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ABSTRACT

GOOVAERTS and DE VYLDER (1983) provided a stable recursive algorithm for
calculating the probability of ultimate ruin. Their algorithm yielded bounds for
this probability. It is shown that in practice their method may be inherently
unstable because it is based on the subtraction of nearly equal numbers. An
alternative to this type of subtraction is provided. It is proved that their
algorithm converges only at a linear rate to the true value. It is suggested that
this slow rate of convergence be improved via an application of the Richardson
extrapolation technique.
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1. INTRODUCTION

When claims follow a compound Poisson process with rate X and premiums are
paid continuously at rate c, GERBER (1979, p. 115, equation (3.7)) proved that
the infinite time probability of ruin for an initial risk reserve of u, y/(u),
satisfied the following Volterra integral equation of the second kind:

A f00 X C
(1) V(u) = - \ (\-F(y))dy + - \ ¥(u-y)(l-F(y))dy,

c J

\ ¥(u
Jo

where c = Xpx (1 + 6) is the premium rate, px is the expected claim size, 0 > 0 is
the loading and F{x) is the cumulative distribution function (cdf) of the claim
size random variable. F{x) is assumed to be completely known.

Techniques for numerically solving equation (1) are contained in several
texts including BAKER (1977), DELVES and MOHAMED (1985), and BRUNNER
and VAN DER HOUWEN (1986). However they do not provide methods for
obtaining tight bounds on the true solution y/{u).

GOOVAERTS and DE VYLDER (1983) developed a recursive algorithm for
approximating y/(u) and for providing bounds on their approximations. Their
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method can be summarized as follows (with a change in notation): let

•r(2) K{s)= | - ^ d y , s>0.
P\

Here K(s) has been standardized to ensure that A (̂0) = 1. For fixed u, the step
size h and the number of steps n are defined to satisfy nh = u. The bounds of
y/(u) are then calculated recursively as follows: for j = 0, 1, 2, . . . , n

h = "-
n

(3)

(4)

i+e

I

(1 + 0)

(5) v,{jh) =

¥u((J-i)h)AK((i-\)h)

where y/u(x) and {j/t(x) are the upper and lower bounds respectively on the
true value of y/(x), x > 0, and A is the well known forward difference operator
defined with respect to step size h, i.e., for any real valued function g(y),

g(y + h)-g(y).

The resulting approximation to y/(u) is

1
(6) \//(u) x -[y/u(nh) + y/,(nh)].

2

with an upper bound on the error given by

For fixed h and u, Goovaerts and de Vylder proved that there is no
cumulative effect of the propagat ion of errors in equations (4) and (5). In
particular, if e, is the absolute value of the error in y/(ih), i = 1, 2, 3, . . . ,j— 1,
then the absolute error in y/(jh) is ey satisfying

£j < Max {£] , £2 , . .. , Ej- i} .

Since this is true for j = 2, 3, . . . , then

Sj < £ i j = 1 , 2 , . . . , « .

The classic reference on the analysis of the propagation of errors in a series of
calculations is WILKINSON (1963).
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The objective of this paper is to improve the practical implementation of
equations (4) and (5) so as to reduced the sequence of errors {£,}. Numerical
results are given for the Pareto distribution.

In the sequel, it will always be assumed that F(x) is differentiable and yields
the probability distribution function (pdf) f(y). For most of the distributions
used by actuaries, the pdf f(x) is infinitely differentiable except, perhaps, at a
countable number of points.

2. MAIN RESULTS

2.1. Rounding errors

Goovaerts and de Vylder's strategy for approximating y/{u) was to use
equations (4) and (5) for successively smaller values of h (i.e., larger values of
n), stopping when they obtained agreement to some desired degree of accuracy.
RALSTON and RABINOWITZ (1978, chapter 4.2, p. 93) pointed out that, when
using floating arithmetic, this procedure is fraught with danger since rounding
errors will eventually dominate the calculations. This is because, as h -» 0, the
difference between K((i- \)h) and K(ih) tends to the difference of two nearly
equal numbers, and thus contains fewer and fewer significant digits. They
recommended that h should not be too small and that the Richardson
extrapolation technique be used to improve the accuracy of the approxima-
tions.

To reduce the loss of significant digits, one must avoid subtractions,
especially subtracting nearly equal terms. For some distributions, it is possible
to calculate this difference "exactly". For example, in the Pareto case where
F(x) = 1 - 1/(1 +x)2 and K{x) = 1/(1 +x), it is better to calculate AK(ih) as
-hj[(\ + ih)(\+(i+\)h)} rather than as [1/(1 + (i+ l)h)]-[1/(1 + ih)].

Unfortunately, there are distributions where neither F(x) nor K(x) can be
obtained exactly in closed form. However, for most of these distributions, f(y)
can be calculated "exactly". In such cases AK(x) must be evaluated very
carefully because both K(x) and F{x) may be known only to small number of
decimal places or significant. When h is small, it is better to compute AK(x) as
follows:

(7)

(8)

AK(x) =

=

=

1

Pi

1

Pi

1

f
J

(\-F(y))dy

f F{y) dy~\

+ h

yf(y)dy
Pi

The integral terms in equations (7) and (8) may have to be evaluated
numerically using a composite Gauss-Legendre or a composite Newton-Cotes
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quadrature formula. These formulas do not involve subtractions—see Ralston
and Rabinowitz (chapter 4)—and as such may result in the loss of at most 1 or
2 significant digits.

Equation (8) is recommend over equation (7) because (8) requires fewer
(only 2) evaluations of F(x) hence should require less time to calculate AK(x).
Since f{y) can be obtained exactly, F{x) should be calculated to a large
number of significant digits. This will ensure that AxF{x) =
(x + h) F(x + h) — xF(x) can be evaluated accurately. Note AxF(x) represents
the subtraction of nearly equal terms and, if not evaluated carefully, may result
in a significant loss of significant digits. The integral term in equation (8) can
be obtained to any practical degree of accuracy.

2.2. Truncated error

An important aspect in the development of equations (4) and (5) is Goovaerts
and de Vylder's discretization of their integrals. This requires implicit use of the
following composite quadrature rule:

(9) y/(xrs)dK(s) x Y y/{{j-i)h) AK((i- \)h)

where h = u/n and Xj = jh. Unfortunately this rule yields exact results if, and
only if, K(x) is a constant or a step function with discontinuities at h, 2h,. ..jh.
It is therefore not as accurate as more traditional rules such as the composite
trapezoid of Simpson's rules. However it does provide upper and lower bounds
on y/(x).

It is well known that the trapezoid rule has a truncation error of O(h2) while
the Simpson's rule has an error of O(h4). What is the order of the error in
equation (9)? It will be proved that the error in equation (9) is O(h). To
establish this result one needs the Euler-Maclaurin Summation Formula
(Ralston and Rabinowitz, page 138):

Result 1 (Euler-Maclaurin). If g(x) has derivatives of order 2 m + 2, then for r a
positive integer and h > 0,

ry°+rh h
(10) h 2 , g(yo + ih) = g(s)ds + -

2
f
Jy

hlk

*=i (2 A;)!

where g(l)(^) is the i-th derivative of g(s),

(2m + 2)\
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and the Bks are Bernoulli numbers, i.e.,

B
ke'-\ tx k\

Theorem 1. Assume:

(1) the pdf f(y) is bounded by M,
(2) x > 0 is fixed, and
(3) r is a positive integer such that x = rh.

As h —> 0, the truncation error E, defined by

(11) E= X V((r- Oh) AK{(i-\)h) - ^(x-
'= i Jo

is of order h, i.e., £ = O{h).

Proof: Using equation (10), let y0 = 0 and replace rh by x. Since x is held to be
constant, equation (10) can be rearranged to give

Jo
r2m+\(12) A

/=i Jo

where the a^'s are constants depending on the fi^-'s, the g(*'(x)'s and the
g(Ar)(0)'s. Note the summation on the left starts from / = 1. The final term in
equation (12) is h2m+{ rather than h2m + 2 because in the Em term (in
equation (10)) rh = x, a constant.

Assume g(s), given by

g(s)= yf(x-s)Kw(s),
is at least twice differentiable, i.e., m > 0. Since K(s) must be at least twice
differentiable, then

AK{(i-\)h) = hKm(ih) - - K{2){Q
2

where (/— \)h < £-, < ih. So equation (11) implies

w(ir-i)h)AK((i-\)h)- [ W(x-s)dK(s)
'•=i Jo

rx

y/{x-ih)Km{ih)- y/(x-s) Kw(s) ds -
< • = i Jo
h2 '

(13) - — X y{(r-i)h)K(2\Q

h2 ' m

(14) = - — £ v/ ((r - /
2 ;=i

https://doi.org/10.2143/AST.22.1.2005126 Published online by Cambridge University Press

https://doi.org/10.2143/AST.22.1.2005126


56 COLIN M. RAMSAY

Since f(s) is bounded by M, K(2)(s) = f(s)/p] and 0 < y/(s) < 1, it follows
that

h2 ^ m h2rM xhM
- £ ¥(x-ih)Km{^ < = =O(h).
2 ,-=i 2/?, 2/7,

It follows that, for m > 0, the terms on the right hand side of equation (13)
yield

E= O(h) + a0h + O(h2) + O(h2m+l) = O(h).

Q.E.D.

This suggests that for fixed u, as h -* 0 (or n -* oo), the approximation in
equation (6) may converge slowly (O(h)) to the true value y/(u). This means
that one must use very small values of h (very large values of n) or find a way
to accelerate this slow rate of convergence. However, from Section 2.1 above,
the use very small values of h was not recommended and it was suggested that
an acceleration technique be used. This approach will now be investigated.

2.3. Accelerating convergence

Assume that as h -*• 0, the error E, in equations (11) and (14), can be written as

where the constants /?£0), k = 1, 2, . . . , need not be known. One can use the
Richardson extrapolation technique (Ralston and Rabinowitz, page 94) to
accelerate the convergence of the sequence of approximations {i//(x; /)} where
\j/{x; i) is calculated using a step-size ht = xjnt. The true value if(x) is given by

(15) v(x) — y(x; i)

If y/(x; i) is calculated for two step sizes h\ and h2, with h2

0 < p < 1, then /?(j0) can be eliminated from equation (15) to give

(16) y/(x) = y/(x:

where

' r i ^ y/{x;2)-pij/(x; 1)
ij/(x; 1,2) =

\-p
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and the /?[" are constants depending on /?{0) and p. Thus the new approxima-
tion is y (x; 1,2) which has an error of order h\. If one wanted to eliminate the
h\ term in (16) then use <j/(x; 1, 2) and ij/(x; 2, 3):

W(x)= $r(x

where

y/(x; 1, 2, 3) =

The error is now of order h\.

This process can be repeatedly applied as follows: following the notation of
Ralston and Rabinowitz, let y/(x; i) be denoted by T'o, i = 1, 2, A lower
triangular matric of approximations T'r can be generated as follows: for
r = 1,2,3, . . . ,

y/+ 1 r <TT/ rj->i+ 1 T-II

\-p2

where A/+1 = />/!, and p < 1. If the step sizes do not decrease uniformly, then
simply replace p' by hi+rjhi. The element 77 ' is actually the approximation
y/(x; 1, 2 ... r); it appears in the lower right hand corner of the matrix.

This procedure can be applied to both the upper and lower bounds
approximations. The final approximation to y/(x) will be

(18) y(x) « • - [ £ „ ( * ; 1,2, ...,r) + y/,(x;\,2, . . . , r ) ]
2

where the subscripts w and / refer to upper and lower bounds respectively.

Warning 1. It may not always be the case that the extrapolation procedure T'r
will retain the upper and lower bound properties, i.e.,

\j/,(x; 1, 2 , . . . , r) < y / { x ) < \j/u{x; 1, 2 , ...,r)

may be violated.

3. NUMERICAL RESULTS

Using the Pareto distribution used by Goovaerts and de Vylder, ruin probabili-
ties are approximated for 6 = 0.2 and u = 10, 50 and 100 as follows:

1. using double precision arithmetic;

2. u s i n g 5 s t e p s i zes : h = 2~k, k = \,2 ... 5;
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3. carefully evaluating the difference K((i-\)h)-K(ih) according to equa-
tion (8);

4. calculating ij/u(u) and Wiiu) according to equations (4) and (5);
5. accelerating the convergence of the upper and lower bounds sequences

using equation (17); then
6. calculating the final estimates using equation (18).

The procedure outlined above will now be used to calculate the probability
of ruin for the Pareto

F(x)= 1- v - 2

taken from Goovaerts and de Vylder. These results are contained in Tables 1 to
3. The extrapolation procedure vastly improves the accuracy of the initial
approximations given by the TQS. From the final results shown in Table 3, it is
clear that the estimate y/(u) is accurate to at least 7 decimal places. In fact,
even if one had used only the first three rows (i.e., h = 0.5, 0.25, 0.125) for the
extrapolation procedure, the resulting approximation based on T\ would be
accurate to at least 4 decimal places. This is more accurate than r0

5 and
requires less computations! Note that in Tables 1 an 2, TQ is accurate to 2 or 3
decimal places.

Finally, for u = 10.0, the lower bounds provided by Goovaerts and de
Vylder do not agree with mine. I cannot explain this difference.

TABLE 1
RICHARDSON'S EXTRAPOLATION OF LOWER BOUNDS, 0 = 0.20

u

10.0
10.0
10.0
10.0
10.0

50.0
50.0
50.0
50.0
50.0

100.0
100.0
100.0
100.0
100.0

n

20
40
80
160
320

100
200
400
800
1600

200
400
800
1600
3200

i

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

*oo - n
0.41761640
0.42596352
0.43042938
0.43273608
0.43390772

0.13805696
0.14079460
0.14228559
0.14306363
0.14346099

0.06716234
0.06809997
0.06861110
0.06887802
0.06901440

0.43431064
0.43489525
0.43504277
0.43507937

0.14353224
0.14377659
0.14384166
0.14385835

0.06903759
0.06912223
0.06914494
0.06915078

n

0.43509011
0.43509194
0.43509157

0.14385804
0.14386335
0.14386391

0.06915045
0.06915250
0.06915273

0.43509221
0.43509152

0.14386411
0.14386399

0.06915280
0.06915277

0.43509148

0.14386398

0.06915276
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TABLE 2

RICHARDSON'S EXTRAPOLATION OF UPPER BOUNDS, 8 = 0.20

u

10.0
10.0
10.0
10.0
10.0

50.0
50.0
50.0
50.0
50.0

100.0
100.0
100.0
100.0
100.0

rt

20
40
80
160
320

100
200
400
800
1600

200
400
800
1600
3200

i

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

\jtu{u) = T'o

0.45552952
0.44497968
0.43994494
0.43749479
0.43628720

0.15110109
0.14729514
0.14553310
0.14468703
0.14427264

0.07164847
0.07033307
0.06972639
0.06943550
0.06929312

r,

0.43442983
0.43491021
0.43504464
0.43507961

0.14348918
0.14377106
0.14384096
0.14385826

0.06901767
0.06911970
0.06914462
0.06915074

0.43507033
0.43508945
0.43509126

0.14386501
0.14386427
0.14386402

0.06915371
0.06915293
0.06915279

n

0.43509219
0.43509152

0.14386416
0.14386399

0.06915281
0.06915277

T'4

0.43509148

0.14386398

0.06915276

TABLE 3

FINAL APPROXIMATION, 8 = 0.20

u

10.0
50.0
100.0

W(») = Tl <j,u(u) = Tt

0.43509148 0.43509148
0.14386398 0.14386398
0.06915276 0.06915276

y/(u)

0.43509148
0.14386398
0.06915276

REFERENCES

ABRAMOWITZ, M. and STEGUN, LA. (1972) Handbook of Mathematical Functions, 9th edition.
Dover Publications, New York.
BAKER, C.T. H. (1977) The Numerical Treatment of Integral Equations. Clarendo Press, Oxford.
BRUNNER, H. and VAN DER HOUWEN, P. J. (1986) The Numerical Solution of Volterra Equations.
North Holland, Amsterdam.
DELVES, L. M. and MOHAMED, J. L. (1985) Computational Methods for Integral Equations. Univer-
sity Press, Cambridge.
GERBER, H. U. (1979) An Introduction to Mathematical Risk Theory. Huebner Foundation Mono-
graph, University of Pennsylvania, Philadelphia.
GOOVAERTS, M. and D E VYLDER, F. (1983) A Stable Recursive Algorithm for Evaluation of
Ultimate Ruin Probabilities. ASTIN Bulletin 14, 53-59.
RALSTON, A. and RABINOWITZ, P. (1978) A first Course in Numerical Analysis, 2nd edition.
International Student Edition, McGraw-Hill, Japan.
THORIN, O. and WIKSTAD, N. (1977) Calculation of ruin probabilities when the claim distribution is
lognormal. ASTIN Bulletin 9, 231-246.
WILKINSON, J. H. (1963) Rounding Errors in Algebra Processes. Prentice-Hall, New Jersey.

COLIN M. RAMSAY

Actuarial Science, 310 Burnett Hall, University of Nebraska-Lincoln, Lincoln,
NE 68588-0307, U.S.A.

https://doi.org/10.2143/AST.22.1.2005126 Published online by Cambridge University Press

https://doi.org/10.2143/AST.22.1.2005126



