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Abstract

A left ideal of any C-algebra is an example of an operator algebra with a right contractive approximate
identity (r.c.a.i.)- Indeed, left ideals in C'-algebras may be characterized as the class of such operator
algebras, which happen also to be triple systems. Conversely, we show here and in a sequel to this paper,
that operator algebras with r.c.a.i. should be studied in terms of a certain left ideal of a C-algebra. We
study left ideals from the perspective of 'Hamana theory' and using the multiplier algebras of an operator
space studied elsewhere by the author. More generally, we develop some general theory for operator
algebras which have a 1-sided identity or approximate identity, including a Banach-Stone theorem for
these algebras, and an analysis of the 'multiplier operator algebra'.

2000 Mathematics subject classification: primary 46L05, 46L07,47L30; secondary 46H10, 47L75.

1. Introduction and notation

A norm closed left ideal of any C*-algebra is an example of an operator algebra
with a right contractive approximate identity. More is true; indeed left ideals in C -
algebras may be characterized as the class of nonselfadjoint operator algebras with a
right contractive approximate identity, which happen also to be 'triple systems' (see
Theorem 2.6). This suggests that left ideals in C-algebras may profitably be studied
using machinery that exploits both the 'operator algebra' and the 'triple' structure,
and indeed we take this approach here. For example, 'morphisms' of left ideals in C'-
algebras will be what we call 'ideal homomorphisms' below, namely homomorphisms
which are also 'triple morphisms'.
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A (concrete) operator algebra is a closed subalgebra of B(H), for some Hilbert
space H. More abstractly, an operator algebra will be an algebra A with a complete
norm defined on the space Mn (A) of n x n matrices with entries in A, for each n e N,
such that there exists a completely isometric homomorphism A -> B{H) for some
Hilbert space H. (We recall that a map T : X —> Y is completely isometric if
[xy] H> [T(xtj)] is isometric on Mn(X) for all n € N.) An operator algebra is unital
if it has a two-sided contractive identity. Unital operator algebras were characterized
abstractly in [11]. However the class of nonselfadjoint operator algebras which is
perhaps of most interest to C* -algebraists or those interested in noncommutative
geometry is the class of one-sided ideals in a C*-algebra, which as we said possess
only a one-sided approximate identity. Unfortunately, there seems to be no general
results in the literature on operator algebras with a one-sided approximate identity,
and thus part of the purpose of this note is to collect together some general theory
of such algebras. Indeed, we show amongst other things that such algebras have an
abstract characterization, Banach-Stone type theorems, reasonable multiplier algebras
(which are operator algebras with two sided identity of norm 1), and they have an
operator space predual if and only if they are 'dual operator algebras' in the usual
strong sense of that term (see Theorem 4.6). Also, this subject becomes a little more
interesting with a certain 'transference principle' in mind. This principle (which
was proved first in the sequel [8]), allows one to deduce many general results about
operator algebras with one-sided approximate identity, from results about left ideals
in a C*-algebra. Namely, there is an important left ideal 2e(A) of a C*-algebra <?(A),
which is associated to any such operator algebra A. We call 3e(A) the 'left ideal
envelope' of A. This is analogous to what happens in the case of operator algebras
with two-sided identities, which are largely studied these days in terms of a certain
C*-algebra, namely the C*-envelope.

We now describe the layout of the paper. In Section 2 we discuss one-sided
ideals in C*-algebras. In Section 3 we study a technical condition which commonly
encountered operator algebras with a one-sided approximate identity possess. In
Section 4 we assemble a collection of general results about operator algebras with
a one-sided approximate identity. The principal tools used here are the multiplier
algebra of an operator space studied in [6, 10, 7, 30], the 'left ideal envelope' of the
last paragraph, and the facts from Section 2. In Section 5 we look at Banach-Stone
type theorems. The classical Banach-Stone theorem (see, for example, [14, IV.2])
may be stated in the following form: if C(K\) = C{Ki) linearly isometrically, then
they are *-isomorphic (from which it is clear that the compact spaces K\ and K2

are homeomorphic). Indeed, the usual proofs show that the linear isometry equals a
'-isomorphism C(K\) -*• C(K2) multiplied by a fixed unitary in C(K{). There are
numerous noncommutative versions of this, the most well known due to Kadison [20],
where the C(K) spaces are replaced by C*-algebras. In Section 5 we examine such
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theorems for maps between one-sided ideals in a C* -algebra or between operator
algebras with one-sided identities or contractive approximate identities. In Section 6
we study the 'left multiplier operator algebra' LM(A) of an operator algebra A with
a left contractive approximate identity.

We end the introduction with some more notation, and some background results
which will be useful in various places. We reserve the letters H, K for Hilbert spaces,
and J for a left ideal of a C*-algebra. We will make the blanket convention that all
ideals, left or otherwise, are assumed to be closed, that is, complete.

We shall abbreviate 'right (respectively, left) contractive approximate identity' to
'r.c.a.i.' (respectively, i.c.a.i.'). For additional information on one-sided contractive
approximate identities in general Banach algebras we refer the interested reader to
the works of P. G. Dixon (see [23] for references), G. A. Willis (see [34] and ref-
erences therein), and the general texts [13, 23]. If A is an algebra then we write
A. : A —>• Lin(A) for the canonical 'left regular representation' of A on itself. By a
'representation' it : A -*• B(H) of an operator algebra A we shall mean a completely
contractive homomorphism. If A has r.c.a.i. and if we say that n is nondegenerate,
then at the very least we mean that n(A)H is dense in H. Note that this last condition
does not imply in general that n{ea)i; -> f for £ € H, where [ea] is the r.c.a.i., as
one is used to in the two-sided case. One also cannot appeal to Cohen's factorization
theorem in its usual form (see, however, [23, Section 5.2]).

We will use without comment several very basic facts from C*-algebra theory (see,
for example, [26]), such as the basic definitions of the left multiplier algebra LM(A)
of a C*-algebra, and the multiplier algebra M(A).

As a general reference for operator spaces the reader might consult [17, 25, 27] or
the forthcoming [32]. We write CB(X) for the operator space of completely bounded
maps X -> X. We write" : X —> X** for the canonical map, this is a complete
isometry if X is an operator space, and is a homomorphism if X is an operator algebra
(giving the second dual the Arens product [13]). It follows from [13, 28.7] that if A
is an operator algebra with r.c.a.i. then A** is an operator algebra with right identity
of norm 1. If A has a right identity e, then e is the right identity of A**. If A is an
operator algebra with two right identities e and/ of norm 1, then since e and/ are
orthogonal projections, we have e = ef = e* — f e = / . Thus an operator algebra
has at most one right identity of norm 1.

It will be helpful throughout the paper to keep in mind the basic examples Cn

(respectively, /?„); namely the n x n matrices 'supported on' the first column (respec-
tively, row). This is a left (respectively, right) ideal of Mn, and has the projection
Eu as the 1-sided identity. We write Cn(X) for the first column on Mn{X), that is
Mnj(X). If X is an operator space, then so is Cn(X).

If X and Y are subsets of an operator algebra we usually write X Y for the norm
closure of the set of finite sums of products xy of a term in X and a term in Y. For
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example, if J is a left ideal of a C*-algebra A, then with this convention J*J and J J*
are norm closed C*-algebras. This convention extends to three sets, thus J J*J = J
for a left ideal of a C*-algebra as is well known (or use the proof of Lemma 2.1
below to see this). We recall more generally that a TRO {ternary ring of operators)
is a (norm closed for this paper) subspace X of B(K, H) such that XX'X C X. It
is well known (copy the proof of Lemma 2.1 below) that in this case XX*X = X.
Then XX* and X*X are O-algebras, which we will call the left and right C*-algebras
of X respectively, and X is a (XX*) — (X*X)-bimodule. A linear map T : X -*• Y
between TRO's is a triple morphism if T(xy*z) = T(x)T(y)*T(z) for all*, y, z e X.
TRO's are operator spaces, and triple morphisms are completely contractive, and
indeed are completely isometric if they are 1-1 (see, for example, [19], this is related
to results of Harris and Kaup). A completely isometric surjection between TRO's
is a triple morphism. This last result might date back to around 1986, to Hamana,
Kirchberg, and Ruan's PhD thesis independently. See [19] or [6, A.5] for a proof.

We will say that an operator space X is an abstract triple system if it is linearly
completely isometrically isomorphic to a TRO Z. Note that then one may pull back the
triple product on Z to a triple product {•,-,} on X, and by the j ust mentioned result of
Hamana, Kirchberg and Ruan, this triple product on X is unique, that is, independent
of Z. That is, this triple product is completely determined by the 'operator space
structure' or matrix norms on X.

Often it is convenient to state only the 'right-handed' version of a result. For
example, Theorem 4.6 is a result about operator algebras with r.c.a.i. Of course by
symmetry there will be a matching 'left-handed' version, in our example it will be
about operator algebras with l.c.a.i. If we want to invoke this 'left-handed' version,
we will refer to the 'other-handed version of Theorem 4.6', for example.

2. One-sided ideals in C* -algebras

We begin by reviewing some background facts.

LEMMA 2.1 (Classical). A norm closed left ideal J in a C*-algebra is an operator
algebra with a positive right contractive approximate identity. Also J n J* = J*J C
J C JJ*, so that J is a left ideal of the C*-algebra J J*.

PROOF. A left ideal J in a C*-algebra A is clearly a subalgebra of A. Also J J*
and J*J are C*-subalgebras of A. So J* J has a positive c.a.i. [ea); and for* 6 J,

\\xea - x\\2 = \\eax*xea - x*xea — eax*x +x*x\\ -> 0.

The remaining assertions follow immediately from this; for example if* e J P\ J*
then x* = lim**ea, so that* e J*J. •
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LEMMA 2.2. (1) Suppose that a e B(H, K), and {ea} is a net of contractions in
B(H) such that aea -*• a. Then aeae* —»• a, ae*ea —> a, and ae* -*• a.
(2) If J is a left ideal of a C-algebra, and if{ea] is a r.c.a.i. for J, then {e*ea} is a

nonnegative right contractive approximate identity for J (and indeed also is a 2-sided
c.aA.forthe C*-subalgebra J n J* = J*J).
(3) Any r.c.aA. for a C*-algebra is a l.c.a.i. too.

PROOF. (1) We use a technique from [9]. If aea -> a then aeae*aa* -*• aa*, so that
0 < a(I - eae*)a* -> 0. Thus by the C*-identity, a^I - eae* ->• 0. Multiplying by
yfl — eae* we see that a(l — eae*) ->• 0 as required for the first assertion. Also,

I K - a\\ < \\ae*a - aeae*J + \\aeae*a - a\\ -> 0

since \\ae* - aeae*\\ < \\a - aea\\ -> 0. Finally,

\\ae*aea - a\\ < \\ae*ea - aea\\ + \\aea - a\\ < \\ae* - a\\ + \\aea — at|| -> 0

by what we just proved.

Items (2) and (3) are clear from (1), but in any case are well known. •

The next lemma concerns 'principal ideals'. By a 'principal ideal' in a C*-
algebra A, we mean by analogy with pure algebra, an ideal of the form Ax for
some x e A. We are not taking the norm closure here, Ax = {ax : a e A} for some
x £ A; however in view of the importance of closed ideals in C*-algebra theory, below
we only consider principal ideals which are already norm closed.

PROPOSITION 2.3. Let A be a C*-algebra, and x 6 A (respectively, x € M(A)),
and suppose that J = Ax is uniformly closed. Then J = Ae, where e is an orthogonal
projection in J (respectively, in M(A)).

PROOF. Since J is the range of an adjointable map on A, J is orthogonally comple-
mented in the sense of C*-module theory, by [29, 15.3.9]. This implies that J = Ae
where e is an orthogonal projection in M(A). This proves the very last assertion.
Also, if A is unital we are done, and note that in this case A e has a right identity of
norm 1. However in any case, if x e A, then Ax = M(A)x (clearly Ax C M(A)x,
but if T e M(A) then Tx = lim Teax e Ax). Thus applying the above we see that J
has a right identity/ of norm 1, and / € J C A. Hence J = Af. •

If J is a left ideal in a C*-algebra, then we define an ideal representation or ideal
homomorphism of J to be a restriction of a '-representation 6 : J J* —> B(H) to J.
Clearly such a map is completely contractive.
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PROPOSITION 2.4. Let J be a left ideal of a C*-algebra, and let it : J -> B(H) be
a function. Then n is the restriction of a *-representation 9 : J J* -> B(H) if and
only ifn is a homomorphism and a triple morphism. Moreover such n is completely
isometric if and only ifn is 1-1, and if and only if 9 is 1-1.

PROOF. If n is the restriction of a ^representation then it is evident that n is
a homomorphism and a triple morphism. Conversely, it is well known (see [19,
2.1]), that if n is a triple morphism, then there is an associated '-homomorphism
0 : JJ* -> B(H) with the property that 9(xy*) = n(x)n(y)* for all x, y e J. If in
addition n is a homomorphism, and [ea] is a positive r.c.a.i. for J, then {n(ea)} is a
positive r.c.a.i. for n(J), and so for x e J we have by Lemma 2.2 that

9(x) = Mm9(xea) = Iim7r(x)7r(eo)* = n(x).

If further n is 1-1, then it is shown in [19] that 6 is 1-1. . •

The following result is a simple consequence of the fact that J J*J = J:

LEMMA 2.5. Let J be a left ideal of a C* -algebra, and let 9 : J J* -» B(H) be a
*-homomorphism. Ifn is the restriction of 9 to J then 9 is nondegenerate if and only
ifn(J)H is dense in H.

THEOREM 2.6. Let A be an abstract operator algebra which is also an abstract
triple system (we are assuming the underlying matrix norms for both structures co-
incide). Then A has a r.c.a.i. for the algebra product if and only if there exists a left
ideal J in a C*-algebra, and a surjective complete isometry A —> J which is both a
homomorphism (that is, multiplicative), and a triple morphism.

PROOF. The one direction is clear. For the other, we appeal to Theorem 4.4 below
to obtain a completely isometric homomorphism j from A into a left ideal J of a
certain C*-algebra. Since J happens to be a triple envelope of A, and since there is
a surjective complete isometry n from A onto a TRO, the universal property of the
triple envelope applied to n forces j to be surjective. •

REMARKS. (1) Neal and Russo have a striking recent 'matrix norm' characteri-
zation of abstract triple systems [22]. Putting such as a result together with our last
theorem, and together with a characterization of operator algebras with right contrac-
tive approximate identity (r.c.a.i.) (see Theorem 4.3), will give a 'completely abstract'
characterization of left ideals in C*-algebras.

It would be interesting if, in the spirit of [22], one could give a purely linear
characterization of left ideals in C*-algebras. There is such a result in [7], but it makes
reference to the containing O-algebra in the hypotheses.
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(2) A slight modification of Theorem 2.6 also gives a characterization of C*-algebras,
by replacing 'r.c.a.i.' by 'c.a.i.'. We are grateful to Bernie Russo for pointing out a
recent paper [18] which gives such a characterization, but without needing the matrix
norms.

We end this section with a '1-sided version' of Sakai's theorem characterizing
von Neumann algebras. This result may be known to experts (certainly most of it is
contained in a result from [31] (see also [15])).

THEOREM 2.7. Let J be a left ideal in a C*-algebra, and suppose that J possesses a
Banach spacepredual. Then M (J J*) is a W*-algebra containing J as a weak*-closed
principal left ideal.

PROOF. By [31], the multiplier algebra M(JJ*) is a W*-algebra and J is a dual
operator space. By [5, Theorem 2.5], / has a right identity e. From this one sees that
J = Je*e C JJ*e C J, so that J = JJ*e C M(JJ*)e = M(JJ*)e2 C JJ*e = J.
Thus J = M(JJ*)e. D

3. Properties (38) and (S£)

For a left ideal J in a C*-algebra, it follows from the proof in Lemma 2.1 that J*J
also equals [x e J : eax —> x), where {ea} is the c.a.i. for J mentioned above. This
is part of our motivation for the next definition.

DEFINITION 3.1. We say that an operator algebra A with r.c.a.i. (respectively, l.c.a.i.)
has property (38) (respectively (Jf)) if an r.c.a.i. (respectively l.c.a.i.) {ea} exists for A
such that eaea> -*• ea> (respectively, ea,ea —> ea>) for each fixed ea, in the net. In this
case we define 38(A) = [x g A : eax ->x] (respectively Jif(A) = {x e A : xea ->x}) .

REMARK. We note that a left ideal of a C-algebra has property (3$), and in this case
0?,(A) = J*J. More generally a subalgebra of a C-algebra with a self-adjoint right
c.a.i. has property (3%), since in this case (eaea>)* = ea'ea —*• ea> = e*,. An operator
algebra with two-sided c.a.i. obviously has property (38), and in this case 3f.(A) = A.
Certainly every operator algebra with a right identity of norm 1 has property

Open question. Are there any operator algebras with r.c.a.i. which do not have
property (31)1

PROPOSITION 3.2. If an operator algebra A with r.c.aA. has property (38), then
3f.(A) is a norm closed right ideal of A (and hence is an operator algebra) with two
sided c.a.i. Moreover, 3f.(A) does not depend on the particular c.a.i. {ea} considered.
Also, A3f.(A) = A andSt.(A)A = 38(A). Similar results hold for property (£?).
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PROOF. The first assertion we leave as a simple exercise. Suppose that A has
property (£$) with respect to one r.c.a.i. {ea}, and let {fp} be another r.c.a.i. such that
ffiffi' ~* fv f° r every fixed $'. Let B = {a e A : fpa —> a}, another right ideal of
A with two sided c.a.i. Note that B?,(A)B = Sf,(A) and BB?.(A) - B. Thus by (the
other-handed version of) [9, Theorem 4.15], B = 3£{A). The remaining assertions
are left to the reader. •

EXAMPLE 3.3. Let B be a unital operator algebra, a unital subalgebra of a W*-
algebra N, and define M<x,(N) to be the von Neumann algebra B(12)®N, thought of
as infinite matrices [by] with entries by indexed over i,j e N. We let Moo(B) be the
subset of M^N) consisting of those matrices with entries by in B. Often Moo(B)
is not an operator algebra, however there are several operator algebras inside Moo(B)
which occasionally play a role. To construct one, let C^(B) be the 'first column' of
Moo(B), and let Rao(B) be the space of row vectors [b\b2 •••] with entries bt € B,
such that J2 t bkb*k converges in norm. We may then consider the closed subspace
A = C^0(B)R0O(B) of Moo(B); those familiar with operator space theory will have no
trouble verifying that A is a subalgebra of M^N), that A has a nonnegative r.c.a.i.,
and indeed if B = N then A is a left ideal of Afoo(B). In fact, A contains the C-
algebra K<»(#), namely the spatial tensor product K(i2) <8> B (which in the language
of C*-modules equals K(Coo(A))), and the usual c.a.i. for this C*-algebra, namely
h ® la. is a r.c.a.i. for A. Thus A has property (3£). It is easily verified that
is a right ideal in A, and in fact Bit {A) = &

If A has left identity e of norm 1, then A clearly has property (_Sf) of Definition 3.1,
and this identity is the 2-sided identity of -£f(A) = Ae. Moreover, the map A —•
Jif(A) taking a y-> ae, is a completely contractive homomorphism, and also is a
complete quotient map and indeed is a projection onto J?{A). On the other hand, if A
has a l.c.a.i. and property (-S?), then by passing to the second dual A** we can make
similar assertions: there is a completely contractive homomorphism A** -> .Sf(A)**,
which is a complete quotient map and indeed a projection. This is the map F i-> FE,
where £ is a weak* limit point of the c.a.i. of Jz?(A). We use this in the next result.

PROPOSITION 3.4. Suppose that A is an operator algebra with l.c.a.i. and property
(j£?) of Definition 3.1. Letn : A —• B(H) be a completely contractive representation
(respectively, and also n(A)H is dense in H). Then n^w : -2?(A) -»• B(H) is a
completely contractive homomorphism (respectively, and also such that n(Jif(A))H
is dense in H). Conversely, if 9 : S£(A) —*• B(H) is a completely contractive
homomorphism, then there exists a completely contractive homomorphism n : A —>
B(H) extending 8. If further 9(A)H is dense in H then n is unique, and n(A)H is
dense in H. Finally,

[T e B(H) : TTT(A) C ?r(A)} = (T e B(H) : Tn(Sf(A)) C n
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PROOF. The first statements are simple exercises. For the converse, given such
6 : ££(A) —>• B(H), consider the series of completely contractive homomorphisms

A ^ A** -»> jSf(A)" -^> B(H)** - • B(H).

The homomorphism A** -> jSf (A)** is the map described above the Proposition, and
the other maps are the canonical ones. The composition of these homomorphisms is
the desired it. We leave it to the reader to check the details. Since it(a)6(b)% —
n{ab)£ = 9{ab)i; for a e A, b € -£?(A), £ e H we see that it is unique if it(A)H is
dense.

Finally, using the 'other-handed version' of the last assertion of Proposition 3.2,
we see, for example, that if 7*7r(A) C it (A) then

= Tn(A)Tt{SC{A)) C it(

The other direction is similar. •

The previous result shows that A and _£?(A) have the same representation theoiy.
Thus the following definition which plays a role in the last section is somewhat
natural: we say that a nondegenerate representation it : A —> B(H) is completely
'_£?-isometric', iiit\sew is completely isometric on Jf(A).

REMARK. If A has a left identity of norm 1 but no right identity, and if it :
A -> B(H) is a nondegenerate isometric representation, then n(e) = Id, so that
it(ae) = it(a), so that ae = a for all a e A. This is a contradiction. Thus there is
in general little point in seeking nondegenerate isometric representations of algebras
with l.c.a.i. This is why we study .if-isometric representations.

4. A collection of general results

As this title indicates, this section is somewhat of a miscellany. The major tool
needed is the left multiplier algebra ^Kt{X) of an operator space X. This is a unital
operator algebra, which is a subalgebra of CB(X) containing Id*, but with a different
(bigger in general) norm. There are several equivalent definitions of MiiX) given in
[6, 7, 10]; however the reader may take the definition of ^t(X) from the following
result from [7]:

THEOREM 4.1. A linear T : X —> X on an operator space is in Ball(^(X)) if
and only if T @ Id is a complete contraction C2(X) -> C2(X).

The matrix norms on ^t(X) may be described via the natural isomorphism
Mn{J?t(X)) = Jtt(Mn(X)). That is, the norm of a matrix [7],] of multipliers
may be taken to be the norm in ~4?e(Mn(X)) of the map [x^ ] h-> [ £ t Tik(xkj)].
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LEMMA 4.2. Let A be an operator algebra with a r.c.a.i. Then the canonical Heft
regular representation1 of A on itself yields completely contractive embeddings {that
is, 1-1 homomorphisms) A —> Jtt(A) <L-> CB(A), and the first of these embeddings,
and their composition, are completely isometric.

PROOF. Let k : A —*• CB{A) be the left regular representation. This map is
certainly completely contractive, however since k(a)(ea) = aea -*• a it is clear that
A. is a complete isometry. Suppose that a e Ball(A), and that y = [yi},] and y' = [y'A
are in Mm(A). Then

IHIt"a® h
0

0

Here Id may be regarded as IH for a particular representation of A. Thus k(a) satisfies
the criterion of Theorem 4.1, so that k(a) e B a l l ( ^ ( A ) ) . A similar argument works
at the matrix level. Thus k factors through Mt{A~) via the two completely contractive
homomorphisms above. Since A. is completely isometric, so is the first embedding. •

We now turn to characterizations of operator algebras, which was our main original
motivation for introducing multipliers of operator spaces in [6]. We pointed out in [6,
Section 5] that in order to prove the characterization of operator algebras of [7] say, it is
clearly only necessary to check that the 'left regular representation' k : A —>• CB(A),
is a complete isometry into the operator algebra ^#<(A). But this is immediate from a
theorem such as 4.1 above—see the simple proof of the next result, which is a variant
of [5, 1.11].

THEOREM 4.3. Let A be an operator space which is an algebra with a right iden-
tity of norm 1 or r.c.a.i. Then A is completely isometrically isomorphic to a con-
crete operator algebra (via a homomorphism of course), if and only if we have
|| (JC ©Idn)y| | < 1 for all n e N andx e Ball(Mn(A)), y € Ball(M2n,n(A)).

To explain the notation of the theorem, we have written Id for a formal identity,
thus the expression (x © \dn)y above means that the upper n x n-submatrix of y is
left multiplied by JC, and the lower submatrix is left alone.

PROOF. This is identical to the proof of Lemma 4.2 above, except when proving
the analogue of the displayed equation—there one needs to use the hypothesis of our
theorem. See the remarks above. •

The following theorem, first proved in [8], is one of our main tools to deduce results
about operator algebras with r.c.a.i., from results about left ideals in a C*-algebra.

Let A be an operator algebra with r.c.a.i., and suppose that i : A -> B is a
completely isometric homomorphism into a C*-algebra. Let J be the 'TRO generated
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by i(A)': the span in B of expressions of the form i(ax)i(a2)*i(a3)i(ai)* • • • i(a2n+\),
for at e A. By Lemma 2.2 (1) it is clear that J C J J*, so that J J* is a C*-algebra
which has J as a left ideal. In fact clearly J J* is the C*-subalgebra of B generated
by /(A). We say that a pair (J, i) consisting of a left ideal J in a C*-algebra, and a
completely isometric homomorphism i : A ->• J, is a /«/* idea/ extension of A if 7 is
the 'TRO generated by i(A)' in the sense above. In this case [i(ea)} is a r.c.a.i. for J
if {ea} is a r.c.a.i. for A.

THEOREM 4.4 ([8]). Lef A be an operator algebra with r.c.a.i. Then there exists a
left ideal extension Qe(A),j) of A, with Ze(A) a left ideal in a C*-algebra £(A), such
that for any other left ideal extension (J, i) of A, there exists a {necessarily unique
and surjective) ideal homomorphism (see Proposition 2.4) r : J —> $e(A) such that
T o / = j . Thus Ze(A)/(K.err) = J completely isometrically homomorphically (that
is, as operator algebras) too. Moreover (3e(A),j) is unique in the following sense:
given any other (J',j') with this universal property, then there exists a surjective
completely isometric homomorphism 6 : $e(A) -*• J' such that 9 oj = j ' .

Finally, Qe(A),j) is a triple envelope for A in the sense of [19].

We call Qe(A)J) the left ideal envelope of A, and set S(A) = 3e(A)3e(A)*, a
C*-algebra. The map j will be called the Shilov embedding homomorphism. From the
last assertion of the theorem, and the first definition of Mt(A) given in [6, Section 4],
we may identify JKt{A) with {/? 6 LM(g(A)) : Rj (A) c j (A)}.

COROLLARY 4.5. Let A be an operator algebra with r.c.a.L, and k the usual left
regular representation of A. Any T e ^t(A), regarded as a map on A, satisfies
TX(A) C A(A). Thus elements of\4?e(A), considered as maps on A, are right A-
module maps. That is, Jtt(A) C CBA(A) as sets. Also, Jfr(A) C ACB(A) as
sets.

PROOF. The first assertion follows from the remark before the statement of the
Corollary, together with the fact that j is a homomorphism. For if a e A, then the
map b i-+ ab on A, corresponds to the map j (b) i~> j (a)j (b) on j (A). Thus if the
left multiplier T corresponds to an R 6 LM(S(A)) with Rj (a) =j (T(a)) then

j (Tiab) = Rj (ab) = Rj (a)j (b) =j (T(a))j (b) =j (T(a)b)

for any b € A. This amounts to the first assertion, and also yields the second assertion
immediately. The third is similar. •

Corollary 4.5 allows us to generalize the main result of [5] (see also [21]) to algebras
with one-sided c.a.i.:
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THEOREM 4.6. Let A be an operator algebra with r.c.a.L, which has a predual
operator space. Then A has a right identity e of norm 1. Also A is a 'dual operator
algebra1, which means that the product on A is separately weak1 continuous, and
there exists a completely isometric homomorphism, which is also a homeomorphism
with respect to the weak* topologies, of A onto a a-weakly (that is, weak*-) closed
subalgebra B of some B(H).

PROOF. The first assertion appears in [5, Theorem 2.5] (indeed for this part we
only need a predual Banach space). From [5, Theorem 3.2], . /^(A) is a dual operator
algebra. We saw in Lemma 4.2 and Corollary 4.5 that A. : A —> Mt (A) is a completely
isometric homomorphism onto a left ideal of ^t(A). Hence X(A) = ^t(A)X(e).
Thus A.(A) is a weak* closed subalgebra of ^ ( A ) , and so B = \(A) is a dual
operator algebra. If we take a bounded net A. (a,) —• A (a) weak* in A (A), then by
definition of the weak* topology on Mi(A) from [5, 3.2], a,e — at -*• ae = a weak*
in A. Thus A."1 is weak* continuous, so that by the Krein-Smulian theorem (see [5,
Lemma 1.5]) X is weak* continuous. •

Results such as Theorem 4.4 are useful for deducing results about general operator
algebras with r.c.a.i., from results about left ideals in C*-algebras. For example, here
is a sample application of this 'transference principle' (other examples will be given
later):

COROLLARY 4.7. Let A be an operator algebra with a right contractive approximate
identity, and also a right identity. Then A has a right identity of norm 1, which is the
limit in norm of the r.c.a.i.

PROOF. First suppose that A = J is a left ideal of a C*-algebra, and suppose that
J has a right identity. Then J is a principal left ideal and so by Proposition 2.3, J has
a right identity e of norm 1. So e = e* € J D J* = J* J. If {ea} is a r.c.a.i. for J
then {e*aea} is a 2-sided c.a.i. for J*J (see Lemma 2.2 (ii)), thus e*aea = e*aeae -> e.
Finally, \\ea - e\\2 = \\e*aea - e*ae - eea + e|| -> 0.

If A is nonselfadjoint, and if {ea} is the r.c.a.i. for A, then {j (ea)} is a r.c.a.i. for
the left ideal envelope X(A). Similarly X(A) and A have a common right identity.
Hence by the last paragraph, our r.c.a.i. converges in norm. •

5. The Banach-Stone theorem

We prove several stages, or cases, of this theorem, which asserts essentially that
linear surjective complete isometries between left ideals of C*-algebras (respectively,
between operator algebras with r.c.a.i.), are characterized as a composition of a trans-
lation by a partial isometry M, and a surjective completely isometric homomorphism
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onto another right ideal (respectively, operator algebra with r.c.a.i.) which is a translate
of one of the original ideals (respectively, algebras) by u*. To see that the 'translate
by a partial isometry' is not artificial, consider an infinite dimensional Hilbert space
H and 5 the shift operator. Set / = B(H) and J = B(H)S. These ideals are clearly
linearly completely isometric, but there is no homomorphism of / onto J (since J
has no 2-sided identity). This example shows that the following theorem (which
comprises Case (1)) is best possible:

THEOREM 5.1. Let I and J be principal left ideals in C*-algebras A and B\ thus
I = Ae and J = Bf, say, for orthogonal projections e,f in I, J respectively.
Suppose also that <p : I —*• J is a linear surjective complete isometry. Then there
exists a partial isometry u in B with initial projection f, and a completely isometric
surjective ideal homomorphism (see Proposition 2.4) n : / -> J\ such that <p = n(-)u
and n = <p(-)u*. Here Jl = Bu* = Ju* = Buu* C B is another left ideal of B with
right identity uu*.

Conversely, if J is a left ideal of a C* -algebra B, and if u is a partial isometry
in B with initial projection a right identity for J, then Ju* = Bu* = Buu* is a
left ideal Jj of B with right identity uu* of norm 1, and J\ is linearly completely
isometrically isomorphic to J via right multiplication by u*. Hence the composition
of right multiplication by u*, with any completely isometric surjective homomorphism
I —> Ji, is a linear completely isometric isomorphism I —> J.

Finally, if <p : I -> J is a linear surjective complete isometry, and if<p(e) = f,
then u = u* = f and J\ — J in the above; and <p is a homomorphism. Conversely, if
<p is a homomorphism, then necessarily <p(e) = / .

PROOF. Recall from the introduction that a completely isometric surjection between
TRO's is a triple morphism. Hence <p is a triple isomorphism. Therefore if u = (p(e)
then it is easy to check that n(-) = <p(-)u* is a homomorphism onto Ju*. Similar
considerations show that p — uu* is an idempotent, which is an orthogonal projection
since it is selfadjoint. Thus u is a partial isometry. We claim that u*u = f. To
see this note that u*u is an orthogonal projection, and that for any <p(x) e J we
have <p(x)u*u = <p(xe) = (p(x), using the definition of a triple morphism. Thus
f u*u = / . On the other hand, u*uf = u*u since u e Bf. H e n c e / = u*u. Also,
Ju* = Bf u* = Bu*uu* = Bu*. Defining J\ to be this last space we see that it is
clearly a left ideal of B, and J\ contains uu*, which is indeed a right identity of norm 1
for J\ since u is a partial isometry. Thus J\ = Buu* too.

Since 7r(-) = (p(-)u* we obtain n(-)u = (p(-)u*u — (p(-)f = <?(•)• It follows from
this too that it is a complete isometry, and therefore also a triple morphism. Thus n
is a completely isometric ideal homomorphism.

Conversely, if 7, B, u are as stated, then J = Bu*u so that Ju* = Bu* which
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is also a left ideal of B. Clearly the last space equals Buu* since Buu* C Bu* =
Bu*uu* C 5MM*. The remainder of the converse direction is left to the reader.

The very last assertion is easy to see from the uniqueness of a contractive right
identity (proved in Section 1). •

Having thoroughly analyzed the Banach-Stone theorem in Case (1), we now move
to Case (2). Here we look at linear completely isometric isomorphisms <p : A -> B
between operator algebras with a right identity of norm 1. In the assertions in
the first paragraph of the statement of the next theorem, and in the proofs of these
assertions, we regard A and B as having been identified with subalgebras of 3e(A)
and $e(B) respectively (see Theorem 4.4). Thus mention of the 'canonical Shilov
embedding homomorphisms' j have been suppressed, and all products and adjoints
in that paragraph are taken in the containing C*-algebra £(B) = Ze(B)$e(B)*.

THEOREM 5.2 (Banach-Stone for operator algebras with right identities). Suppose
that <p : A —*• B is a surjective linear completely isometric isomorphism between
operator algebras with a right identity of norm 1. Then there exists a partial isometry
u 6 3e(B) (.indeed, in B) with initial projection the right identity of B, such that the
subspace B' = Bu* ofS'(B) is a subalgebra (and consequently an operator algebra)
with a right identity uu* of norm 1; and there exists a completely isometric surjective
homomorphism n : A -» B', such that cp = 7r(-)« and re = <p(-)u*. Also, u*B C B.

Conversely, suppose we are given a partial isometry u on a Hilbert space H, such
that u lies in a subalgebra B C B(H), such that the initial projection of u is a right
identity of B, and such that u*B C B. Then B' = Bu* is an operator algebra with
right identity uu* of norm 1, and B' is linearly completely isometrically isomorphic
to B via right multiplication by u. Thus the composition of right multiplication by
u*, with any completely isometric surjective homomorphism A -» B', is a linear
completely isometric isomorphism A —*• B.

PROOF. Suppose that <p : A -*• B is a linear completely isometric isomorphism,
and extend <p to a linear completely isometric isomorphism <p : 3e(A) —*• 3e(B) (such
extension exists by Hamana theory ([19] or [6, Appendix A])). By Theorem 4.4,
3e(A) is a left ideal of the C*-algebra S(A), and 3e(A) has right identity e. Similar
assertions hold for Ze(B). Thus by the proof of Theorem 5.1, if u = cp(e) = <p(e)
then M is a partial isometry in B, with u* e B* c &(B)* C &(B), whose initial
projection i s / , and n = <p(-)u* is a completely isometric surjective homomorphism
2e(A) -*• ^e(B)u*. The restriction of n to A maps onto the subalgebra Bu* of <f(B).
Since u is a partial isometry, MM* is indeed a right identity of Bu*. Finally, since
Bu*Bu* C Bu*, post multiplying by u gives Bu*B c B, so that

u*B = u*uu*B =fu*B c Bu*B C B.
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Conversely, given u as stated, then since u* B c B we have that Bu* is a subalgebra of
£(B) with right identity uu*. The remainder of the converse direction is obvious. •

REMARK. In Theorem 5.2, u and M* are in LM(B) in the language of [8]. Also,
one can prove further that X(fl ') = Ze(B)u*, and that S(B') = S(B). We omit the
details.

COROLLARY 5.3. Suppose that <p : A —• B is a surjective linear completely isomet-
ric isomorphism between operator algebras with right identities e and f of norm 1.
Then <p is a homomorphism if and only if<p(e) — f.

PROOF. The one direction follows from from the uniqueness of a contractive right
identity (proved in Section 1). The other direction follows by noting that if we follow
the proof of Theorem 5.2, then (p(e) — f, so that ^ is a homomorphism by last
assertion of Theorem 5.1. •

COROLLARY 5.4. Suppose that A is an operator algebra with a right identity of
norm 1, and suppose that A has another product m : A x A —• A with respect to
which A is completely isometrically isomorphic to an operator algebra with a right
identity of norm 1. Then there is a partial isometry u e $e(A) (and, indeed, in A)
such that m(x, y) = xu*y for all x, y € A. Indeed u is the right identity for m, and
u*u is the right identity for the first product.

We now turn to Case (3) of the Banach-Stone theorem. We only state the 'forward
implication'; the (tidier) converse we leave as an exercise.

THEOREM 5.5 (Banach-Stone theorem for left ideals in C*-algebras). Consider a
surjective linear complete isometry <p : I —*• J between arbitrary left ideals of C*-
algebras. Let § •= J J*, and let ^ be the von Neumann algebra (J J*)**. Then there
exists another left ideal J\ ofS1, with J\ J* = S, and a surjective completely isometric
ideal homomorphism (see Proposition 2.4) n : I —*• J\. Moreover there exists a
partial isometry u e M such that the initial projection ofu is the right identity of J**
(indeed of RM(J)—see Section 4), and such that J\ — Ju*, J = J\U, and such that
(p = n(-)u, andn = (p(-)u*.

PROOF. Consider the second dual <p** :/**—> J** c ^ , and now we are back in
Case (1). For if / is a left ideal of a C*-algebra A, then /** is a left ideal of A**, but now
/** has a right identity e of norm 1, which may be taken to be a weak*-accumulation
point of the r.c.a.i. of / (by [13, 28.7]). Thus by Case (1) we have that u = (p**(e) is
a partial isometry in J** c M', and the initial projection of u is the matching right
identity of J**. Moreover n = <p**(-)u* is a completely isometric homomorphism and
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so on. Restricting n to / gives a completely isometric homomorphism n' onto the
subalgebra J$ = J u* of jfl', and <p is the composition of n' with a right translation by
u. Moreover, n' is easily seen to be a triple morphism:

JT'OOT'OO V ( z ) = <p**(x )M*ii^**(y)V"(z)« = <p(*My)V(z)« = *>(jty*z)«,

which is simply 7r'(jcy*z), for x, y, z e / . Thus 7r' is a completely isometric ideal
homomorphism. Therefore, by Proposition 2.4, n' is the restriction of a surjective
1-1 "-homomorphism 11* —*• JQJQ. Thus y0̂ o* = Ju*uJ* = § contains Jo as a left
ideal; or to be more precise, § contains Jo. Thus we may regard n' as a completely
isometric homomorphism n : / —> 7i onto a right ideal 7] of <? (note Ji = Jo)- The
rest is clear. •

We briefly discuss Case (4) of the Banach-Stone theorem, the case of a surjective
linear complete isometry between arbitrary operator algebras with r.c.a.i. Again it is
clear that by passing to the second dual and using Case (2) in the way we tackled Case
(3) using Case (1), or using Case (3) in the way we tackled Case (2) using Case (1),
will give a result resembling Theorems 5.1, 5.2, and 5.5. We leave the details to the
reader.

COROLLARY 5.6. Let <p : A —*• B be a surjective linear complete isometry between
left ideals of C*-algebras, or between operator algebras with r.c.a.i. Then <p is a
homomorphism if and only if there exists a r.c.aA. {ea} for A such that {(p(ea)} is a
r.c.a.i. for B.

PROOF. If the latter condition holds then <p** : A** -> B** is a surjective linear
complete isometry. Let £ be a weak* limit point of {ea} in A**, and since q>** is
weak*-continuous, cp**(E) is a weak* limit point of {(p(ea)}. So we are in the situation
of Corollary 5.3 (with the algebras replaced by their second duals), so that <p** and
consequently <p is a homomorphism. The converse direction is easier. •

REMARK. Banach-Stone theorems for unital operator algebras or operator alge-
bras with two-sided approximate identities may be found in [1, 2, 3, 16] and [6,
Appendix B.I].

6. LM(A) for an algebra with left contractive approximate identity

In this section we develop the 'left multiplier operator algebra' LM(A) of an
operator algebra with l.c.a.i. Since this follows closely the essentially known theory
for the case of a two-sided c.a.i. (see [28, 24, 9, 4, 6]) we will try to be brief. The left
multiplier operator algebra of an operator algebra with r.c.a.i. turns out to have a quite
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different theory, which is studied in the sequel [8], and which we will not mention
again in the present paper. On the other hand, RM{A) for an operator algebra with
r.c.a.i. is the 'other-handed version' of what we do below.

If A is an algebra, then a left multiplier of A is a right A-module map T : A -> A.
The left multiplier algebra is the unital algebra of left multipliers of A, together
with the left regular representation (which maps A into the left multiplier algebra
of A). If A is a Banach algebra which has a one-sided approximate identity, then
it follows from the closed graph theorem and a variant on Cohen's factorization
theorem that any left multiplier is bounded [23, 5.2.6]. Thus the left multiplier algebra
equals BA(A), the unital Banach algebra of bounded right A-module maps. If A is
an operator algebra with l.c.a.i., then it follows more or less immediately from the
relation T(a) = lirr^ T(ea)a which clearly holds for all T e BA(A),a e A, that
BA (A) = CBA (A) isometrically. Here CBA (A) is the set of completely bounded right
A-module maps. One would wish the left multiplier algebra of an operator algebra to
be a unital operator algebra, and fortunately it turns out that CBA(A) with its usual
matrix norms is an abstract operator algebra. This is seen in the next theorem. Thus
we define the left multiplier operator algebra of an operator algebra with l.c.a.i., to be
the pair (CBA (A), X), where A is the left regular representation of A.

More generally, we consider pairs (D, /x) consisting of a unital operator algebra D
and a completely contractive homomorphism /x : A —>• D, such that D/x(A) c n(A).
Sometimes we write /xA to indicate the dependence on A. We say that two such
pairs (D, /x) and (£>', fx') are completely isometrically A-isomorphic if there exists a
completely isometric surjective homomorphism 9 : D —> D' such that 9 o /x = /x'.
This is an equivalence relation. We will also use the term 'left multiplier operator
algebra of A' for any pair (D, fx) as above which is completely isometrically A-
isomorphic to (CBA(A), X).

THEOREM 6.1. Let A be an operator algebra with l.c.a.i. Then the following
operator algebras are all completely isometrically isomorphic

(1) [x € A** : xA C A}/Kerq where q is the canonical homomorphism into
CB(A),
(2) J?t (A) (see Section 4),
(3) CBA(A),

and in particular, CBA(A) is an operator algebra. If A satisfies condition (S£) of
Definition 3.1 (for example, if A has a left identity of norm 1, or a two-sided c.a.i,
or if A is a right ideal of a C*-algebra), then the algebras above are completely
isometrically isomorphic to

(4) {T e B(H) : Tn(A) C n(A)}, for any completely J£-isometric nondegenerate
representation n of A (see definition after Proposition 3.4),
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(5) LM(B) where B = _£?(A) (see Definition 3.1),
(6) {x e B** :*A C A}C A**, where B = S?{A).

If A has a two-sided c.a.L, then Kerq = (0) in (1).

PROOF. We first observe that for any operator algebra A there are natural completely
contractive homomorphisms {x e A** : xA C A] -± JCt(A) -> CB(A). Let us
write a for the first homomorphism, and 6 for the second. From the 'left handed
variant' of Corollary 4.5, the image of 8 lies in CBA(A). Next note that given
5 € CBA (A), then one may let F be a weak* accumulation point of S(ea) in A**, for
the l.c.a.i. {ea} for A. Clearly ||F|| < ||5||. For a e A, we have

S(a) = lim S(eaa) = lim S(ea)a - Fa.
a

Hence q(F) = 5, where q — 6 o a. Thus q is a quotient map, and similarly it is a
complete quotient map. Thus a is also a complete quotient map, and Kercr = Kerq
since 9 is 1-1. This proves the completely isometric isomorphism between (1) and (3),
and also between (1) and (2). Thus J£t(A) S CBA{A) completely isometrically,
which also shows that CBA (A) is a unital operator algebra (or this fact may be proved
directly).

Now suppose that A has property (Jzf), and set B = S^(A) as in Definition 3.1.
Then B** c A**. Examining the proof of (1) = (3) above, we see easily that the terms
S(ea) actually lie in B. Hence the F there lies in {x 6 B** : x A c A ) . Thus the map q
mentioned above, restricted to the last set, is a complete quotient map too. Therefore
it is a complete isometry if we can show that it is 1-1. To see this suppose that F is
in the set in (6) and q(F) = 0. Then Fea — 0. This implies that F =• 0, using the
fact from [13, Section 28] that a weak* limit point of the ea is a 2-sided identity for
B**, and the fact that the multiplication in a dual operator algebra is separately weak*
continuous. Thus we have that (3) = (6) completely isometrically. Note too that if A
is an operator algebra with 2-sided c.a.i. then this shows that Ker<? = (0) in (1). Note
that if F is in the set in (6), then FB c B quite clearly. Conversely if FB c B then
for a e A we have Fa = lim Feaa e A since Feaa e Ba c A. This shows that
(6) = (5).

Finally, to prove that (4) = (5), we may without loss of generality, by the definition
after Proposition 3.4 and the last assertion of that proposition, assume that B = A is
an operator algebra with 2-sided c.a.i., and that n : A —> B(H) is a nondegenerate
completely isometric homomorphism. This case is no doubt well known by now (but
first done in [24] perhaps); briefly, one way to see it is as follows. If we write LM(n)
for the algebra in (4), then there is a natural map p : LM(n) -*• CBA(A), namely

(a) = n-l(Tn(a)) for a e A. lf[Tu] e Mn(LM(n)), then

)]|U = sup{||[p(7J,-)(flH)]Ln =
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where the supremum is taken over matrices [aki] of norm < 1. Thus p is completely
contractive. To see that p is completely isometric we take the [aki] above to be the 1 x 1
matrix ea. Given e > 0, choose a vector £ e Ba\l(Hw) such that

Then

However this last quantity is dominated by ||[/o(7J/)]||n, by the third last displayed
equation. Thus p is completely isometric.

To see that p is onto, suppose that R e BA{A). We obtain a related map T e B{H)
which may be defined by Tn(a)^ — jz(Ta)^, for a e A, f € H. Another way to see
this quickly is by using the well known fact that in this case, H = A®AH. We omit
the simple details, which as we said at the beginning of this section, are essentially
well known to experts. •

REMARKS. (1) Let A be an operator algebra with left identity e of norm 1. Then
one may show that LM{A) = Ae, which is a unital subalgebra of A. It is also a unital
subalgebra of (?(A), and <£(A) is a unital C*-algebra.

To see all this, note that in this case j£?(A) = Ae, which is a unital algebra. Thus the
first assertion of the remark follows from (5) of Theorem 6.1. We saw in Theorem 4.4
that J = 3e(A) is a right ideal of a C*-algebra, and that J has a left identity e. Thus
S (A) = JJ* has e as a 2-sided identity. Finally, Ae c J J* = £(A).
(2) Suppose that A is an operator algebra with l.c.a.i., and that n : A ->• B(H) is
a completely isometric representation. Define LM{n) — [T e B{H) : Tn(A) c
7r(A)}, the left idealizer of TT(A) in B(H). Then it is straightforward to exhibit a
completely contractive homomorphism a : LM(n) - • LM{A) = CBA(A). Con-
versely, given T e CBA(A), taking a weak operator limit point 5 of n(T(ea)) gives
5 e LM(n). This is really saying that LM(A) = LM(n)/Ker(j completely isomet-
rically isomorphically. One may view this observation as an attempt to remove the
use of property (££) in (4).

It is interesting to note that if it is the usual representation of R2, then LM(n) is
a 3-dimensional operator algebra (this was pointed out to me by M. Kaneda). Note
that LM(n) is highly dependent on n, to see this consider R2 again; the natural
representation n has LM{n) 3-dimensional. However, if a = n © e, where e
is the projection onto the 1-1 coordinate, then LM(a) is strictly larger. It would
be interesting to see if there is a nonrestrictive condition under which one obtains
'independence from the particular n used'.

One may think of each of the six equivalent algebras in Theorem 6.1 as a pair
(D, fxA), where /J.A : A —>• D is a completely contractive homomorphism. Let us
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spell out what the map /xA is in each case. In (1), it is the map a H* a. + Kerg; in (2)
and (3) it is the left regular representation k; in (4) it is n\ in (5) it is the natural left
representation of A on its left ideal Jz?(A); and in (6) the map \xA is a t-» HE, where E
is as in the remark before Proposition 3.4. All these maps are completely contractive
homomorphisms.

COROLLARY 6.2. Each of the first three (and indeed all six, if A has property
operator algebras in the previous theorem, together with its associated map iiA

discussed above, is a left multiplier operator algebra of A. That is, they are each
completely isometrically A-isomorphic to (CBA(A), X).

We leave these assertions to the reader.
We now turn to the notion which in the C-algebra literature is referred to as

'essential homomorphisms' or sometimes 'nondegenerate homomorphisms'. For our
purpose we shall use the name 'A-nondegenerate morphism'. For us this shall mean
a completely contractive homomorphism n : A -> LM(B) satisfying the following
equivalent conditions:

THEOREM 6.3. Let A and B be two operator algebras with l.c.a.u's, and let
TC : A -* LM(B) be a completely contractive homomorphism. The following are
equivalent.

(i) There exists a l.c.a.i. [ea}for A such that n(ea)b -> b for all b e B.
(ii) For every l.c.a.i. {ea}for A, we have n(ea)b —> b.

(iii) B is a nondegenerate left A-module via n,
(iv) Any b e B may be written b = n(a)b' for some a € A, b' e B.

If these conditions hold, then there exists a completely contractive unital homomor-
phism H : LM(A) -» LM(B) such that it o \xA = JXB, and this homomorphism may
be defined by n(x)(n(a)b) = n(xa)bfor x e LM(A), a 6 A, b e B. Finally, it is
completely isometric ifn is completely isometric.

PROOF. Clearly (i) implies that the span of terms n(a)b is dense in B, which is
what we mean by nondegenerate. So (i) implies (iii). Clearly (iii) implies (ii), and (ii)
implies (i), and (iv) implies (iii). That (iii) implies (iv) follows from [23, Section 5.2].

If these conditions hold, view LM(A) and LM(B) as in Theorem 6.1 (3). We may
follow the proof of Theorem 6.2 in [4]. The main difference is that we ignore the
element e mentioned there, which we can get away with by taking d there to be the
l.c.a.i. from A. One also needs to use [23, 5.2.2], and the matrix version of it, in order
to show that it : LM(A) -> CBB(B), and that it is a complete contraction.

It remains to prove the last assertion. Supposing that n is completely isometric, we
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have for T e LM(A) that

\\rt(T)\\cb > \\[HT)(n(ao)bu)]\\ = \\l7r(Taa)bu]\\

providing that || [ay] ||, \\[bki]\\ < 1. Taking the supremum over all such [bki] e Mm(B),
gives that l l ^ r ) ^ > ||[^(ray)]|| = || [ 7 ^ ] ||. Taking the supremum over all such
[fly] e Mn(A) gives that ||7r(r)||c6 > ||7'||c6. So TT is isometric, and similarly it is
completely isometric. •

REMARK. The canonical map ixA :A —> LM(A) is an A-nondegeneratemorphism.

COROLLARY 6.4. Let A be a closed subalgebra of an operator algebra B, and
suppose that A contains a l.c.a.i. for B. Then LM(A) "—> LM(B) completely
isometrically as a subalgebra.

REMARK. The one 'drawback' of our left multiplier algebra LM{A) above is that
it does not contain the algebra itself in general; but this is no surprise to anyone who
has looked at the 'multiplier' or 'centralizer' theory of nonunital Banach algebras.
Indeed if one insists that the left multiplier algebra of A be a pair (B, v) consisting
of an operator algebra B and a completely isometric homomorphism v : A —> B
with Bv(A) C v(A), then unfortunately one must lose the useful 'essential' condition
(namely that xv(A) = 0 implies x = 0). This departs from the classical 'mul-
tiplier'/'centralizer' framework from Banach algebra theory ([23, Section 1.2], for
example), where a multiplier which annihilates A must be the zero multiplier. Also it
seems that one cannot hope for conditions like (l)-(3) of Theorem 6.1.

Note added in proof. Some of our motivation for the present work was to solve
some questions which arose in our work on one-sided M-ideals [7, 33]. In the latter
paper we give some additional results on one-sided ideals in operator algebras.
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