
Canad. Math. Bull. Vol. 57 (2), 2014 pp. 270–276
http://dx.doi.org/10.4153/CMB-2013-001-9
c©Canadian Mathematical Society 2013

Derivations on Toeplitz Algebras
Michael Didas and Jörg Eschmeier

Abstract. Let H2(Ω) be the Hardy space on a strictly pseudoconvex domain Ω ⊂ Cn, and let A ⊂
L∞(∂Ω) denote the subalgebra of all L∞-functions f with compact Hankel operator H f . Given any
closed subalgebra B ⊂ A containing C(∂Ω), we describe the first Hochschild cohomology group of
the corresponding Toeplitz algebra T(B) ⊂ B(H2(Ω)). In particular, we show that every derivation
on T(A) is inner. These results are new even for n = 1, where it follows that every derivation on
T(H∞ + C) is inner, while there are non-inner derivations on T(H∞ + C(∂Bn)) over the unit ball Bn

in dimension n > 1.

1 Introduction

A recent result of Cao [2, Theorem 3] describes the first Hochschild cohomology
group of the Toeplitz C∗-algebra generated by all Toeplitz operators with continuous
symbol on the Hardy space over a strictly pseudoconvex domain in Cn. Using a mod-
ification of Cao’s arguments and a result of Davidson from 1977 [4, Corollary 4], the
first author showed in [6] that every continuous derivation of the Toeplitz algebra
T(H∞ + C) on the Hardy space of the unit disc D is inner. It seems natural to ask
if the first Hochschild cohomology group vanishes in this case, that is, if the latter
result remains true without the continuity assumption, and, secondly, if a generaliza-
tion to higher dimensions is possible. In this note we answer both questions in the
affirmative by establishing a description of the first Hochschild cohomology group
for a variety of Hardy-space Toeplitz algebras on strictly pseudoconvex domains, in-
cluding the cases mentioned above.

Throughout this paper, we fix a bounded strictly pseudoconvex domain Ω ⊂ Cn

with C∞-boundary. The Hardy space H2(σ) with respect to the normalized surface
measure σ on ∂Ω can be defined as the norm closure of the set

A(∂Ω) =
{

f |∂Ω : f ∈ C(Ω), f |Ω holomorphic
}

in L2(σ). As usual, the Toeplitz operator T f ∈ B(H2(σ)) with symbol f ∈ L∞(σ) is
given by the formula

T f = PM f |H2(σ),

where P : L2(σ) → H2(σ) denotes the orthogonal projection and M f : L2(σ) →
L2(σ), g 7→ f g, is the operator of multiplication with f . A natural question to
ask is to what extent the membership of a function f to some special symbol class
S ⊂ L∞(σ) determines the behaviour of the corresponding Toeplitz operator T f .
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Besides this single-operator point of view, one may ask for the properties of the so-
called Toeplitz algebra

T(S) = alg{T f : f ∈ S} ⊂ B(H2(σ))

associated with the symbol class S. Among the most important choices for S are the
bounded holomorphic functions on Ω (more precisely, their non-tangential bound-
ary values), which will be denoted by H∞(σ) in the sequel, and the continuous
functions C(∂Ω), which give rise to the algebra of all analytic Toeplitz operators
T(H∞(σ)) and the Toeplitz C∗-algebra T(C(∂Ω)), respectively. Another natural
symbol class arising intrinsically in the theory of Toeplitz operators can best be ex-
pressed in terms of the corresponding Hankel operators

H f : H2(σ)→ L2(σ), h 7→ (1− P)( f h).

From the work of Davidson [4] for the unit disc, Ding and Sun [8] for the unit ball,
and Didas et al. [7] for the strictly pseudoconvex case, it is known that an operator
S ∈ B(H2(σ)) commutes modulo the compact operators with all analytic Toeplitz
operators if and only if S = T f + K, where K is compact and f belongs to the class

A = { f ∈ L∞(σ) : H f is compact}.

The identity H f g = H f Tg + (1 − P)M f Hg valid for f , g ∈ L∞(σ) shows that A is
a closed subalgebra of L∞(σ). Moreover, since Hankel operators with continuous
symbol are compact in our setting ([13, Theorem 4.2.17]), A always contains the
space H∞(σ) +C(∂Ω). According to [1] (see also [10, Theorem 20]), the latter space
is also a closed subalgebra of L∞(σ). By a classical result of Hartman [9], the equality
A = H∞+C holds on the open unit disc in C, while the inclusion H∞(σ)+C(∂Bn) ⊂
A is known to be strict in the case of the open unit ball Bn ⊂ Cn for n > 1 [5].

Given any closed subalgebra B ⊂ L∞(σ) with C(∂Ω) ⊂ B ⊂ A, our main result
characterizes the first Hochschild cohomology group of the Toeplitz algebra T(B). We
briefly recall the definition of the first Hochschild cohomology. Let A be a Banach
algebra and let E be a Banach-A-bimodule. A derivation from A into E is a (not
necessarily continuous) linear map D : A→ E satisfying the identity

D(AB) = D(A)B + AD(B) (A,B ∈ A).

For a given element S ∈ E, the commutator with S,

D : A→ E, D(X) = [X, S] = XS− SX

defines a derivation from A into E. Derivations arising in this way are called inner.
Writing Z1(A,E) for the space of all derivations from A into E and N1(A,E) ⊂
Z1(A,E) for the subspace consisting of all inner derivations, the first Hochschild
cohomology group can be defined as the quotient

H1(A,E) = Z1(A,E)/N1(A,E).
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In particular, H1(A,E) vanishes if and only if every derivation from A into E is inner.
Let us finally mention that, for a given Hilbert space H, we write K(H) for the

ideal of all compact operators on H and that, for a subset S ⊂ B(H), we denote its
essential commutant by

Sec =
{

X ∈ B(H) : [X, S] ∈ K(H) for all S ∈ S
}
.

We have now gathered all the notation required for an adequate formulation of our
main result.

2 A Description of H1 for Toeplitz Algebras

The following theorem can be thought of as a Banach-algebra version of Cao’s result
[2, Theorem 3] on the Toeplitz C∗-algebra.

Theorem 2.1 Let B ⊂ L∞(σ) be a closed subalgebra with C(∂Ω) ⊂ B ⊂ A. Then
every derivation D : T(B)→ B(H2(σ)) is inner and the map

δ : H1(T(B),T(B)) −→ T(B)ec/T(B), δ([D]) = [S] if D = [ · , S],

is a well-defined isomorphism of linear spaces.

We postpone the proof of this theorem for a moment in order to demonstrate
some of its consequences. Let us first remark that, as A contains C(∂Ω), the algebra
T(A) contains the Toeplitz C∗-algebra T(C(∂Ω)) and hence all compact operators on
H2(σ) ([13, Theorem 4.2.24]). Together with the description of T(H∞(σ))ec estab-
lished in [7, Corollary 4.8], we obtain the chain of inclusions

T(A)ec ⊂ T(H∞(σ))ec =
{

T f + K : f ∈ A,K ∈ K
(

H2(σ)
)}
⊂ T(A).

The identity T f g − T f Tg = PM f Hg for f , g ∈ L∞(σ) shows that T(A) is essentially
commutative. Hence we can complete the above chain with the inclusion T(A) ⊂
T(A)ec, which shows that in fact equality holds at each stage. In particular, we have

T(A)ec = T
(

H∞(σ)
) ec

= T(A).

As a consequence we obtain the following special case of Theorem 2.1, which applies,
for example, to the algebra B = H∞(σ) + C(∂Ω).

Corollary 2.2 If the algebra B ⊂ A from Theorem 2.1 contains H∞(σ), then we have
H1(T(B),T(B)) ∼= T(A)/T(B) ∼= A/B as linear spaces.

Proof For the first identification, it suffices to observe that

T(A) = T(A)ec ⊂ T(B)ec ⊂ T
(

H∞(σ)
) ec

= T(A)

holds and to apply Theorem 2.1. The second identification is given by the map
A/B → T(A)/T(B), [ f ] 7→ [T f ], which is easily seen to be a vector-space isomor-
phism. For the details, see the remarks following Lemma 3.4.
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For B = A = { f ∈ L∞(σ) : H f compact} the assertion of Corollary 2.2 deserves
to be stated separately.

Corollary 2.3 The first Hochschild cohomology group H1(T(A),T(A)) vanishes on
every bounded strictly pseudoconvex domain Ω ⊂ Cn with C∞-boundary. In particular,
every derivation on T(H∞(σ) + C(∂D)) is inner on the unit disc D.

As mentioned before, it was observed by Davie and Jewell in [5] that the inclusion
H∞(σ)+C(∂Bn) ⊂ A is strict for every n > 1. Thus, in contrast to the case n = 1, by
Corollary 2.2, there exist non-inner derivations on the Toeplitz algebra T(H∞(σ) +
C(∂Bn)) for every n > 1.

Finally, we obtain the result of Cao mentioned at the beginning, which was the
starting point of our considerations. Note that T(C(∂Ω))ec = {Tz1 , . . . ,Tzn}ec (see,
e.g., [7, Lemma 4.1]).

Corollary 2.4 (Cao) For the Toeplitz C∗-algebra on a bounded strictly pseudoconvex
domain Ω ⊂ Cn with C∞-boundary, we have the isomorphism

H1
(
T
(

C(∂Ω)
)
,T
(

C(∂Ω)
)) ∼= {Tz1 , . . . ,Tzn}ec/T

(
C(∂Ω)

)
.

3 Proof of Theorem 2.1

Since in the setting of Theorem 2.1 the Toeplitz algebra T(B) contains the ideal of
compact operators, a well-known standard argument implies that every derivation
D : T(B)→ B(H2(σ)) is inner. For completeness sake we indicate the main ideas.

Proposition 3.1 Let H be a Hilbert space. If B is a closed subalgebra of B(H) con-
taining the compact operators K(H), then every derivation from B into B(H) is inner,
that is, D = [ · , S] for some operator S ∈ B(H).

Proof Since the ideal K(H) ⊂ B(H) has the property that K(H) = K(H)2, where
the right-hand side consists of all finite sums of products of two compact operators,
the identity

D(XY ) = D(X)Y + XD(Y )

shows that D maps K(H) into itself. Hence the restriction of D onto K(H) can
be written as the commutator with some fixed operator S ∈ B(H) ([11, Corollary
4.1.7]). More explicitly, there exists an operator S ∈ B(H) such that

D(K) = KS− SK
(

K ∈ K(H)
)
.

Since the identity

D(A)K + AD(K) = D(AK) = AKS− SAK = (AKS− ASK) + (ASK − SAK)

= AD(K) + (AS− SA)K

holds for every A ∈ B and K ∈ K(H), it follows that D = [ · , S]. This observation
completes the proof.
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Corollary 3.2 If in the setting of the last proposition the quotient algebra B/K(H) is
commutative and semi-simple, then every derivation D : B→ B has the form D(X) =
XS− SX (X ∈ B) for some fixed operator S ∈ Bec in the essential commutant of B.

Proof By the preceding proposition, there is an operator S ∈ B(H) with D = [ · , S].
In particular, D induces a continuous derivation

D̂ : B/K(H)→ B/K(H), [X] 7→ [D(X)].

Since B/K(H) is supposed to be commutative and semi-simple, the Singer–Wermer
theorem ([12, Theorem 1] or [3, Corollary 2.7.20]) implies that D̂ = 0. Hence
D(B) ⊂ K(H) and S ∈ Bec.

Corollary 3.3 Let B ⊂ B(H) be a unital closed subalgebra containing the compact op-
erators K(H) such that the quotient algebra B/K(H) is commutative and semi-simple.
Then the mapping

δ : H1(B,B)→ Bec/B, [D] 7→ [S], where D = [ · , S]

is a well-defined vector-space isomorphism.

Proof Let D : B → B be a given derivation. By Corollary 3.2 there is an operator
S ∈ Bec in the essential commutant of B such that D = [ · , S]. If T ∈ B(H) is another
operator with D = [ · ,T], then T − S ∈ Bc ⊂ K(H)c = C1H ⊂ B, and hence the
equivalence classes of T and S in Bec/B coincide. If D is inner, then it follows that the
operator S chosen above belongs to B. Thus the map δ is well defined. Obviously, it is
linear and injective. To complete the proof, observe that every operator S ∈ Bec in the
essential commutant of B induces a well-defined derivation D : B→ B, A 7→ [A, S].
Hence δ is also surjective.

In the setting of Corollary 3.3, the first Hochschild cohomology group H1(B,B)
of B vanishes if and only if B is equal to its essential commutant Bec in B(H). It is
elementary to check that this happens if and only if the quotient algebra B/K(H)
is a maximal abelian subalgebra of the Calkin algebra C(H) = B(H)/K(H). This
remark shows in particular that the quotient T(A)/K(H2(σ)) is a maximal abelian
subalgebra of the Calkin algebra C(H2(σ)).

Moreover, the proof of the main theorem can be completed by showing that the
Toeplitz algebra T(B) induced by the symbol class B ⊂ L∞(σ) occurring in the state-
ment of Theorem 2.1 satisfies the requirements of Corollary 3.3. This will be done in
the following lemma.

Lemma 3.4 Let B ⊂ L∞(σ) be a closed subalgebra with C(∂Ω) ⊂ B ⊂ A. Then the
mapping τ : B→ T(B)/K(H2(σ)) defined by

τ ( f ) = T f + K
(

H2(σ)
)

is an isometric isomorphism between commutative semi-simple Banach algebras.
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Proof Obviously the map τ is linear. By [7, Corollary 3.6] the equality of norms

‖ f ‖L∞(σ) =
∥∥T f + K

(
H2(σ)

)∥∥
holds for every function f ∈ L∞(σ). Hence τ is isometric. Since B ⊂ A, the formula

T f Tg − T f g = −PM f Hg

(
f , g ∈ L∞(σ)

)
shows that τ is an algebra homomorphism. The identity

T f1 · · ·T fr − T f1··· fr = T f1 (T f2 · · ·T fr − T f2··· fr ) + (T f1 T f2··· fr − T f1··· fr )

together with an elementary induction implies that

T f1 · · ·T fr + K
(

H2(σ)
)

= T f1··· fr + K
(

H2(σ)
)

belongs to the range of τ for all f1, . . . fr ∈ B. Since the range of τ is closed, this ar-
gument yields the surjectivity of τ . As a unital closed subalgebra of the commutative
C∗-algebra L∞(σ), the Banach algebra B is semi-simple. This observation completes
the proof.

Let B ⊂ L∞(σ) be a closed subalgebra as in Lemma 3.4. If f ∈ L∞(σ) is a
function with T f +K(H2(σ)) ∈ T(B)/K(H2(σ)), then there is a function g ∈ B with
T f−g = T f − Tg ∈ K(H2(σ)) and hence f = g ∈ B. Therefore in the setting of
Corollary 2.2, the mapping

A/B→ T(A)/T(B), f + B 7→ T f + T(B)

is a vector-space isomorphism as we claimed.
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