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Abstract. We obtain the complex orbifold structure of the moduli space for
one parameter equisymmetric Riemann surfaces of genus two. For each family, by
using the orbifold structure, we obtain the points in the moduli corresponding to
real algebraic curves and a special form for the period matrices of Riemann surfaces
that admit an anticonformal involution. We describe the topological type of anti-
conformal involutions admitted by surfaces of the families depending on the type of
period matrix.
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1. Introduction. One of the most important problems in the theory of Riemann
surfaces is to determine when two surfaces are conformally equivalent. This problem
is completely solved for symmetric Riemann surfaces (i.e. real algebraic curves) of
genus two in [16]. To deal with this question one considers a basis of the homology
and a corresponding basis of holomorphic differentials; the period matrices lie in
Siegel’s space, and two matrices are equivalent under the modular group if and only
if the surfaces are conformally equivalent. This procedure not only deals with the
equivalence problem but also it endows the moduli space with a geometrical struc-
ture. We shall focus our attention on such a structure. The moduli space has the
structure of a complex orbifold (i.e. an orbifold with complex analytic transition
mappings), since the modular group acts properly discontinuously on the complex
space of period matrices. In this work we shall describe the orbifold structure for
two uniparametric families of genus two surfaces and we shall use such a description
to yield the points in the moduli space corresponding to symmetric surfaces.

For example, for g ¼ 1 the set of period matrices for elliptic curves is
� : Imð�Þ > 0
� �

. Two elliptic surfaces with period matrices � and �� are conformally

equivalent if and only if there exists an element
a b
c d

� �
in PSLð2;ZÞ such that

�� ¼ a�þb
c�þd. The moduli space with the structure of a complex orbifold is of complex

dimension one and genus 0. It has two cone points with isotropy cyclic groups of
orders 2 and 3 and a cusp. The cone points are given by the classes ½i � and ½12 þ

ffiffi
3

p

2 i �
and correspond to Platonic surfaces; i.e. Riemann surfaces admitting a representa-
tion by generalized regular polyhedra or regular maps (see [8]). We shall denote by
½1� the cusp. On this orbifold there is an antianalytic involution given by the con-
jugation c, whose fixed point set is an arc which passes through the two singular
points and has its ends at ½1�. The points in FixðcÞ correspond to Riemann surfaces
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given by real elliptic curves. The arc in FixðcÞ joining ½i � to ½1� corresponds to real
elliptic curves which are uniformised by real rectangular lattices and whose real part
has two connected components. The arc from ½i � to ½12 þ

ffiffi
3

p

2 i � and the one from
½12 þ

ffiffi
3

p

2 i � to ½1� consist of Riemann surfaces uniformised by real rhombic lattices
and whose real parts have one connected component; (see [1], [5] and [9]).

The moduli space of surfaces of genus two has complex dimension 3 and a
description analogous to the genus one case is not possible. A way to produce nice
descriptions is to restrict oneself to equisymmetric surfaces. For example the equi-
symmetric strata of dimension zero have been studied by R. Kulkarni [10]. We
consider here the complex dimension one equisymmetric strata in the moduli space
of genus two surfaces.

The symmetric genus two Riemann surfaces and their period matrices are well
known; see for example [2], [14], [11]. In the moduli space of surfaces of genus two
there are two 1-dimensional complex suborbifolds corresponding to two 1-para-
meter families of equisymmetric Riemann surfaces; (see [2]). The automorphism
groups of the surfaces in the first family contain the group D4 and this family con-
sists of the algebraic curves y2 ¼ xðx2 
 1Þðx
 �Þðx
 �
1Þ, where � 6¼ �1; 0. The
automorphism groups in the second family contain D6 and the curves are defined by
the equations y2 ¼ xðx
 1Þðx
 �Þðx
 �
1

� Þðx
 1
1
�Þ; where � 6¼ 1�

ffiffi
3

p
i

2 ; 0; 1.
For each family we describe the corresponding family of Jacobians and modular

groups and we obtain the orbifold structure of the moduli space in each case. Let
½p; q;1� be the hyperbolic triangle in the complex upper half plane with one vertex
at infinity and angles at the finite vertices of �=p and �=q. We shall call Op;q;1 the
1-complex orbifold structure of the orbifold obtained by identifying two triangles
½p; q;1� by the identity in the boundary. Note that the complex orbifold structure is
uniquely determined by the numbers p and q. Adding to the first family the elliptic
curve y2 ¼ xðxþ 1Þðx
 1Þ3; and to the second family the elliptic curve

y2 ¼ xðx
 1Þðx
 1þ
ffiffi
3

p
i

2 Þ
3, we obtain that the complex orbifolds for the moduli space

of each are of type Op;q;1. The orbifold is O2;4;1 for the first family and O2;6;1 for
the second one. The two cone points in the first family correspond to the Platonic
surface of genus 2 with automorphism groups of order 48 and the elliptic curve
y2 ¼ xðxþ 1Þðx
 1Þ3. The cone points in the second family correspond to the sur-
face with 24 automorphisms and the elliptic curve y2 ¼ xðx
 1Þðx
 1þ

ffiffi
3

p
i

2 Þ
3.

For the two families, the anticonformal involution c, given by conjugation, has
as its fixed point set FixðcÞ, the points corresponding to curves possessing a real
form; i.e. Riemann surfaces which possess an anticonformal involution. In the two
cases FixðcÞ is an arc with its ends at the cusp and which passes through the cone
points. We describe the location of the real algebraic curves in the moduli space of
the complex algebraic curves for each family. We obtain the types of symmetries
admitted for each surface depending on the corresponding point in FixðcÞ.

2. Equisymmetric families of surfaces of genus two. A compact Riemann surface
of genus two is given by an hyperelliptic equation with six branch points f0, 1, 1,
a; b; cg: y2 ¼ xðx
 1Þðx
 aÞðx
 bÞðx
 cÞ. Since every automorphism commutes
with the hyperelliptic involution, then such automorphism is given by a Möbius
transformation of the Riemann sphere permuting the six branch points. The classi-
fication of all possible symmetries is then easy to obtain; the complete list can be
found in several papers, for example [2], [14] and [11].
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Complex Algebraic equation Order of the
parameters automorphisms group

3 y2 ¼ xðx
 1Þðx
 �Þðx
 �Þðx
 �Þ 2
2 y2 ¼ xðx
 1Þðx
 �Þðx
 �Þðx
 � 1
�

1
�Þ 4
1 y2 ¼ xðx2 
 1Þðx
 �Þðx
 �
1Þ 8
1 y2 ¼ xðx
 1Þðx
 �Þðx
 �
1

� Þðx
 1
1
�Þ 12

0 y2 ¼ xðx2 
 1Þðx
 2Þðx
 1
2Þ 24

0 y2 ¼ xðx4 
 1Þ 48
0 y2 ¼ x5 
 1 10

Then there are two families of curves depending on one complex parameter;
these are the families that we shall study.

3. The moduli space and the modular group for the family y2 ¼ xðx2 � 1Þ
ðx� �Þðx� ��1Þ, � 6¼ �1; 0.

We shall call this family F1. The Möbius transformation 	 : x! 1
x lifts to an

automorphism b		 of order 4 on each surface of the family F1 and �� : x! �x
1
x
� lifts

similarly to an automorphism b�� of order 2. The group hb		;b�� i is D4.
The family F1 passes through two exceptional curves:
- � ¼ �2;� 1

2 the curve admitting 24 automorphisms,
- � ¼ �i the curve admitting 48 automorphisms.
We consider the parametrization 
 : C
 f
1; 0; 1g ! F1 defined by

� ! 
ð�Þ ¼ fðx; yÞ : y2 ¼ xðx2 
 1Þðx
 �Þðx
 �
1Þg:

The parametrization 
 is not injective. In view of the unicity of the hyperelliptic
involution, two parameters � and �0 satisfy 
ð�Þ ¼ 
ð�0Þ (the equality sign means
isomorphic Riemann surfaces) if and only if there is a Möbius transformation T
such that Tf1;
1; 0; 1; �; �
1g ¼ f1;
1; 0; 1; �0; �0
1g. Given � 6¼ �i and �0, we
consider the following subgroups of AutðbCCÞ: G� ¼ h	; ��i, G�0 ¼ h	; ��0 i and
G ¼ hz! 
z; z! 1

zi.

Lemma 1. Let T be a Möbius transformation satisfying Tf1;
1; 0; 1; �; �
1g ¼

f1;
1; 0; 1; �0; �0
1g. Then there are g 2 G, g� 2 G� and g�0 2 G�0 such that
g�0 � T � g� ¼ g:

Proof. Given T we can choose g� 2 G� and g�0 2 G�0 such that
T1ð1Þ ¼ g�0 � T � g�ð1Þ ¼ 1. Now T1 is a conformal automorphism of C such
that Tf
1; 0; 1; �; �
1g ¼ f
1; 0; 1; �0; �0
1g. By geometrical arguments and the
hypothesis � 6¼ �i we obtain T1 2 G. &

As a consequence 
 : C
 f
1; 0; 1g ! F1 is the natural quotient map for the
action of the group G on C
 f
1; 0; 1g: Then the map 
 provides a 1-complex
orbifold structure on the moduli space for this family.

Proposition 2. The moduli space of Riemann surfaces in the family F1 is the
Riemann sphere without f1;
1; 0; 1g quotiented by the action of z! 
z and
z! z
1, i.e. isomorphic to the orbifold O2;1;1. The cone point of O2;1;1 corresponds
to � ¼ i, i.e. the surface having automorphism group of order 48, namely X48:
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Now we shall construct the moduli space using period matrices. Let X be a
surface of the family F1 and let h be the hyperelliptic involution. The automorphismb		 of X induces an involution in the orbifold X=h fixing two singular points (note that
x! 1

x fixes 1 and 
1 that are branched points). The automorphism b�� induces in X=h
an involution pairwise permuting the singular points. Finally the product of the two
involutions has order two so that the quotient X=D4 ¼ X=hb		;b�� i is an orbifold of
genus 0 with four singular points with isotropy groups of orders 2, 2, 2 and 4; (see
Figure 1).

The orbifold X=hb		;b�� i can be uniformised by a Fuchsian group 
 of signature
(0;[2,2,2,4]) with fundamental region an hyperbolic quadrilateral Q with angles �

2,
�; ; �; �þ þ � ¼ �.

The group 
 has an elliptic element e		 of order four fixing the point D in Figure
2 and projecting on b		 of X. In 
 there is an elliptic element of order two fixing the
middle point of the quadrilateral side AB and another e�� fixing the middle point of
BC. e�� projects on b�� of X.

Figure 2

Figure 1
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The fundamental region for a Fuchsian surface group � uniformising X is
obtained by considering 8 images of Q by some representatives of 
=� ’ D4. We
obtain a 10-gon divided into 8 quadrilaterals as shown in Figure 3.

The group � is generated by hyperbolic elements identifying the side 1 with 6, 2
with 7, 3 with 5, 4 with 9 and 8 with 10. The pairwise identification of the polygon
sides gives the surface X.

The period matrices for the Riemann surfaces of the family have been obtained
in [2] but we give here a quicker method. We fix a canonical homology basis as
shown in Figure 4.

The basis ðe1; e2; e3; e4Þ is symplectic. In the terms of this basis the action of the
group D4 is represented by the matrices

½	� ¼

0 1 
1 0

1 0 0 1
0 0 0 1
0 0 
1 0

0
BB@

1
CCA; ½�� ¼

1 0 0 
1
0 
1 1 0
0 0 1 0
0 0 0 
1

0
BB@

1
CCA:

If
A B
C D

� �
is a symplectic matrix representing the action on the homology of

an automorphism, then such an automorphism induces an action on the Siegel space
S2 of period matrices of surfaces of genus two via Z� ¼ ðAZþ BÞðCZþDÞ
1. The
set of fixed matrices in S2 by the action of ½	� and ½�� is the Jacobian of the family F1;
(i.e. the Rauch method of computing period matrices of surfaces with automor-

phisms; see [7]). Then we obtain the matrices fZ ¼ 1
2

t 1
1 t

� �
; Imt > 0g. (See [2],

Figure 3
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Case III.) We observe that if Z is fixed by 	, then it is automatically fixed by � too.
Now we use Theorem 2.1 of [14]. Then the period matrices for the family F1 are
given by

1 ¼ fZ ¼ 1
2

t 1
1 s

� �
: Imt > 0g



fZ ¼ 1
2

t 1
1 s

� �
: Imt > 0; Ims > 0; s ¼ RSðtÞ;R 2 �ð2Þg;

where S is the transformation z! 
 1
z, and �ð2Þ is the even modular group. Hence

1 ¼ fZ ¼
1

2

t 1
1 s

� �
; Imt > 0; t 6¼ RðiÞ;R 2 �ð2Þg:

Thus we have obtained the following result.

Proposition 3. The space of period matrices for the family F1 is

1 ¼ fZ ¼ 1
2

t 1
1 t

� �
; Imt > 0; t 6¼ RðiÞ;R 2 �ð2Þg, where �ð2Þ is the even modular

group.

The matrix Z ¼ 1
2

i 1
1 i

� �
corresponds to the elliptic surface

y2 ¼ xðxþ 1Þðx
 1Þ3, which is the elliptic surface uniformized by the lattice gener-
ated by 1 and i.

Figure 4
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Let us now obtain the modular group for 1. The modular group is obtained

from the matrices
A B
C D

� �
in SLð2;ZÞ, symplectic and normalizing h½	�; ½��i. The

fact that a matrix is symplectic and normalizes D4 gives a set of quadratic and linear
equations from which we have found some particular integer solutions. The follow-
ing symplectic matrix f, given by

f ¼

1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

0
BB@

1
CCA;

satisfies f ½	� f
1 ¼ ½	�, f ½�� f
1 ¼ ½��, and the symplectic matrix g given by

g ¼

0 1 
1 0
0 1 0 0
1 1 0 0

1 1 
1 1

0
BB@

1
CCA;

satisfies g½	�g
1 ¼ ½	�, g½��g
1 ¼ ½	�½��. Then f and g define transformations of the
modular group for 1.

The complex structure of the space 1 is given by the upper half-plane

ft : Imt > 0g via the map t! 1
2

t 1
1 t

� �
. Then the matrix f induces on 1 the

transformation VðtÞ ¼ tþ 2 and the matrix g induces WðtÞ ¼ t
1
tþ1.

Let H ¼ hV;W i. Then H is a subgroup of the modular group for our family. A
fundamental region for the action of H on fz : Imz > 0g is in Figure 5.

Then the quotient fz : Imz > 0; t 6¼ RðiÞ;R 2 �ð2Þg=H is an orbifold of genus 0,
with one singular point of isotropy of order 2 and two cusps corresponding to 1

and i.

Figure 5
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We shall show that in fact H is the modular group and then prove the following
result.

Proposition 4. The modular group for the family F1 is generated by VðtÞ ¼ tþ 2
and WðtÞ ¼ t
1

tþ1. The 1-complex orbifold structure for the moduli space is O2;1;1 or,
adding the elliptic curve y2 ¼ xðxþ 1Þðx
 1Þ3, the orbifold structure is O2;4;1.

Proof. Assume that the modular group M is different from H, so that H <M.
Then we have an n-fold orbifold covering p : ft : Imt > 0; t 6¼ RðiÞ;R 2 �ð2Þg=H!

ft : Imt > 0; t 6¼ RðiÞ;R 2 �ð2Þg=M.
At the beginning of the section we showed that ft : Imt > 0; t 6¼ RðiÞ;

R 2 �ð2Þg=M is isomorphic to O2;1;1 and so isomorphic as complex orbifold to
ft : Imt > 0; t 6¼ RðiÞ;R 2 �ð2Þg=H. Thus n ¼ 1 and H ¼M: &

We have remarked that the cone point of O2;1;1 corresponds to the surface

having automorphism group of order 48, X48. Hence 1
2

1 þ
ffiffiffi
2

p
i 1

1 1 þ
ffiffiffi
2

p
i

� �
is the

period matrix for X48; (see [2]).
The orbifold structure of the moduli space of F1 is given by the action on a

connected equisymmetric stratus in the Teichmüller space by the action of the rela-
tive modular group. The stratus in the Teichmüller space is the fixed point set by the
action of a finite subgroup of the modular group (given by the action of the auto-
morphism group D4 of the surfaces of the family). The relative modular group is the
subgroup of the modular group preserving the stratus. Let G24 be the automorphism
group of the surface of the family with 24 automorphisms. If f is an automorphism
in G24 
D4, then f defines an element of the modular group but not in the relative
modular group. The action of f fixes the point corresponding to the Riemann sur-
face with automorphism group G24 but permutes three different strata in the Teich-
müller space corresponding to surfaces with group of automorphisms conjugate to
D4.

The family of fixed matrices that we have is

A ¼ fZ ¼
1

2

t 1
1 t

� �
; Imt > 0g:

Let us act now via conjugation by an element of order 6 in the group of 24
automorphisms. The matrix of such an element in terms of the homology basis is

½�� ¼

0 1 
1 0
1 1 
1 
1
2 0 
1 
1
0 2 
1 0

0
BB@

1
CCA; ½��3 ¼ 
I:

Now, the group D4 generated by ½	� and ½�� is not normal in the full group of
automorphisms. We obtain

½��
1
½	�½�� ¼

0 1 
1 0

1 0 0 1
0 0 0 1
0 0 
1 1

0
BB@

1
CCA:
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The matrices in Siegel’s space fixed by this matrix are

B ¼ fZ ¼
1

2

t 1
1 t
1

t

� �
; Imt > 0g:

Furthermore, via conjugation by �2 we obtain

C ¼ fZ ¼
1

2

t 1
1 1

1
t

� �
; Imt > 0g:

Thus 24
D4j j

¼ 3 corresponds to the three families A;B;C being permuted by �.
When we restrict ourselves to the family A this action of order 3 disappears. The
fixed point for the action of � is the matrix Z, where t ¼ 
 1

2 þ
ffiffi
3

p

2 i, corresponding to
the surface with automorphism group G24.

4. Curves admitting real forms in the family F1. The conjugation defines an
anticonformal involution 	� on the moduli space of genus 2 surfaces; (see [15] and
[17]). If X is a surface of the family F1 admitting an anticonformal involution
	 : X! X, then 	 defines an anticonformal involution e		 on the Teichmüller space
T2 (see [12] and [15]) and on the space of period matrices of the family 1 (see [13]).
The surface X and the surfaces admitting an anticonformal involution with the
topological type of 	 are in the fixed point set of e		. The automorphism e		 is a lifting of
	�. In the fixed point set of 	� there are the surfaces with anticonformal involutions.

There is a group eMM acting dianalytically (conformally-anticonformally) on 1,
such that the involutions e		, for all anticonformal admissible involutions 	, are con-
tained in eMM and the group M is a subgroup of eMM of index 2. If 
 is the map from
C
 f
1; 0; 1g to the family F1 defined in Section 3, then 
ðR
 f
1; 0; 1gÞ (that is an
arc joining the two cusps) is contained in Fixð	�Þ: The orbifold O2;1;1 admits two
anticonformal involutions but there is only one that preserves the cusps. (Note that
the two cusps are different; one represents a stable curve with two nodes (� ¼ 0) and
the other is an elliptic curve (� ¼ �1)), the involution having as fixed point set two
arcs joining the two cusps and one of the arcs passing through the cone point. TheneMM is the group generated by the reflections on the sides of the hyperbolic triangle
with vertices i; 1 þ

ffiffiffi
2

p
i;1. Thus the points in O2;1;1, corresponding to surfaces

having an anticonformal involution, are contained in the projection of the sides of
such a triangle by � : 1 ! O2;1;1. The projection of each side gives the points
corresponding to surfaces with an anticonformal involution of a given topological
type. We shall call:
Arc 1: The projection of the circular segment from i to 1 þ

ffiffiffi
2

p
i; i.e. an arc in

O2;1;1 joining the cone point with a cusp.
Arc 2: The projection of the imaginary axis from i to infinity, i.e. an arc from

one cusp to the other one.
Arc 3: The projection of the right line from 1 þ

ffiffiffi
2

p
i to 1, i.e. an arc in O2;1;1

from a cone point to one cusp.
Before a case by case discussion we shall introduce some notation. If X is a

surface of the family we shall call Aut�ðX Þ the group of conformal and anti-
conformal automorphisms of X. Let X be a Riemann surface and � be an anti-
conformal involution of X. We suppose that the fixed point set of � consists of k

RIEMANN SURFACES OF GENUS TWO 263

https://doi.org/10.1017/S0017089501020092 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089501020092


disjoint Jordan curves. Then the species of � is defined to be þk if X=h�i is orientable
and 
k if X=h�i is nonorientable. The symmetry type of X is defined to be the
unordered list of the species of the conjugacy classes of anticonformal involutions of
X.
Arc 1. By [3], the symmetry type S1 of all the surfaces in Arc 1 that are not

Platonic surfaces, must be one of the following ones: f
1; 0;þ1;þ3g,
f
2;
2;
1;
1g or f
2g. Since the cone point is in Arc 1, the symmetry type S1

must be contained as a subset in the symmetry type of X48, f
2;
1g. Then
S1 ¼ f
2;
2;
1;
1g or f
2g. The point i corresponds to the period matrix

1
2

i 1
1 i

� �
that is symplectically equivalent to a diagonal matrix [14]. Hence the point

i corresponds to an elliptic curve with period i. In terms of equations this corre-
sponds to the case � ¼ �
1 ¼ 1 or � ¼ �
1 ¼ 
1. Then the surfaces corresponding
to points in Arc 1 are given by y2 ¼ xðx2 
 1Þðx
 �Þðx
 �
1Þ with �� ¼ 1. The
anticonformal involutions in the surfaces X in this arc are obtained by lifting the
inversion on the unit circle and the reflection on the real axis. Then the orbifold
X=Aut�ðX Þ has a cone point in the interior, given by the projection of the fixed
points of x! �x
1

x
� . Thus the signature of an NEC group uniformizing X=Aut�ðX Þ is
(0;+;[2];f(2,4)g). Hence, by [3], the symmetry type S1 is f
2g. In Figure 6, it is shown
how the group with signature (0;+;f(2,3,8)g) contains a subgroup of signature
(0;+;[2];f(2,4)g), explaining how the surface X48 appears at the end of this arc.

Arc 2. The Arc 2 joins the two cusps. Then the surfaces are the real algebraic
curves y2 ¼ xðx2 
 1Þðx
 �Þðx
 �
1Þ with � real. The symmetry type must be
f
1; 0;þ1;þ3g, (the unique symmetry type containing +1), because the symmetry
type of X24 is f
1; 0;þ1;þ3g and X24 corresponds to � ¼ 2 or 1

2. Figure 7 shows the
way of inclusion of a group with signature (0;+;[];f(2,2,2,4)g) in one with signature
(0;+;[];f(2,4,6)g), giving a geometrical way of detection of X24 between the surfaces
of the arc by the size of the Lambert quadrilateral X=Aut�ðXÞ:
Arc 3. The Arc 3 joins the surface with 48 automorphisms, t ¼ 1 þ

ffiffiffi
2

p
i or � ¼ i

with the cusp represented by t ¼ 1 or � ¼ 0. Then the surfaces in Arc 3 are given
by y2 ¼ xðx2 
 1Þðx
 �Þðx
 �
1Þ with Reð�Þ ¼ 0. If X is a surface in Arc 3, the
orbifold X=D4 has an anticonformal involution with fixed point set a curve passing
through the four cone points, and X=Aut�ðX Þ can be uniformised by a group gen-
erated by the reflections on the sides of a Lambert quadrilateral with angles
�
2 ;

�
2 ;

�
2 ;

�
4. Then the signature of a group uniformizing X=Aut�ðX Þ is (0;+;[];

Figure 6
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f(2,2,2,4)g) and then the symmetry type is f
2;
1g (cf. [14]). In Figure 8 it is shown
that the group of signature (0;+;f(2,3,8)g) contains an NEC group with signature
(0;+;[];f(2,2,2,4)g). The surfaces in this arc can be parametrized by the hyperbolic
cosine of the length l of the bigger of the opposite sides to the vertex of the angle �

4 in
the Lambert quadrilateral. For cosh l ¼

ffiffiffi
2

p
(then cosh s ¼

ffiffi
3

pffiffi
2

p ) the quadrilateral
admits the decomposition of Figure 8 and then the surface corresponds to the
Platonic surface of 48 automorphisms.

The real algebraic curves of the family F1 has been also described by different
methods in [4].

5. The family y2 ¼ xðx� 1Þðx� �Þðx� ��1
� Þðx� 1

1��Þ, � 6¼ 1�
ffiffi

3
p
i

2 ; 0; 1. We shall
call this family F2. The Möbius transformation x! ðx
 1Þx
1 lifts to an automorph-
ism b		 of order 3 on each surface of the family F2 and x 7!ðx
 �Þðð1 
 �Þx
 1Þ
1

lifts similarly to an automorphism b�� of order 2. b		, b�� and the hyperelliptic involution
generate a group of automorphisms of order 12 isomorphic to D3 � C2.

This family also passes through the exceptional curves � ¼ 2, the curve with 24
automorphisms and � ¼ 1 
 i, the curve with 48 automorphisms.

The quotient of a surface of the family by D3 � C2 is an orbifold of genus 0 with
four cone points with isotropy groups of orders 2, 2, 2 and 3.

Figure 8

Figure 7
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In a similar way to that for the family F1 we obtain the following result.

Proposition 5. The Jacobian for F2 is fZ ¼
s 
s=2


s=2 s

� �
; Ims > 0,

s 6¼ Tð12 þ
ffiffi
3

p

6 iÞ; T 2MðF2Þg, where MðF2Þ is the modular group for F2. Also MðF2Þ is a
group generated by s! sþ 1, s! 
3s
4

3sþ3 and s!
1


3sþ3 :

A fundamental region for the modular group is in Figure 9.

Proposition 6. The 1-complex orbifold structure of the moduli space 2 for F2 is
O2;1;1 or, adding the elliptic curve corresponding to s ¼

1
2 þ

ffiffi
3

p

6 i, the orbifold structure
is O2;6;1.

The point s ¼
ffiffi
3

p

3 i corresponds to the surface X24 and the point s ¼ 1
2 þ

ffiffi
3

p

6 i
corresponds to the elliptic Riemann surface with automorphisms group D6.

The points in O2;1;1 corresponding to surfaces with anticonformal involutions
are in three arcs that are the projections by 2 ! O2;1;1 of the sides of the hyper-
bolic triangle with vertices in

ffiffi
3

p

3 i,
1
2 þ

ffiffi
3

p

6 i and infinity.
The surfaces X, corresponding to the projection of the arc from 1

2 þ
ffiffi
3

p

6 i to 1;
are such that X=Aut�ðX Þ is a Lambert quadrilateral with angles �

2 ;
�
2 ;

�
2 ;

�
3, i.e. the

orbifold X=hb		;b��i has an anticonformal involution passing through all cone points.
The symmetry type for these surfaces is f
1;
1; 0;þ1g.

In the projection of the arc from
ffiffi
3

p

3 i to 1
2 þ

ffiffi
3

p

6 i the orbifold X=hb		;b�� i has an
anticonformal involution fixing the cone point of the isotropy group of order 3 and
only one of the singular points with isotropy C2. The corresponding surfaces have
symmetry type f
1g. In this arc appears the Platonic surface X48:

Figure 9
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Also, in the projection of the arc from 1
2 þ

ffiffi
3

p

6 i to 1, the orbifold X=hb		;b�� i has an
anticonformal involution with fixed point set a closed curve passing through all cone
points. The corresponding surfaces have symmetry type f0;þ1;þ3;þ3g.

If we call c the anticonformal involution of X=hb		;b�� i described above for X a
surface in the arcs, the decomposition of X=hb		;b�� i=hci in the points corresponding to
Platonic surfaces is shown in Figure 10.

Remark 7. If we add to F1 and F2 the two elliptic curves in the boundary of the
moduli space of such families, the 1-complex orbifold structure of the moduli space
can be uniformized in the first case by the Hecke group (2,4,1) and in the second
case by (2,6,1) and for the moduli space of elliptic curves by (2,3,1). D. Singerman
pointed out that (2,4,1Þ, (2,6,1) and (2,3,1) are exactly the maximal arithmetic
groups between the Hecke groups.

Acknowledgements. The authors wish to thank the referee for pointing out
the fact that period matrices of curves can be computed numerically using algo-
rithms included in the new package algcurves in Maple V.6 [6]. These algorithms
apply particularly well to examples in the families studied in this work.

The authors are grateful to Emilio Bujalance, Javier Cirre, José M. Montesinos,
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