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Over the last 25 years, the effects of fatty acids on the immune system have been characterized
using in vitro, animal and human studies. Advances in fatty acid biochemistry and molecular
techniques have recently suggested new mechanisms by which fatty acids could potentially
modify immune responses, including modification of the organization of cellular lipids and
interaction with nuclear receptors. Possibilities for the clinical applications of n-3 PUFA are
now developing. The present review focuses on the hypothesis that the anti-inflammatory
properties of n-3 PUFA in the arterial wall may contribute to the protective effects of n-3
PUFA in CVD, as suggested by epidemiological and secondary prevention studies. Studies are
just beginning to show that dietary n-3 PUFA can be incorporated into plaque lipid in human
subjects, where they may influence the morphology and stability of the atherosclerotic lesion.

Fatty acid: Fish oil: Immunity: Inflammation: Lymphocyte: Macrophage

The very first review addressing the roles of fatty acids in
the immune system was published by Meade & Mertin
(1978), who, in their opening paragraph, comment that it is
‘early yet to know whether fatty acid research may finally
find a niche in immunology’. They explain that their aim
is to provide a new perspective rather than to summarize
an established field and by ‘gathering together threads
from the fields of immunology, biochemistry and nutri-
tion’, they discuss ‘in a deliberately one-sided way’,
whether there might be specific roles for fatty acids in the
immune system in health and disease. While much of their
review is highly speculative, Meade & Mertin (1978) show
remarkable foresight by suggesting that there may be
immunological explanations for data relating to the
relationship between dietary fat and disease, which had
commonly been interpreted without any reference to immu-
nology. This idea, placed in the context of atherosclerosis
in particular, was well ahead of its time. Of course, not all
Meade & Mertin’s (1978) predictions were accurate. They
speculated, for example, that the immunological basis
of atherosclerosis might be a reaction to milk proteins!
However, there is no doubt that they gave rise to a field
that has seen major developments over the last 25 years.

In the present review some of the key developments since
the publication of the Meade & Mertin (1978) review
will be described and, hopefully, readers will be convinced
that fatty acids might finally have found the niche in
immunology that they envisaged.

Fatty acid structure and nomenclature

Fatty acids are hydrocarbon chains, which can be saturated,
MUFA or PUFA. Unsaturated fatty acids contain double
bonds between pairs of adjacent C atoms; MUFA contain
one double bond, whereas PUFA contain more than one
double bond. There are two essential fatty acids, linoleic
and a-linolenic acid, that cannot be synthesized de novo in
animal cells and, therefore, must be obtained from the diet.
Linoleic acid is an n-6 PUFA, described by its shorthand
notation of 18:2n-6, which refers to an C18 fatty acid with
two double bonds, the first of which is on C-6 from the
methyl end. a-Linolenic acid is an n-3 PUFA with a
shorthand notation of 18:3n-3, describing an C18 fatty acid
with three double bonds, the first being positioned at C-3
from the methyl end. Both essential fatty acids can be
further elongated and desaturated in animal cells forming
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the n-6 and n-3 families of PUFA (Fig. 1). The metabolism
of the n-6 and n-3 fatty acids is competitive, since both
pathways employ the same set of enzymes. The major end
product of the n-6 pathway is arachidonic acid (AA). This
pathway is quantitatively the most important pathway of
PUFA metabolism in human subjects, because linoleic acid
is abundant in vegetable oils and vegetable oil-based
products, and therefore consumed in greater quantities than
a-linolenic acid, which is present in green leafy vegetables
and some seed and vegetable oils. The major end products
of the n-3 pathway are eicosapentaenoic acid (EPA) and
docosapentaenoic acid; very little a-linolenic acid pro-
ceeds along the entire metabolic pathway to give rise to
docosahexaenoic acid (DHA). However, oily fish contain
lipid that has a high proportion of the long-chain n-3
PUFA, EPA and DHA, and are the chief sources of these
fatty acids.

Fatty acids and the immune system:
a historical perspective

The Meade & Mertin (1978) review was largely based on
studies investigating the effects of fatty acids on the
proliferation of lymphocytes in vitro. These types of
studies continue to be published to some extent and
demonstrate that saturated fatty acids have little effect on
in vitro lymphocyte proliferation, while unsaturated fatty
acids inhibit lymphocyte proliferation (see Calder et al.
1991). The most potent inhibitory effects tend to be

observed when lymphocytes are incubated in the presence
of AA or EPA at concentrations of ‡50 mM (Calder et al.
1991). Since the proliferation of lymphocytes plays an
important role in the response of the immune system to a
challenge, these results were interpreted to suggest that
PUFA were immunosuppressive and that they may affect
other aspects of the immune response. The in vitro studies
inevitably led to investigations of the effects of dietary
fatty acids on immune function, initially in animal models,
and subsequently in human subjects.

Fatty acids and the immune system: evidence from
animal studies

Studies investigating the effects of dietary fats on immune
function in laboratory animals (usually rodents) have
generally shown that high-fat diets suppress lymphocyte
functions compared with low-fat diets, but the nature and
extent of the impairment depends on the level and type of
fat (see Calder et al. 2002). Saturated fatty acids and n-6
PUFA have little effect on lymphocyte proliferation
(Yaqoob et al. 1994a, 1995a), cytokine production
(Yaqoob & Calder, 1995a,b) or natural killer (NK) cell
activity (Yaqoob et al. 1994b). In contrast, oleic acid
(delivered in the form of olive oil) and n-3 PUFA
(delivered as fish oil) have been demonstrated to inhibit
both lymphocyte activation (Yaqoob et al. 1994a, 1995a;
Jeffery et al. 1996; Jolly et al. 1997; Arrington et al. 2001)
and NK cell activity (Yaqoob et al. 1994b; Jeffery et al.
1996) in animal studies. In addition, fish oil has been
demonstrated to inhibit the production of inflammatory
cytokines by lymphocytes (Yaqoob & Calder, 1995b; Jolly
et al. 1997, 1998; Wallace et al. 2001) and macrophages
(Billiar et al. 1988; Renier et al. 1993; Yaqoob & Calder,
1995a; Wallace et al. 2000a), to decrease the expression of
adhesion molecules by lymphocytes (Sanderson et al.
1995a) and to decrease adhesion of lymphocytes to
macrophage monolayers and to endothelial cells (Sander-
son et al. 1998).

The experiments described above represent ‘ex vivo’
effects of fatty acids on immune function, since the tests of
immune response are conducted in vitro following a period
of dietary manipulation in the animal. Thus, NK cell
activity is assessed by the ability of lymphocytes (from
animals subjected to specific dietary regimens) to lyse
tumour cells ex vivo. While these ex vivo tests are a useful
tool for examining the influence of dietary fatty acids on
immune function, some assays (such as lymphocyte
proliferation) involve rather extended periods of cell
culture, during which, it could be argued, any changes in
the fatty acid composition of the cells brought about by
dietary manipulation, might be lost. There does indeed
appear to be some loss, which can be prevented by
culturing cells in autologous serum rather than foetal calf
serum (Yaqoob et al. 1994a, 1995b) or by conducting
lymphocyte proliferation assays in whole-blood cultures
(Yaqoob et al. 1995a, 1999). Thus, cell culture conditions
may be at least partly responsible for the fact that some
studies report no effect or even an enhancement in
lymphocyte proliferation as a result of feeding olive oil
to rodents (Berger et al. 1993; De Pablo et al. 1998a).
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Fig. 1. Metabolism of PUFA. Both the essential fatty acids linoleic

acid and a-linolenic acid can be elongated and desaturated in

animal cells, forming the n-6 and n-3 families of PUFA. The

metabolism of the n-6 and n-3 fatty acids is competitive, since both

pathways employ the same set of enzymes. The major end

product of the n-6 pathway is arachidonic acid. This pathway is

quantitatively the most important pathway of PUFA metabolism in

man, because linoleic acid is abundant in vegetable oils and

vegetable oil-based products, and is therefore consumed in greater

quantities than a-linolenic acid, which is present in green leafy

vegetables and some seed and vegetable oils. The major end

products of the n-3 pathway are eicosapentaenoic acid (EPA) and

docosapentaenoic acid (DPA); very little a-linolenic acid proceeds

along the entire metabolic pathway to give rise to docosahexaenoic

acid (DHA). However, oily fish contain lipid that has a high

proportion of the long-chain n-3 PUFA, EPA and DHA, and are the

chief sources of these fatty acids. GLA, g-linoleic acid; DGLA,

dihomo-g-linolenic acid.
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The effects of dietary fatty acids on immune function in
laboratory animals have also been investigated using in vivo
tests of immune response, which overcomes the criticism
associated with the loss of dietary-induced changes during
cell culture. Both olive oil and fish oil decreased the graft v.
host response in rats (see Fig. 2) compared with a low-fat
diet or high-fat diets containing saturated fatty acids or n-6
PUFA (Table 1; Sanderson et al. 1995b). Dietary fish oil has
also been demonstrated to decrease the delayed-type
hypersensitivity response (Taki et al. 1992) and to prolong
the survival of skin, kidney and heart transplants in rodents
(Calder, 1998).

A further criticism levelled at the animal studies
described earlier is that they have tended to employ
very large amounts of fish oil in the diet; often these
diets contain as much as 200 g fish oil/kg, equating to
approximately 12% of dietary energy being contributed by
n-3 PUFA. However, in order to overcome this criticism,
studies have tested the effects of n-3 PUFA in rats at
approximately 1.7% dietary energy and demonstrated that
even at this low level of intake dietary n-3 PUFA inhibit
lymphocyte proliferation (Jolly et al. 1997; Peterson et al.
1998b).

Fatty acids and the immune system: evidence from
human studies

The first human studies to investigate the effects of dietary
fatty acids on immune function tested the effects of fish oil
on a number of immune variables (Endres et al. 1989,
1993). However, these studies were open uncontrolled trials
on small numbers of subjects and did not unequivocally

support the animal data. Some of the more recent double-
blind placebo-controlled studies do support the animal data
to some extent. Thies et al. (2001a,b) demonstrated that
fish oil suppressed both lymphocyte proliferation and NK
cell activity compared with a placebo treatment in healthy
subjects aged 55–75 years and several studies have shown
that fish oil supplementation decreased the ex vivo
production of the inflammatory cytokines, TNF-a, IL-1
and IL-6 (for example, see Gallai et al. 1993; Caughey
et al. 1996). However, many studies report no effect of fish
oil on the production of inflammatory cytokines ex vivo
(Molvig et al. 1991; Cooper et al. 1993; Cannon et al.
1995; Schmidt et al. 1996; Blok et al. 1997; Yaqoob et al.
2000). The considerable inconsistency in the reported
effects of n-3 PUFA on ex vivo production of inflammatory
cytokines was initially thought to be a result of differences
in administered doses. However, this explanation does not
fully account for the inconsistency, since some studies
employing high doses of n-3 PUFA showed no effect on
cytokine production, whereas others using low doses
reported inhibition (for references, see Yaqoob, 2003b).
Mantzioris et al. (2000) adopted the approach of setting
target tissue concentrations of EPA, rather than target
dietary intakes; they aimed to increase the mononuclear
cell EPA content to 1.5 g/100 g total fatty acids by 2 weeks
of dietary modification, a strategy based on the observation
by Caughey et al. (1996) that the EPA content of
mononuclear cells is strongly associated with ex vivo
production of IL-1b and TNF-a and that 1.5 g EPA/100 g
total fatty acids results in maximum suppression of
cytokine synthesis. However, a study using a high dose
of 2.1 g EPA/d plus 1.1 g DHA/d showed no effect of fish
oil supplementation on ex vivo production of cytokines,
despite achieving mononuclear cell EPA levels of 2.5 g/
100 g total fatty acids after 4 weeks and 3.3 g/100 g total
fatty acids at 12 weeks (Yaqoob et al. 2000). Similarly,
Soyland et al. (1994) and Molvig et al. (1991) reported no
effect of 5 or 3.2 g n-3 PUFA/d respectively on ex vivo
cytokine production and although fatty acid composition
data for mononuclear cells were not reported, it is likely by
comparison with the study by Yaqoob et al. (2000) that the
EPA content was >1.5 g/100 g total fatty acids in those
studies. Thus, while the approach suggested by Mantzioris
et al. (2000) is interesting, it does not adequately explain

Fig. 2. The popliteal lymph node assay: a graft v. host model. This

in vivo graft v. host model is based on the subcutaneous injection

of lymph node lymphocytes from adult male Lewis rats into the

footpad of weanling male DA/Lewis rats, with the control leg for

each rat being injected with saline (9 g NaCl/l). The animals were

killed 7 d after injection and the popliteal lymph nodes dissected

and weighed. The popliteal lymph node from the experimental leg

increases dramatically in size and weight as a result of the

accumulation of immune cells from the circulation, increasing from

a few mg in weight to approximately 100mg. (Photograph kindly

supplied by Professor P. Calder, Institute of Human Nutrition,

University of Southampton, Southampton, UK).

Table 1. Effects of dietary fatty acids on the graft v. host response†

(data from Sanderson et al. 1995b)

Diet

Popliteal lymph node wt (mg)

Mean SE

Low fat 102.7 8.2

Coconut oil 101.8 14.9

Olive oil 77.3* 7.5

Safflower oil 92.3 6.3

Fish oil 67.8* 5.7

Mean values were significantly different from that for the low-fat diet:
*P < 0.05.

†The in vivo graft v. host model used is based on the subcutaneous injection
of lymph node lymphocytes from adult male Lewis rats into the footpad of
weanling male DA/Lewis rats, with the control leg for each rat being injected
with saline (9 g NaCl/l). The animals were killed 7 d after injection and the
popliteal lymph nodes dissected and weighed (see Fig. 2).
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the discrepancies in the literature. Differences in dosage
also do not fully explain the inconsistencies in the reported
effects of fish oil supplementation on lymphocyte functions
(Meydani et al. 1991; Gallai et al. 1993; Yaqoob et al.
2000; Thies et al. 2001a,b). However, some of these
studies suggest that older subjects may be more susceptible
to the immunomodulatory effects of fish oil than young or
middle-aged subjects (Meydani et al. 1991; Thies et al.
2001a,b; see Fig. 3). It is also possible that the majority
of the human studies conducted so far have been
insufficiently powered to take into account the enormous
variation in indices of immune function, for example
ex vivo cytokine production, which are now recognized to
be influenced by genotypic variation (see Grimble et al.
2002). Clarification of the effects of fish oil on immune
function in human subjects is therefore still required,
perhaps through the design of adequately powered studies
using a range of doses of n-3 PUFA and assessment of the
EPA content of mononuclear cells.

The animal studies described in the previous section
suggested that olive oil, containing oleic acid, as well as
fish oil, was able to modulate immune responses. However,
at least one double-blind study, in which food products
were enriched with olive oil or a control oil, demonstrated
that dietary olive oil has only limited influence on immune
function in healthy middle-aged men, since it does not affect
lymphocyte proliferation or NK cell activity, but does

reduce the expression of intercellular adhesion molecule
(ICAM)-1 (Yaqoob et al. 1998; see Table 2). The reason
for the lack of effect of olive oil on immune function in
human subjects has been attributed to the lower level of
intake in human studies relative to animal studies (Yaqoob,
2002).

Effects of eicosapentaenoic acid v. docosahexaenoic
acid on immune function

Although some studies demonstrate immunomodulatory
effects of n-3 PUFA, it is not yet clear whether they are
associated with EPA or DHA, or a combined effect of
these two n-3 PUFA. Animal studies tend to suggest that
both EPA and DHA have immunomodulatory effects. Both
EPA and DHA, fed to rats at 4.4 g/100 g total fatty acids,
inhibited lymphocyte proliferation, although only EPA
inhibited NK cell activity (Peterson et al. 1998a). In a
study conducted in mice both EPA and DHA suppressed
the proliferation and production of IL-2 by splenic
lymphocytes (Jolly et al. 1997). However, two animal
models of inflammation demonstrate differential effects of
EPA and DHA, one suggesting reduced inflammation by
DHA (Tomobe et al. 2000) and the other suggesting that
EPA is the most anti-inflammatory (Volker et al. 2000).

In human subjects, a comparison of the effects of 3.8 g
EPA/d or 3.6 g DHA/d, with a control treatment of linoleic
acid, reported no differential effects of the n-3 PUFA on the
phagocytic activity of monocytes (Halvorsen et al. 1997).
Thies et al. (2001b) compared the effects of supplementa-
tion with fish oil (<1 g/d), highly-purified DHA (<1 g/d)
and a placebo on lymphocyte proliferation in healthy
subjects and demonstrated that fish oil suppressed lym-
phocyte proliferation, whereas DHA had no effect. This
finding could be taken to suggest that either EPA is
responsible for the inhibitory effect or that both EPA and
DHA are required. In the same study fish oil, but not DHA,
decreased NK cell activity (Thies et al. 2001a). Kelley
et al. (1998, 1999) examined the effects of a much higher
dose of 6 g DHA/d, which replaced 200mg/g linoleic acid
in the diet, on a number of immune responses. They
reported no effect of DHA on lymphocyte proliferation,
production of IL-2, antibody production or delayed-type
hypersensitivity (Kelley et al. 1998). In contrast, DHA
did appear to decrease NK cell activity and production
of the inflammatory cytokines, TNF-a and IL-1b (Kelley
et al. 1999). In a recent study comparing the effects of
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Fig. 3. Older subjects may be more susceptible to the immuno-

modulatory effects of fish oil than young subjects. There is some

inconsistency in the literature regarding the effects of fish oil on

immune function. Several studies have demonstrated that older

subjects appear to be more susceptible to the immunomodulatory

effects of fish oil than younger subjects. The study by Yaqoob et al.

(2000) demonstrated no effect of 3.2 g n-3 PUFA/d on lymphocyte

proliferation in healthy subjects aged <60 years (n 8), whereas

Thies et al. (2001b) demonstrated a significant inhibitory effect of

only 1 g n-3 PUFA/d in subjects aged >55 years (n 8). (%), Before

supplementation; (&), after supplementation. Stimulation index,

uptake of 3[H] thymidine by stimulated cells divided by that of

unstimulated cells. Values are means with their standard errors

represented by vertical bars. Mean value after supplementation

was significantly different from that for the corresponding placebo:

*P < 0.05.

Table 2. Effect of olive oil on the expression of intercellular adhesion

molecule-1 (ICAM-1) by human peripheral blood mononuclear cells

(data are taken from Yaqoob et al. 1998)

ICAM-1 (% positive cells)

Baseline 1 month 2 months

Mean SE Mean SE Mean SE

Control 19.0 1.3 19.1 1.2 20.0 1.5

Olive oil 20.8 1.4 16.4 1.4 15.9* 1.1

Mean value was significantly different from that at baseline and from that of
the control group: *P < 0.05.
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highly-purified oils rich in either EPA or DHA (supple-
mented at approximately 5 g/d for 4 weeks) v. an olive
oil placebo, none of the treatments affected monocyte
or neutrophil phagocytosis, the expression of a number of
adhesion molecules or the productions of a range of
cytokines (Kew et al. 2004). However, the DHA treatment,
but not the EPA treatment, reduced the expression of
CD69, an early marker of T-lymphocyte activation (Kew
et al. 2004; see Fig. 4). This observation does not appear to
be consistent with the lack of effect of DHA on
lymphocyte proliferation reported by Thies et al. (2001b)
or Kelley et al. (1998). However, both these studies
assessed markers of cell division, whereas the study by
Kew et al. (2004) assessed the expression of CD69 and it
was the intensity of expression, rather than the percentage
of cells expressing CD69, that was altered by DHA. While
the percentage of CD69-positive cells correlates with the
extent of lymphocyte proliferation at different concentra-
tions of mitogen, the fluorescence intensity does not. It
could be argued, therefore, that cell division itself is not
affected by DHA, but that there is a lower level of
expression of CD69 on the cell surface and therefore a
lower level of activation of the lymphocyte population.
Since the function of CD69 is not known, the implications
of this effect are unclear, but it remains possible that
DHA could affect lymphocyte function without altering

proliferation. However, another important consideration
in the interpretation of these data is that at high doses of
DHA treatment there is evidence for retroconversion to
EPA (Kew et al. 2004). This evidence makes it difficult
to draw the conclusion that DHA alone exerts effects on
T-lymphocyte activation, since there remains a possibility
that the increase in the proportion of EPA in these cells
might also contribute.

Dietary fatty acids and host defence

If some classes of fatty acid possess immunosuppressive
properties, it is reasonable to suggest that they may impair
host resistance to infection and therefore have undesirable
effects. This issue has been subject to controversy. While
there have been a few clinical trials investigating the
relationship between enterally-delivered n-3 PUFA and
infectious disease in surgical and critically-ill patients, the
data are equivocal and difficult to interpret because of the
inclusion of multiple nutrients rather than n-3 PUFA alone
(for review, see Heyland et al. 2001). Furthermore, since
they were conducted in patient groups, it would not be
appropriate to extrapolate their findings to the general
population. Studies conducted in animals, investigating the
influence of dietary fatty acids on host survival and/or
pathogen clearance in animals challenged with a live
infectious agent are also inconclusive, some studies
showing that n-3 PUFA improve host defence and others
showing impairment (Anderson & Fritsche, 2002). A
recent review suggests that these studies lack depth and
breadth, and that a direct examination of the influence of
n-3 PUFA on human infectious disease resistance is
warranted (Anderson & Fritsche, 2002).

If olive oil suppresses immune function, then applying
the same principles it is possible that it too could have a
detrimental effect on host defence. This possibility was
investigated by Wallace et al. (2000b), who examined the
influence of a range of dietary fatty acids on macrophage-
mediated cytotoxicity towards two tumour cell lines (P815
and L929). Feeding olive oil inhibited the killing of these
tumour cells compared with a low-fat diet, but other high-
fat diets, including those containing safflower oil and
coconut oil, had similar effects. Thus, it is not clear
whether the effect of the olive oil diet was in fact a result
of the amount of fat (Wallace et al. 2000b). In the same
study the olive oil diet decreased the ex vivo production of
TNF-a and nitrite by macrophages compared with the low-
fat diet, but once again the effect may have been
associated with the amount of fat (Wallace et al. 2000b).
Only a fish oil-containing diet appeared to have a specific
effect on these responses (Wallace et al. 2000b). Puertol-
lano et al. (2002) examined the effects on in vitro cellular
responses to Listeria monocytogenes of feeding a low-fat
diet or high-fat diets containing 200 g hydrogenated
coconut oil, olive oil or fish oil/kg to Balb/c mice. Feeding
olive oil did not affect spleen lymphocyte proliferation, but
it enhanced the cytotoxicity of the pathogen towards
splenic cells compared with the low-fat diet and the
hydrogenated-coconut-oil diet, suggesting a potentially
detrimental effect of olive oil (Puertollano et al. 2002).
However, feeding olive oil did not affect the ability of
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Fig. 4. Differential effects of eicosapentaenoic acid (EPA) and

docosahexaenoic acid (DHA) on expression of CD69, an early

marker of T-lymphocyte activation. Healthy subjects were supple-

mented with either olive oil or an EPA-rich or DHA-rich oil for 4

weeks. The EPA- and DHA-rich oils provided approximately 5 g n-3

PUFA/d. Lymphocyte activation was determined by measurement

of the expression of CD69 in blood diluted 1:1 (v/v) with culture

medium and cultured for 24 h with concanavalin A at a final

concentration of 6.25mg/l. Monoclonal antibodies used were anti-

CD69 and anti-CD3 (to distinguish T-lymphocytes). Cell prepara-

tions were analysed by flow cytometry and fluorescence data were

collected on 2 · 104 cells. The change in median fluorescence

intensity (related to the no. of CD69 molecules expressed per T-

lymphocyte) in post- v. pre-supplementation samples is illustrated

for each group. Data are means with their standard errors for ten

to fourteen subjects and were analysed using a one-factor ANOVA.

Mean values were significantly different from those for both the

placebo and the EPA treatment: *P < 0.05. (Data are taken from

Kew et al. 2004.)
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Listeria monocytogenes to adhere to or invade the cells
in vitro (Puertollano et al. 2002). Also, the same group
investigated the effects of diets containing hydrogenated
coconut oil, sunflower oil and olive oil on phagocytic
activity in Balb/c mice and demonstrated that the olive
oil diet enhanced phagocytic activity and production of
IL-1 relative to the other groups (De Pablo et al. 1998b).
Thus, the impact of olive oil on host defence is not yet
clear.

Mechanisms underlying the immunomodulatory
effects of n-3 PUFA

Despite the lack of consistency in the reported effects of
n-3 PUFA, advances in the understanding of the structural
organisation and physiological roles of fatty acids within
cells have identified new mechanisms by which fatty acids
might modulate immune function. Fatty acids play diverse
roles in all cells. They are important as a source of energy,
as structural components of cell membranes and as
signalling molecules. In addition, AA (n-6 PUFA) and
EPA (n-3 PUFA), can both serve as precursors for the
synthesis of eicosanoids, a family of hydroxylated PUFA
with a wide range of functions. Over the last few years
major developments in the understanding of the organisa-
tion of lipids within cells have been demonstrated to be
particularly relevant to cells of the immune system. The
notion that there are ‘lipid domains’ in cellular membranes
has given way to the recognition of lipid rafts and
caveolae, which are highly-organized microenvironments
with a number of important functions. The presence of
intracellular lipid bodies, putatively containing precursors
for the rapid production of eicosanoids within inflamma-
tory cells, has been demonstrated. The characterization of
new families of nuclear receptors, which can be activated
by fatty acids, has led to speculation about the mechanisms
by which intracellular fatty acids might be channelled
towards these receptors to influence target genes related to
immunity and inflammation.

Lipid rafts as platforms for cell activation in the

immune system

Lipid rafts are dynamic microenvironments in the exoplas-
mic leaflets of the phospholipid bilayer of plasma mem-
branes, which are rich in saturated fatty acids, sphingolipids,
cholesterol and glycosylphosphatidylinositol-anchored pro-
teins (Simons & Ikonen, 1997; Simons & Toomre, 2000;
Horejsi, 2003). Rafts preferentially group proteins according
to their function, e.g. a number of proteins involved in
signalling are commonly found in lipid rafts and many of
these are palmitoylated (Katagiri et al. 2001). Rafts are
generally thought to serve as platforms to facilitate apical
sorting, the association of signalling molecules and interac-
tions and crosstalk between cell types (Simons & Ikonen,
1997; Simons & Toomre, 2000; Katagiri et al. 2001; Horejsi,
2003). To date, a number of methods have been used to
study raft composition, most of them based on the fact
that rafts contain large complexes of lipids and proteins,
which are to some extent resistant to solubilization by
non-ionic detergents. The detergent-resistant complexes

can, therefore, be floated on sucrose gradients and their
composition analysed. However, differences in detergent
and extraction conditions can produce different results, and
it is not clear how closely the composition of biochemically-
isolated rafts corresponds with the presumed native structure
(Horejsi, 2003).

Activation of the proteins within rafts by an extracel-
lular ligand can result in rapid clustering, which appears to
be important for signal transduction in both T- and B-
lymphocytes (Katagiri et al. 2001; Pierce, 2002; Horejsi,
2003). The T-cell receptor clusters within lipid rafts on
contact with an antigen-presenting cell, forming an
‘immunological synapse’, or contact zone, where intracel-
lular signalling is thought to be initiated, and for this
reason T-lymphocyte activation has become a model for
studying lipid rafts.

The Src kinases play an important role in T-cell
activation and their myristoylation or palmitoylation is
regarded as essential for targetting them to rafts, since
proteins can be artificially targetted to rafts by acylation
(Zlatkine et al. 1997). Lck and Fyn, which are members of
the Src family of kinases, are concentrated on the
cytoplasmic side of lipid rafts and become activated in
response to stimulation of the T-cell receptor, triggering a
number of downstream signalling events (Liang et al.
2001). Lipid rafts from Jurkat cells treated with AA in vitro
have a reduced content of Lck and Fyn, a decline in Ca
signalling and a decline in some other downstream events
(Stulnig et al. 2001). Of major interest is the fact that
PUFA treatment results in remodelling of murine T-cell
lipid rafts (Fan et al. 2003), and may even result in PUFA
acylation of Fyn itself. This process is thought to be
possible because palmitoyl acyltransferase is a relatively
promiscuous enzyme that is able to form covalent
attachments between a wide range of fatty acids and
proteins (Webb et al. 2000; Liang et al. 2001). However,
it is not clear whether this phenomenon is physiological.
The transmembrane adaptor protein, linker for activation
of T cells, is another signalling molecule constitutively
present in rafts, and when phosphorylated binds to several
other molecules, including phospholipase Cg1, initiating
key pathways in T-cell activation (Zhang et al. 1998).
The functionality of the linker for activation of T cells
is dependent on its palmitoylation. Treatment of Jurkat
cells with the n-3 PUFA EPA, but not stearic acid,
diminished the phosphorylation of the linker for activation
of T cells and phospholipase Cg1, and it was suggested
that this effect was a result of selective displacement
of the linker for activation of T cells from lipid rafts
(Zeyda et al. 2002). Another example of alteration of
lymphocyte function as a result of modulation of raft fatty
acid composition is the displacement and subsequent
activation of phospholipase D by the n-3 PUFA DHA in
human T-lymphocytes (Diaz et al. 2002). The authors
suggest that this activation of phospholipase D might be
responsible for the anti-proliferative effects of DHA in
lymphoid cells (Diaz et al. 2002). However, it would be
important to determine whether there is a physiological
threshold for these reported disruptive effects of PUFA on
lipid rafts, and indeed whether all PUFA exert the same
effect.
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Eicosanoid generation

Eicosanoids are a family of oxygenated derivatives of AA,
dihomo-g-linolenic acid and EPA. Eicosanoids include PG,
thromboxanes, leukotrienes (LT), lipoxins, hydroperoxyei-
cosatetraenoic acids and hydroxyeicosatetraenoic acids.
Monocytes and macrophages are important sources of
eicosanoids, and because their membranes typically con-
tain large amounts of AA, compared with dihomo-g-
linolenic acid and EPA, AA is usually the principal
precursor for eicosanoid synthesis. AA in the monocyte
and macrophage can be mobilized by various phospholi-
pase enzymes, most notably phospholipase A2, and the free
AA can subsequently act as a substrate for cyclooxygen-
ase, forming 2-series PG and related compounds, or for
one of the lipoxygenase enzymes, forming 4-series LT and
related compounds (Fig. 5).

Eicosanoids are involved in modulating the intensity and
duration of inflammatory and immune responses. PGE2 has
a number of pro-inflammatory effects, including inducing
fever, increasing vascular permeability and vasodilation,
and enhancing pain and oedema caused by other agents
such as histamine. However, PGE2 also inhibits production
of TNF-a, IL-1 and IL-6 and this inhibition of synthesis
of the pro-inflammatory cytokines by PGE2 forms an
important regulatory loop. LTB4 increases vascular perme-
ability, enhances local blood flow, is a potent chemotactic
agent for leucocytes (including monocytes), induces
release of lysosomal enzymes by neutrophils, enhances
generation of reactive oxygen species, inhibits lymphocyte
proliferation and promotes NK cell activity. The 4-series
LT also regulate production of pro-inflammatory cyto-
kines, e.g. LTB4 enhances production of TNF-a, IL-1 and
IL-6. In relation to the latter effect, PGE2 and LTB4 are
antagonistic. Thus, AA gives rise to mediators that can

have opposing effects to one another, so that the overall
physiological effect will be governed by the concentrations
of those mediators, the timing of their production and the
sensitivities of target cells to their effects. The potential
importance of eicosanoids in atherosclerosis was recently
highlighted in a study demonstrating that antagonism of
the receptor for LTB4 resulted in a reduction in lesion
progression as a result of the inhibition of monocyte
recruitment (Aiello et al. 2002).

Since increased consumption of fish oil results in a
decrease in the amount of AA in the membranes of
monocytes and macrophages, there will be less substrate
available for synthesis of eicosanoids from AA. Further-
more, n-3 PUFA inhibit phospholipase A2 activity in
macrophages and competitively inhibit the oxygenation of
AA by cyclooxygenase. Thus, fish oil feeding results in a
decreased capacity of monocytes and macrophages to
synthesize eicosanoids from AA. This effect has been
demonstrated many times in a variety of animal models
(for example, see Magrum & Johnston, 1983; Brouard &
Pascaud, 1990; Chapkin et al. 1992; Yaqoob & Calder,
1995a) and in human subjects (Lee et al. 1985; Sperling
et al. 1993). In addition to effects on generation of
eicosanoids from AA, EPA is potentially able to act as a
substrate for both cyclooxygenase and 5-lipoxygenase
(Fig. 5), giving rise to derivatives that have a different
structure from those produced from AA (i.e. 3-series PG
and and 5-series LT). Thus, the EPA-induced suppression
in the production of AA-derived eicosanoids can poten-
tially be mirrored by an elevation in the production of
EPA-derived eicosanoids. Studies in experimental animals
have demonstrated that feeding fish oil results in markedly
enhanced production of 5-series LT (Chapkin et al. 1990;
Whelan et al. 1991). Similarly, dietary fish oil (at a high
dose) was demonstrated to increase generation of LTB5,
6-trans LTB5 and 5-hydroxyeicosapentaenoic acid by
stimulated human monocytes (Lee et al. 1985; Sperling
et al. 1993). The generation of EPA-derived cyclooxygen-
ase metabolites following fish oil feeding has not been
demonstrated, suggesting that at the concentrations incor-
porated into membrane phospholipids, EPA may be a
relatively poor substrate for cyclooxygenase. However,
there is still a great deal concerning the modulation of
eicosanoid metabolism that is not well understood. Clarifi-
cation of these pathways will be important in improving
the understanding of the role of eicosanoids in inflamma-
tory disease and of their potential modulation by dietary
fatty acids.

Local generation of fatty acid-derived mediators by

lipid bodies in inflammatory cells

It is becoming clear that the regulation of eicosanoid
formation involves activation of enzymes at specific
intracellular sites, and that this local generation of
eicosanoids may be facilitated by the presence of lipid
bodies present within many (if not all) cell types. Lipid
bodies within eosinophils increase in number following an
inflammatory stimulus and appear to contain all the
enzymes necessary for eicosanoid synthesis (Bandeira-
Melo et al. 2002). Unlike lipid rafts, these distinct
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intracellular domains are not resistant to detergent solubi-
lization and there are consequently some methodological
limitations to their study. However, novel techniques have
been used to cross-link newly-synthesized LTC4 at sites of
synthesis within eosinophils and to follow its fate on
stimulation (Bandeira-Melo et al. 2002). This approach
demonstrated that LTC4 formation does indeed occur in
lipid bodies and that, depending on the nature of the
stimulus, LTC4 can be either targetted towards the
perinuclear membrane or released extracellularly (Bandeira-
Melo et al. 2001, 2002). Like lipid rafts, the distribution of
lipid bodies can be polarized, but it is not clear whether
those producing eicosanoids destined to be secreted are
located close to the plasma membrane, while those that are
perinuclear produce eicosanoids only for autocrine effects
(Bandeira-Melo et al. 2002).

Interactions between fatty acids and nuclear

transcription factors in cells of the immune system

PPAR are ligand-activated transcription factors present in
a variety of cell types, with diverse actions, mainly in lipid
metabolism. A range of synthetic PPAR-g and PPAR-a
ligands have been demonstrated to inhibit phorbol ester-
stimulated cytokine production by monocytic cells (Jiang
et al. 1998) and studies using PPAR-a knock-out mice
have demonstrated prolonged inflammatory responses
(Devchand et al. 1996), suggesting that PPAR may be
anti-inflammatory. PPAR-a is the predominant isoform
expressed in murine T- and B-lymphocytes, whereas
PPAR-g dominates in myeloid cells (Jones et al. 2002).
Following activation of T cells, PPAR-a expression is
decreased, whereas PPAR-g expression is increased (Jones
et al. 2002). PPAR-g ligands have been reported to
decrease the production of interferon g and IL-2 by
mitogen-activated splenocytes (Cunard et al. 2002), inhibit
proliferation of human T cells (Clark et al. 2000; Harris &
Phipps, 2001) and promote apoptosis in murine helper-
T-cell clones (Clark et al. 2000). To date, most of the
research examining the biological effects of PPAR has
employed synthetic agonists at concentrations that are
higher than their dissociation constants for binding to
PPAR. The reliance on synthetic activators of PPAR has
meant that there is still very little information about the
physiological roles of the natural ligands of these
transcription factors. It is often assumed that because some
fatty acids and their metabolites have been demonstrated to
act as PPAR ligands in competitive binding and/or reporter
assays, they must act as natural ligands. This assumption
has led to considerable speculation about the potential for
specific classes of fatty acids (particularly the n-3 PUFA)
to mediate effects on cell function through PPAR.
However, there appears to be no distinction between the
n-3 PUFA and the n-6 PUFA in their binding affinity and/
or activating capacity, and no relationship with chain
length or number of double bonds (Forman et al. 1997;
Kliewer et al. 1997; Krey et al. 1997; Lin et al. 1999;
Wolfrum et al. 2001; Xu et al. 2001). Thus, there is a lack
of plausible evidence to support the idea that any particular
class of fatty acids has a superior capacity to act as ligands
for PPAR in the immune system in vivo. However, it has

been suggested that fatty acid-binding proteins are able to
interact physically with both PPAR-a and PPAR-g to
direct ligands to their responsive genes, in what has been
described as a ‘cytosolic gateway’ (Tan et al. 2002). If the
presence of this gateway can be established, it would
represent an elegant mechanism by which intracellular
fatty acids could be directed to interact with a target gene.
A recent review suggests that fatty acids act as gatekeepers
in immune cell regulation, in the sense that their location
and organization within cellular lipids have a direct
influence on the behaviour of a number of proteins
involved in immune cell activation (Yaqoob, 2003a).

Clinical applications

The suggestion that n-3 PUFA might possess anti-inflam-
matory properties has generated considerable interest in
their potential application as therapeutic agents in chronic
inflammatory disorders. Unfortunately, for most inflamma-
tory disorders, evidence for therapeutic effects of n-3 PUFA
is very weak (see Yaqoob, 2003b). The only condition for
which the evidence is consistently positive is rheumatoid
arthritis. At least thirteen double-blind placebo-controlled
trials of fish oil supplementation have been conducted to
date, all of which demonstrate at least modest improvements
in clinical symptoms and severity of disease in the treatment
groups (for review, see Calder & Zurier, 2001). In recent
years, the n-3 PUFA have been suggested as therapeutic
agents in another chronic inflammatory disease that affects
many thousands of individuals worldwide, atherosclerosis.
This condition, which describes the gradual process by
which lesions form in arterial walls, has only relatively
recently been recognized as an inflammatory disease. Even
when Meade & Mertin (1978) speculated that there might
be an immunological basis for data relating to dietary fat
and chronic disease, they could not have imagined the
importance of their predictions in relation to atherosclerosis.

Inflammation in atherosclerosis

Atherosclerosis is characterized by the accumulation of
monocytes and lymphocytes through all stages of its
pathogenesis, beginning with the formation of fatty streaks
underlying the endothelium of large arteries. The infiltra-
tion of monocytes and lymphocytes occurs as a result of
the secretion of chemoattractant molecules (e.g. monocyte
chemoattractant protein-1) and the expression of adhesion
molecules by endothelial cells lining the artery wall in a
manner identical to that observed in the inflammatory
response to an infection. Several stimuli for the inflamma-
tory response in atherosclerosis have been proposed,
including oxidized LDL, homocysteine, free radicals and
infectious micro-organisms. However, the nature of the
immune response towards these stimuli is not clear. While
the precise inflammatory nature of oxidized LDL is not
entirely clear, it is accepted that monocytes that have
infiltrated the arterial intima and differentiated into
macrophages take up oxidized LDL through scavenger
receptors in an unregulated manner, accumulating large
amounts of cholesterol and becoming foam cells. Although
homeostatic responses exist to remove cholesterol from
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macrophages, they progressively fail in atherosclerosis,
and when the macrophages eventually die, through
necrosis or apoptosis, the lipid is deposited within the core
of the developing plaque. Cytokines secreted by both
lymphocytes and macrophages within the plaque exert
pro- and anti-atherogenic effects on components of the
vessel wall (Ross, 1999; Glass & Witztum, 2001). Smooth
muscle cells migrate from the medial portion of the arterial
wall towards the intima and secrete extracellular matrix
proteins that form a fibrous cap. The cap separates the
highly thrombogenic contents of the plaque lipid core
from the potent coagulation system contained within the
circulating blood. Analysis of advanced human plaques
suggests that they undergo repetitive cycles of microhae-
morrhage and thrombosis, which predominantly occur at
the shoulder regions (Glass & Witztum, 2001). Matrix
metalloproteinases secreted by macrophages degrade
extracellular matrix proteins and contribute to the weak-
ening of the fibrous cap, which can lead to plaque rupture
(Libby et al. 1996). The resulting thrombosis can lead to a
fatal occlusion of the artery.

While much of the inflammatory activity in atherosclero-
sis is located in the arterial intima, there is compelling
evidence to suggest that it is reflected by a persistent
low-grade inflammation in the circulation. This chronic low-
grade inflammation is likely to be the result of a ‘spilling
over’ of inflammatory molecules (cytokines secreted by
monocytes and soluble adhesion molecules shed from the
surface of endothelial cells) from the vessel wall into the
circulation, where they subsequently act on the liver to
induce the secretion of acute-phase proteins, including
C-reactive protein (CRP), fibrinogen and serum amyloid A.

The protective effects of n-3 PUFA in atherosclerosis
may involve effects on inflammation

There is epidemiological evidence that consumption of
fish or long-chain n-3 PUFA found in oily fish and fish
oils protects against CVD inWestern populations (Miettinen
et al. 1982; Kromhout et al. 1985, 1995; Shekelle et al.
1985; Norell et al. 1986; Feskens et al. 1993; Siscovick
et al. 1995; Daviglus et al. 1997; Albert et al. 1998, 2002;
Hu et al. 2002). Long-chain n-3 PUFA lower fasting
plasma triacylglycerol concentrations (Harris, 1996) and
reduce the postprandial lipidaemic response (Williams,
1997). Several secondary prevention studies, providing
long-chain n-3 PUFA to patients who had already suffered
a myocardial infarction, demonstrate substantial benefit
(for example, see Burr et al. 1989; Singh et al. 1997;
GISSI Prevenzione, 1999; Marchioli et al. 2002), although
one study demonstrated a higher risk of cardiac death,
which could not be explained (Burr et al. 2003). A recent
meta-analysis of randomized controlled trials, which
compared dietary or non-dietary intake of n-3 PUFA
with a control diet or placebo in patients with CVD,
identified eleven trials fitting specific criteria relating
to length of study, clinical outcomes etc., and concluded
that n-3 PUFA reduce total mortality, fatal myocardial
infarction and sudden death (Bucher et al. 2002). This
reduction in mortality might be a result of anti-thrombotic

and anti-arrhythmic actions of n-3 PUFA (Leaf et al.
1998), although n-3 PUFA might also contribute to the
stabilization of atherosclerotic plaques by reducing
inflammation.

Effects of n-3 PUFA on systemic markers

of inflammation

CRP is an acute-phase reactant synthesized by the liver
and regulated principally by the cytokine IL-6. High serum
concentrations of CRP correlate with the presence of
subclinical CVD and the risk of acute cardiovascular
events. Several large-scale prospective epidemiological
studies have shown that the plasma level of CRP is a
strong independent predictor of future myocardial infarc-
tion, stroke and pulmonary vascular disease among
individuals without known CVD (Kuller et al. 1996; Tracy
et al. 1997; Ridker et al. 1998, 2000; Koenig et al. 1999;
Danesh et al. 2000; Mendall et al. 2000). Some studies
have suggested that the addition of ‘high-sensitivity’ CRP
to lipid screening improves the estimation of vascular risk
over the use of lipid screening alone, since ‘high-
sensitivity’ CRP has been shown to be an important
predictor of risk, even in individuals with normal LDL-
cholesterol levels (Ridker et al. 2000). This finding is
pertinent, since a high proportion of myocardial infarctions
occur in individuals with normal plasma lipid levels. It is
interesting to note in this context that the relationship
between LDL-cholesterol and ‘high-sensitivity’ CRP is
weak, which has led to the suggestion that hyperlipidaemia
and enhanced inflammation are separate but interactive
processes (Ridker et al. 2000). It is unclear at present
whether CRP is simply a marker of the inflammatory
process associated with atherosclerosis, or whether it plays
an aetiological role in atherogenesis. It is possible that
both are partially true and that serum concentrations of
CRP (as well as other acute-phase proteins) reflect the
inflammatory response to atherosclerotic damage, but in
addition enhance clot formation, lipid oxidation and cell
activation (Tracy, 1998).

The question of whether alleviation of the inflammatory
component of CVD may provide additional benefits to
other treatments has not been studied to a great extent in
the context of CRP. DeMaat et al. (1994) have reported
that short-term treatment (1 week) with fish oil at a high
dose of 30 g/d had no significant effect on CRP levels in
healthy young subjects. Furthermore, Chan et al. (2002)
demonstrated that treatment for 6 weeks with statin, but
not fish oil (4 g/d), reduced CRP and IL-6 concentrations in
individuals with visceral obesity. Thus, there is currently
no evidence to suggest that n-3 PUFA are able to modulate
plasma levels of CRP.

The hepatic synthesis of CRP is largely under the
control of the pro-inflammatory cytokine, IL-6. Leucocytes
are thought to be an important source of circulating IL-6,
although it has been estimated that as much as one-third of
total circulating IL-6 can originate from adipose tissue,
depending on the extent of adiposity (Yudkin et al. 2000).
A limited number of animal and human studies report the
effects of dietary n-3 PUFA on circulating inflammatory
cytokine concentrations (in contrast to the numerous
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studies examining the effects of n-3 PUFA on ex vivo
cytokine production by leucocytes, described earlier). Mice
fed fish oil had lower plasma concentrations of TNF-a, IL-
1b and IL-6 following endotoxin injection than did mice
fed safflower oil (Sadeghi et al. 1999). This observation
might be linked to better survival of fish oil-fed animals
when exposed to endotoxin (for references, see Calder,
2001). Fish oil-containing parenteral nutrition decreased
serum TNF-a, IL-6 and IL-8 concentrations in burned
rats compared with n-6 PUFA-rich parenteral nutrition
(Hayashi et al. 1998; Tashiro et al. 1998). Likewise,
surgical patients infused with a fish oil-rich emulsion
showed lower TNF-a concentrations in the bloodstream at
some time points compared with patients receiving a
control infusion (Wachtler et al. 1997). However, the
influence of n-3 PUFA on subclinical levels of circulating
inflammatory cytokines is not known.

Adhesion molecules mediate the attachment of leuco-
cytes to the endothelium, their transmigration into the
subendothelial space and their retention and accumulation
within the artery wall. Several families of adhesion
molecules are known to exist. The key adhesion molecules,
in terms of atherosclerosis, are the selectins, ICAM and
vascular cell adhesion molecules (VCAM). The surface
expression of these molecules can be up regulated very
rapidly because they exist within an intracellular pool and
translocate to the plasma membrane following cell activa-
tion. Here they engage with their complementary adhesion
molecule or are recycled. At the cell surface these
adhesion molecules may also be cleaved to form soluble
fragments that enter the circulation. Soluble forms of
ICAM-1 and VCAM-1 are found in the plasma, probably
as a result of shedding from the surface of activated
endothelial cells (Rothlein et al. 1991).

Plasma concentrations of soluble ICAM-1 and soluble-
VCAM-1 have been reported in some studies to be higher
in individuals with CVD and pulmonary vascular disease
than in controls (Blann & McCollum, 1994; Haught et al.
1996; Morisaki et al. 1997; Caulin-Glaser et al. 1998).
However, the results of such studies are not entirely
consistent and a recent meta-analysis has demonstrated
that soluble adhesion molecules are unlikely to add much
predictive information to that provided by established risk
factors (Malik et al. 2001).

Studies investigating the effects of supplementation with
fish oil on serum soluble adhesion molecule levels have
also reported equivocal findings (Abe et al. 1998; Seljeflot
et al. 1998; De Caterina et al. 2000). Several studies have
shown no effect on levels of soluble VCAM-1, while one
study reported an increase (Johansen et al. 1999) and one
study reported that supplementation with a moderate dose
of fish oil (1.2 g EPA + DHA/d) for 12 weeks decreased
plasma levels of soluble VCAM-1 in older subjects, but
did not have any effect in young males (Miles et al. 2001).
Most studies show no effect on plasma soluble ICAM-1
levels (Abe et al. 1998; Miles et al. 2001). Two studies
showed that fish oil increased plasma soluble E-selectin
(Johansen et al. 1999; Miles et al. 2001); in one of these
studies soluble E-selectin was increased by fish oil in
young subjects, but not in older subjects (Miles et al.
2001).

Effects of n-3 PUFA on monocyte and macrophage

chemotaxis

Chemotaxis of monocytes and macrophages could be
affected by changes in the fatty acid composition of
membrane phosopholipids that might influence the binding
of chemotactic agents to their receptors, the subsequent
signalling pathways or the cytoskeletal rearrangements that
occur. Modulation of chemotaxis by n-3 PUFA could
potentially influence the extent of infiltration of monocytes
into the arterial intima. Chemotaxis of blood monocytes
towards the chemo-attractants LTB4 and formyl-methio-
nylleucyl-phenylalanine was found to be suppressed
following supplementation of the human diet with approxi-
mately 5.5 g EPA + DHA/d for 6 weeks (Lee et al. 1985;
Schmidt et al. 1992). However, there was no effect of a
much lower (and more nutritionally relevant) dose of n-3
PUFA (0.65 g/d for 12 weeks) on monocyte chemotaxis
towards pooled human serum (Schmidt et al. 1996).

Effects of n-3 PUFA on adhesion molecule expression

As described earlier, adhesion molecules are involved in
interactions between leucocytes and endothelial cells,
which may facilitate movement of leucocytes into the
arterial wall. In vitro studies have highlighted the potential
for n-3 PUFA to modulate the expression of adhesion
molecules by some cell types. Calder et al. (1990)
observed that murine peritoneal macrophages cultured
in the presence of EPA or DHA were less adherent
to artificial surfaces than those cultured with other fatty
acids. Incubation of human monocytes with EPA has
also been shown to result in reduced expression of
ICAM-1, while DHA had no effect (Hughes et al.
1996b). The reduction in ICAM-1 expression on human
monocytes was also observed following dietary supple-
mentation with n-3 PUFA (Hughes et al. 1996a). In animal
feeding studies Sanderson et al. (1995b, 1998) demon-
strated that fish oil reduced the expression of specific
adhesion molecules on concanavalin A-stimulated lym-
phocytes and their adhesion to macrophage and endothelial
cell monolayers.

Effects of n-3 PUFA on the expression of scavenger

receptors

Scavenger receptors take up modified forms of LDL in an
unregulated manner, leading to foam cell formation. A few
studies have examined the effects of n-3 PUFA on
scavenger receptor expression by monocytes or macro-
phages. An animal study demonstrated that feeding a fish
oil-rich diet to mice resulted in down-regulation of
macrophage scavenger receptors AI and AII, while coco-
nut oil and sunflower oil had no effect, when compared
with the standard diet fed to the animals (Miles et al.
2000). Pietsch et al. (1995) reported a down-regulation of
the expression of CD36 by the human monocytic U937
cell line after incubation with EPA (5mM) or DHA,
but not with linoleic acid or AA. In another study EPA
(30–240mM) was shown to inhibit the proliferation of
the same cell line in a dose-dependent manner and, at the
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highest concentrations, induced apoptosis (Finstad et al.
1998). Expression of CD36 was lower in cells treated with
EPA (60mM) or oleic acid compared with untreated cells
(Finstad et al. 1998). However, EPA unexpectedly caused
greater accumulation of lipid droplets in the cells than
oleic acid, although the effects were reversed when cells
were re-incubated in EPA-free medium. This finding
leaves the question of the precise nature of the effects of
fatty acids on foam cell formation unresolved.

Effects of n-3 PUFA on thrombogenic potential of

macrophages

Macrophages present in atherosclerotic lesions produce
tissue factor, a highly thrombogenic agent which, when
released as a result of plaque rupture, activates platelet
aggregation and thrombosis. Analysis of human lesions in
individuals with advanced atherosclerosis suggests that
repetitive cycles of microhaemorrhage and non-fatal
thrombosis occur (Glass & Witztum, 2001). Human
monocytes that have been differentiated and transformed
into foam cells in vitro have been demonstrated to express
tissue factor (Colli et al. 1999). AA, but not EPA or DHA,
enhanced both the expression of tissue factor and the
procoagulant activity of human monocyte-derived macro-
phages by a mechanism suggested to involve the cyclo-
oxygenase pathway (Cadroy et al. 1998).

Effects of n-3 PUFA on atherosclerotic plaque

morphology and stability

The propensity of atherosclerotic plaques to rupture is
influenced by their lipid content and the distribution of
lipid within the plaque, by the extent of infiltration of
inflammatory macrophages at the shoulder regions of the
plaque and by the thickness of the fibrous cap (Davies et al.
1993; Libby et al. 1996; Plutzky, 1999). A greater lipid
content, a high presence of inflammatory macrophages and
a thin fibrous cap reflect a plaque that is vulnerable and
likely to rupture. Macrophages secrete metalloproteinases
(and induce smooth muscle cells to secrete them), which
weaken the fibrous cap and, once rupture has occurred, can
induce thrombosis by expressing tissue factor (Libby et al.
1996). The effects of specific fatty acids on plaque
morphology and progression are not clear (Felton et al.
1997). However, given the evidence for the anti-coagula-
tory, anti-thrombotic and anti-inflammatory properties of
n-3 PUFA, it is possible that alteration of the PUFA
composition of the diet could affect plaque progression,
stability and thrombus formation. If n-3 PUFA are to affect
plaque stability it is likely that they must first be
incorporated into the plaque. In a study by Rapp et al.
(1991) patients destined to undergo carotid endarterectomy
consumed fish oil for a period before surgery and the levels
of EPA and DHA in the plaques removed at surgery were
higher than those in plaques removed from control
patients. However, the study used a very high dose of fish
oil, 48–64 g/d providing 16–21 g EPA + DHA/d (Rapp
et al. 1991). In comparison, habitual consumption of
long-chain n-3 PUFA in most Western diets is <0.3 g/d,
while secondary prevention studies demonstrate protective

effects of <1.8 g EPA + DHA/d (Burr et al. 1989; GISSI
Prevenzione, 1999; Marchioli et al. 2002). A recent study
in patients awaiting carotid endarterectomy (fifty-nine or
more patients per treatment group), investigated the effects
of moderate doses of n-3 PUFA on plaque composition,
morphology and stability (Thies et al. 2003). Patients were
randomly assigned to either placebo (palm oil + soybean
oil), sunflower oil or fish oil, with those in the fish oil
group consuming an extra 1.4 g n-3 PUFA (EPA and
DHA)/d, while those in the sunflower oil group consumed
an extra 3.6 g linoleic acid/d (Thies et al. 2003). The
duration of oil treatment was 7–189 (median 42) d, which
represented the waiting time before surgical removal of the
carotid plaques. The proportions of EPA and DHA were
higher in carotid plaque phospholipids, cholesteryl esters
and triacylglycerols in patients receiving fish oil compared
with patients in the control group (Thies et al. 2003).
Fewer plaques from patients being treated with fish oil had
thin fibrous caps and signs of inflammation and more
plaques had thick fibrous caps and no signs of inflamm-
ation, compared with the other two groups; these differ-
ences were significant in patients who had been treated
with fish oil for > 42 d (P < 0.05; Thies et al. 2003). The
number of macrophages in the plaques from patients
receiving fish oil for >42 d was lower than that in the other
two groups (Thies et al. 2003). These results suggest that
advanced atherosclerotic plaques are dynamic and readily
incorporate n-3 PUFA, even when provided at relatively
modest doses. Furthermore, incorporation of n-3 PUFA
into carotid plaques was associated with a reduced number
of macrophages and fewer signs of inflammation, suggest-
ing that n-3 PUFA induce changes that may increase the
stability of atherosclerotic plaques.

Conclusion

When Meade & Mertin (1978) published their highly
speculative review, it is unlikely that they could have
imagined the subsequent interest in the effects of fatty
acids on the immune system. Over the last 25 years fatty
acid research has gradually established its niche in
immunology. Although there are still many questions
regarding the exact nature of the modulation of immune
responses by fatty acids, research is increasingly being
conducted in human subjects and study design is gradually
improving to overcome some of the criticisms of earlier
studies. Advances in fatty acid biochemistry and molecular
techniques are suggesting new mechanisms by which fatty
acids could potentially alter cellular responses, many of
them being particularly relevant to the immune system.
Finally, there are exciting possibilities for the clinical
applications of n-3 PUFA. The present review has focused
on the hypothesis that the anti-inflammatory properties
of n-3 PUFA in the arterial wall may contribute to the
protective effects of n-3 PUFA in CVD, as suggested by
epidemiological and secondary prevention studies. Studies
are just beginning to show that dietary n-3 PUFA can be
incorporated into plaque lipid in human subjects, where
they may influence the morphology and stability of the
atherosclerotic lesion.
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