1(X) (X — A22) Po(X) - Pr—1(X) (X — ) P %)

If ri(x) = p;_1(x) (x — a;;) for 1 <i<n, ryay) has its (7,7) entry zero. Thus it is easy
to see by induction on i that if 1<i<n, ry(ag) ro(eg) ... rap) has its first i columns
zero. Hence g(ap) = 0 and so w(og) = 0.

The converse is clear if n = 1. To prove the converse in general we suppose
n>1 and use induction on n. Let w(x,ay,ds,...) in T{x) be such that
w(oyg, Gy9, Az, ...} = 0. We use induction on the (total) degree of w. (The result is
trivial if w has total degree 1.) We use the fact that 7{x) is freely generated by

(2) X X=@y15 -5 X~ Qpps Qng1,n41 Iniomts -+

and write w as a polynomial in these elements, say

W= g(X,X—Qy1y ..., X=pps Q1,415 -+)
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which we write as

xgo+(x—a)g t. .. +(X—8,,.)8n+Ans1n418nt1+ -

(where the g;’s are polynomials in the elements in (2)) and finally rewrite each g;
as a polynomial in x, ay,, a4y, ..., Say

8iX, x—ay, oy X— s By py1s ) = WilX, A1y, g, -.2)

Thus we have
w=xwy+(Xx—a)w+...+(x—a, )W+ 811 i1 Wnia+...

For each ¢>0 we let c{?! (i< ) denote the (i, ) entry of the upper triangular matrix
CY = w(oy, a1y, Gy, ---). Then we have

() 0= CO+(ay—a) CV+... + (0= ) CW + A 11y C" P+ ...

For each 0<k<n—1, we claim that ¢ =0 for 1<i<j<min(n,i+k) and
t>0 unless i=t=1 or unless j = i+k and 2<i=t<n. We prove this assertion
by induction on k. For the case k = 0, notice that, from the (i, i) entries on both
sides of (3),

0=a,c+ i (az—ay)cl+ % aycl)
t=1,154 t=n+1
and so ¢ =0if r=1,2,...,i—1,i+1,... and hence also if = 0, which is what
is claimed in this case. If 0<k <n—1 and if the result is assumed true for k then
the result for k+1 follows by considering the (i,i+k+1) entry of (3) (where
i+k+1<n).

In particular, the case k =n—1 tells us that C® =0 if t#1 and that ¢}’ =0
unless i = 1. Thus o is a zero of all w, with 75 1 and so, by induction on the degree
of w, wel = {x—ay) ... (x—a,,) for t# 1, which means that

XWoy (X —Qg9) Wos ooy (X — Q) Wiy @iy i1 Wotts -+ €L

Also if B, is the submatrix formed by the last (n—1) rows and columns of o,
we see that the last (n—1) rows and columns of C*) = wy(xg,ayy,...) are just
wi(By, @11, Ggs, ...) since oy is upper triangular. But we know that all entries in this
part of C are zero. Hence wy(B,, 4y, @ss, -..) = 0 and, by induction on »,

Wi(x, @1y, Agg, ... ) E{X — g9 ... {X— )

Thus (x—ay;,)w, €I and we have shown that wel.
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NoTE. Lemma 2 fails if the hypothesis ‘w(x) e T{x)’ is replaced by ‘w(x) e R{x)’
or even ‘w(x)e R, {x)>’. For notice that if n = 2 and

W(x) = X(X —@y7) (X — Gpp) + G1o(X — Gg9) (X — Gy1) — (X — pp) G1o(x —ayy)
+(x—ay)(x—ay)ay,

then it is easy to see that w(og) = 0 but we¢ {x—ay; ) (x—ay).

PrOOF OF LEMMA 3. Let ¢ be a permutation of {1,2,...,n} and let P = (p;;) be
the nx n permutation matrix such that p;; = 1 if j = io and p;; = 0 otherwise. It
is easy to see that PaP~! = ao. Now all entries in P are O or 1 so that a;; P = Pa;;
for all 7/ and j. Thus if w(x) e R{x),

w(ao) = w(PaP™1) = Pw(a) P71
If g(«) = 0 then g(xo) = Pg(a) P71 = 0.
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