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RESIDUAL-BASED GARCH
BOOTSTRAP AND SECOND ORDER

ASYMPTOTIC REFINEMENT

MINSOO JEONG
Yonsei University Wonju Campus

The residual-based bootstrap is considered one of the most reliable methods for
bootstrapping generalized autoregressive conditional heteroscedasticity (GARCH)
models. However, in terms of theoretical aspects, only the consistency of the boot-
strap has been established, while the higher order asymptotic refinement remains
unproven. For example, Corradi and Iglesias (2008) demonstrate the asymptotic
refinement of the block bootstrap for GARCH models but leave the results of the
residual-based bootstrap as a conjecture. To derive the second order asymptotic
refinement of the residual-based GARCH bootstrap, we utilize the analysis in
Andrews (2001, 2002) and establish the Edgeworth expansions of the t-statistics,
as well as the convergence of their moments. As expected, we show that the
bootstrap error in the coverage probabilities of the equal-tailed t-statistic and
the corresponding test-inversion confidence intervals are at most of the order of
O

(
n−1)

, where the exact order depends on the moment condition of the process.
This convergence rate is faster than that of the block bootstrap, as well as that of
the first order asymptotic test.

1. INTRODUCTION

The residual-based bootstrap is a bootstrap method for time series models, in
which the bootstrap samples are reconstructed from the estimated i.i.d. residu-
als. The main advantage of the residual-based bootstrap is that its convergence
rate is mostly comparable to that of the i.i.d. bootstrap, whereas other generic
time series bootstraps have slower convergence rates. Among generic time series
bootstraps, the sieve bootstrap has a fast convergence rate equivalent to that
of the i.i.d. bootstrap,1 but it is only applicable to linear processes. While the
residual-based bootstrap is applicable to a broader class of time series models,
its bootstrap procedure is highly model dependent, as it actively employs the
specific dependence structure of the model. In this regard, the limit theorems of
the residual-based bootstraps are not readily obtainable from general bootstrap
theories.
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The generalized autoregressive conditional heteroscedasticity (GARCH) pro-
cess is a good example of a time series model for which the sieve bootstrap is
not applicable. First introduced by Bollerslev (1986), the GARCH model is still
widely used in practice, reflecting its popularity. Hansen and Lunde (2005) inves-
tigate various volatility models in comparison with a simple GARCH(1,1) model
and conclude that none of them outperforms the GARCH model when applied to
exchange rate analysis. The residual-based bootstrap has also been widely used
to reduce the estimation error in the GARCH model; for example, Christoffersen
and Gonçalves (2005) and Mancini and Trojani (2005) use the residual-based
GARCH bootstrap to obtain a more precise evaluation of the value at risk (VaR).

This paper considers the residual-based bootstrap for the GARCH(1,1) model
and shows that it achieves the second order asymptotic refinement. Although there
have been many papers on the residual-based GARCH bootstrap, its theoretical
aspect has not been thoroughly investigated due to the complexity of the nonlin-
ear dependence structure. Hidalgo and Zaffaroni (2007) show the consistency of
the residual-based bootstrap for ARCH(∞), which encompasses GARCH(1,1).
However, they do not include a result for the higher order asymptotic refinement.
On the other hand, Corradi and Iglesias (2008) derive the higher order asymptotic
refinement of the block bootstrap for the GARCH process, but they only conjec-
ture that the residual-based bootstrap will provide improvement over the block
bootstrap.

A bootstrap is regarded as consistent if the bootstrap test statistic successfully
mimics the first order asymptotic test in the large sample. On the other hand, if the
size distortion of the bootstrap test vanishes faster than that of the first order coun-
terpart, then we say that it achieves a higher order asymptotic refinement. This
higher order refinement plays an important role especially when explaining supe-
rior finite sample performances of the bootstrap. In the case of the i.i.d. bootstrap,
the convergence rate of the equal-tailed t-statistic is O

(
n−1

)
, which is faster than

the first order counterpart O
(
n−1/2

)
. However, unlike the i.i.d. bootstrap, boot-

straps for time series models have different convergence rates depending on the
model and applied method. The bootstrap methods applicable to the generic time
series model usually present slower convergence rates than the i.i.d. bootstrap. For
example, the block bootstrap, which can be applied to virtually any stationary time
series, has a slower convergence rate than other bootstrap methods. The nonpara-
metric Markov bootstrap has a faster convergence rate than the block bootstrap, as
shown in Horowitz (2003). Nonetheless, its convergence rate is slower than that
of the i.i.d. bootstrap, and its performance depends on the choice of bandwidths.

However, when the exact form of the dependence structure is known, a greater
improvement can be achieved by using a model specific bootstrap method. For
example, Bose (1988) and Bose (1990) analyze bootstrap methods for the autore-
gressive (AR) and moving average (MA) models, respectively. Andrews (2005)
suggests a parametric Markov bootstrap, which can be applied to Markov pro-
cesses with known dependence structures. Although this parametric bootstrap
is applicable to a wide range of Markov processes, the GARCH process is not
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Markovian.2 Therefore, the theoretical analysis of the parametric Markov boot-
strap is not applicable, and that is why a new approach is needed to analyze the
residual-based GARCH bootstrap.

This paper provides higher order asymptotic analyses of the residual-based
GARCH bootstrap. To this end, we first exploit the lemmas in Andrews (2001,
2002) to show that the t-statistic of the GARCH maximum likelihood (ML)
estimator admits an Edgeworth expansion, whose coefficients are determined by
the moments of the statistic. By establishing the convergence of the bootstrap
moments to the population moments, we then show that the bootstrap error in
the coverage probability (ECP) of the equal-tailed t-statistic is of the order of
o(n−1+δ) for some δ > 0 given by the moment condition. This convergence
rate is faster than that of the block bootstrap, as well as that of the first order
asymptotics. We also construct bootstrap confidence intervals using the test-
inversion technique and show that our bootstrap confidence intervals share the
faster convergence rate of the bootstrap t-test. The finite sample properties of the
residual-based GARCH bootstrap have been studied in various papers, including
Pascual et al. (2006), Chen et al. (2011), and Varga and Zempléni (2012). They
assure that the residual-based GARCH bootstrap provides nontrivial finite sample
refinements over the first order asymptotics. Therefore, we omit the finite sample
analysis of the GARCH bootstrap in this paper.

The remainder of the paper is organized as follows. Section 2 defines the
model and provides a detailed description of the residual-based bootstrap for the
GARCH model. Section 3 states the assumptions and main asymptotic result of
the paper. Section 4 provides the research conclusion.

2. GARCH BOOTSTRAP

2.1. The Model

We consider the GARCH(1,1) process {ut } defined by

ut = σtεt ,

σ 2
t = ω+αu2

t−1 +βσ 2
t−1,

(1)

where ω,α,β > 0, and {εt } is a sequence of i.i.d. random variables with zero mean
and unit variance. The GARCH process {ut } defined in (1) becomes a zero mean
white noise process, whose conditional variance is given by E(u2

t |Ft−1) = σ 2
t .

The squared return process {u2
t } follows the ARMA(1,1) model with het-

eroscedastic errors such that

u2
t = ω+ (α +β)u2

t−1 + vt −βvt−1,

where vt = u2
t − σ 2

t . From this representation, we often interpret α + β as the
persistency parameter of the volatility, and the model (1) is called the integrated
GARCH (IGARCH) when α +β = 1.
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The stationarity of {ut } is determined by the distribution of {εt } and the
parameter values of α and β. More precisely, the strictly stationary condition of
the GARCH process is obtained in Nelson (1990) and Klüppelberg et al. (2004)
as

−∞ < E log
(
αε2

t +β
)

< 0. (2)

Note that (2) implies β < 1. In this paper, we only consider strictly stationary
GARCH processes and let σ 2

0 start from the stationary distribution of {σ 2
t }, which

is given by

ω

[
1+

∞∑
k=1

k∏
i=1

(
αε2−i +β

)]
. (3)

For the IGARCH model, there exists a strictly stationary solution for the
IGARCH(1,1) model satisfying (2).3 However, our result does not include
the IGARCH model since our conditions in Section 3.1 require the existence of
the second moment, while the IGARCH model has an infinite second moment.

We consider the quasi-maximum likelihood (QML) estimator of the GARCH
model, which is given by the maximizer of

∑n
t=1 �t (θ) over θ in the interior of 
,

where θ = (ω,α,β)′, 
 is the parameter space, and

�t = −1

2
logσ 2

t − 1

2

u2
t

σ 2
t

,

σ 2
t = ω+αu2

t−1 +βσ 2
t−1 = ω

t−1∑
i=0

β i +α

t−1∑
i=0

β i u2
t−1−i +β tσ 2

0 .

(4)

As noted earlier, the GARCH process is not Markovian, and the likelihood �t of
the GARCH QML estimator depends on the whole history of {ut }, distinguish-
ing it from the usual Markov ML estimators. The consistency and asymptotic
normality of this QML estimator were first shown in Lee and Hansen (1994)
and Lumsdaine (1996) and later refined with much weaker conditions in Berkes
et al. (2003) and Francq and Zakoı̈an (2004). The former establishes the asymp-
totic normality of the estimator under minimal conditions on the innovations {εt },
and the latter further reduces technical assumptions on the distribution of the inno-
vations at the origin. In the following sections, we heavily rely on their results of
the QML estimator properties to derive our asymptotic results. On the other hand,
the case in which the distribution of the innovation {εt } is heavy-tailed is also an
important and interesting subject. Berkes and Horváth (2003) show asymptotic
properties of QML estimators in the presence of heavy-tails in {εt }, and Hall and
Yao (2003) consider the case of infinite variance such that Eε2

t = ∞. The rate
of convergence and sometimes even the limit distributions for the case of heavy-
tailed innovations differ from those of the usual stationary asymptotics, and we
do not cover this case in the present paper.
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For the test statistic in this paper, we define the t-statistic of the QML estimator
testing the null hypothesis H0 : θr = θ0,r as

Tn = n1/2 θ̂r − θ0,r

ς̂
1/2
rr

,

where θ̂r is the r th element of θ̂ , and ς̂rr is the (r,r ) component of the variance
matrix estimator ς̂ . We use the variance matrix estimator ς̂ given by

ς̂ = n

(
n∑

i=1

∂2�i
(
θ̂
)

∂θ∂θ ′

)−1 n∑
i=1

∂�i
(
θ̂
)

∂θ

∂�i
(
θ̂
)

∂θ ′

(
n∑

i=1

∂2�i
(
θ̂
)

∂θ∂θ ′

)−1

.

2.2. Residual-Based Bootstrap

This section describes the residual-based bootstrap procedure, which is specif-
ically designed for the GARCH process in (1). This is a natural extension of
the residual-based bootstrap for AR models and is well illustrated in Pascual
et al. (2006) and Shimizu (2009), as well as in other literature.

The detailed procedure reads as follows. (i) Estimate ω̂, α̂, and β̂ using the
QML estimation with {ut }. (ii) Construct {ε̂t } using the following formulae recur-
sively:

σ̂ 2
t = ω̂+ α̂u2

t−1 + β̂σ̂ 2
t−1,

ε̂t = ut/σ̂t ,
(5)

where u0 = σ̂0ε̂0, and σ̂ 2
0 and ε̂0 are obtained from the stationary distribution of{

σ̂ 2
t

}
and the distribution of {ε̂t }, respectively, for the given parameter values of ω̂,

α̂, and β̂.4 (iii) Bootstrap {ε∗
t } from the empirical distribution of demeaned {ε̂t }.

(iv) Construct {u∗
t } using the bootstrapped innovations {ε∗

t } in (iii). (v) Estimate
ω̂∗, α̂∗, and β̂∗ using the bootstrapped sample {u∗

t } and repeat (iii)–(v) to obtain
more bootstrap estimates. Note here that, in (iii), we acquire the estimated inno-
vations {ε∗

t }, which are independent and identically distributed conditional on the
sample {ut }.

3. ASYMPTOTIC REFINEMENT

3.1. Regularity Conditions

We define the following notations to be used throughout the paper. Let

st = ∂�t

∂θ
= u2

t

2σ 4
t

∂σ 2
t

∂θ
− 1

2σ 2
t

∂σ 2
t

∂θ
(6)

and ϕt be vectors containing the unique components of st and its deriva-
tives through order 6 with respect to θ . We also denote (∂ j/∂θ j )st (θ) and
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(∂ j/∂θ j )ϕt (θ) as the vectorized partial derivatives with respect to θ of order j .
For each element of ϕt , we let ϕt,k be the kth element of ϕt . We let F be the distri-
bution function of {εt }. We similarly define the bootstrap version of the notations
using a superscript ‘∗ ’ such that F∗ denotes the distribution function of {ε̂t }, for
example.

We assume the following assumptions to derive the asymptotic properties of
the bootstrap.

Assumption 1.

(a) 
 is compact, and all θ ∈ 
 satisfy ω,α,β > 0 and E(αε2
t +β)p/2 < 1 for

some p > 6.

(b) θ0 is an interior point of 
.

(c) F(−x) and 1− F(x) exponentially decay as x → ∞.

(d) F is continuously differentiable and globally Lipschitz continuous.

We require Assumption 1(a) mainly to guarantee the moment conditions set out by
Andrews (2001). Assumption 1(b) is to avoid the boundary value problem of the
bootstrap, as illustrated in, e.g., Andrews (2000). Assumptions 1(c) and 1(d) are to
ensure the β-mixing property of the process and obtain a proper convergence rate
of the bootstrap moments of the test statistics. It is also notable that Assumptions
1(a) and 1(d) lead to the stationarity condition (2).

We follow steps similar to those in Andrews (2001) to derive our asymptotic
results in this paper. Therefore, we need to ensure that the conditions in Andrews
(2001) are satisfied. For example, Assumptions 1(b) and 1(c) guarantee the nega-
tive definiteness of the Hessian,5 and Assumption 1(a) is a sufficient condition for
the existence of the 6th moment,6 which ensures the moment conditions on the
derivatives of the log-likelihood in Andrews (2001).7 We only need p > 0 to sat-
isfy the conditions in Andrews (2001), but we further require p > 6 in this paper
to address initial value effects of the residual-based bootstrap.

Assumption 1(c) is also necessary to ensure a dependent version of the Cramér
condition: there exist � < ∞ and υ > 0 such that, for arbitrary large ζ > 1 and
all integers m ∈ (υ−1, N ) and τ ∈ Rdim(ϕs ) with υ < ‖τ‖ < N ζ ,

E

∣∣∣∣∣E
(

exp

[√−1τ ′
2m+1∑
s=1

ϕs(θ0)

]∣∣∣∣{εj : | j −m| > �
})∣∣∣∣∣ ≤ exp(−υ), (7)

where θ0 is the true parameter of the model. This Cramér condition is necessary
for the existence of the Edgeworth expansion of the normalized sample mean. It
is shown in Lemma A.1 of Corradi and Iglesias (2008) that (7) holds under our
set of assumptions.

Furthermore, Assumption 1(c) ensures the β-mixing properties of {ϕt }, which
is essential to derive the convergence of the bootstrap moments. It is shown in
Francq and Zakoı̈an (2006) that a general class of GARCH processes is β-mixing
with an exponentially decaying coefficient under mild assumptions. It is also
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shown in Corradi and Iglesias (2008) that {ϕt }, which is essentially a vector of
derivatives of the GARCH process with respect to the parameters, is β-mixing
with an exponentially decaying rate.

In addition to these conditions, Andrews (2001) also requires that there exist
K < ∞ and c > 0 such that, for m ≥ 1,

E
∣∣ηk(εt , . . . ,ε0)−ηk(εt , . . . ,εt−m,0, . . . ,0)

∣∣ ≤ K exp(−cm), (8)

where ηk is defined such that ϕt,k = ηk(εt , . . . ,ε0). The β-mixing properties of
{ϕt } can be used here, and the proof of Theorem 1 of Corradi and Iglesias (2008)
shows that (8) holds under Assumptions 1(b) and 1(c).

3.2. Second Order Refinement

In this section, we first show in Theorem 1 that the error in the coverage probabil-
ities of the bootstrap t-tests has a fast convergence rate. Using this limit theorem,
we then suggest a bootstrap test-inversion method to obtain refined confidence
intervals in Corollary 2.

THEOREM 1. Let Assumption 1 hold. Then, under the null hypothesis, we have

P
(

Tn ≥ z∗
a/2 or Tn ≤ z∗

1−a/2

)
= a +o

(
n−1+δ

)
as n → ∞ for any δ > 2/p. The bootstrap critical value z∗

a is defined as the 1−a

quantile of T ∗
n , where T ∗

n = n1/2(θ̂∗
r − θ̂r )/ς̂

∗1/2
rr .

The convergence rate of the first order asymptotic approximation under the null
hypothesis is given by

P
(
Tn ≥ za/2 or Tn ≤ −za/2

) = a + O
(

n−1/2
)

as n → ∞, where za denotes the 1−a quantile of the standard normal distribution
N(0,1). Therefore, the theorem shows that the residual-based bootstrap reduces
the error in the coverage probability by up to O

(
n−1/2

)
.

Compared with the convergence rate of the block bootstrap, which is derived in
Corradi and Iglesias (2008) as o

(
n−1/2−ξ

)
for some 0 ≤ ξ < 1/4, our convergence

rate o
(
n−1+δ

)
is always faster as long as p ≥ 8 since δ > 2/p. If we consider the

ideal situations both for the residual-based and block bootstraps, then the differ-
ence in their convergence rates is of the order of n1/4. Moreover, while ξ for the
block bootstrap is determined by the choice of the block length parameter, δ is
only given by the moment condition; thus, we can make δ arbitrarily small as
long as the tail of {ut } is decreasing fast enough. Therefore, we may say that the
performance of the residual-based bootstrap is essentially of the order of O

(
n−1

)
given a sufficient moment condition, while the performance of the block bootstrap
varies across the choices of block length and other sample properties of the data.
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A good example as an application of Theorem 1 is to obtain confidence inter-
vals of a high precision. For hypothesis testing of the GARCH model, it is often of
interest whether or not the data has conditional heteroscedasticity, which naturally
involves a null hypothesis of zero parameter values. However, our GARCH boot-
strap cannot deal with the boundary parameter value cases, as noted in Andrews
(2000). Therefore, the asymptotic result in Theorem 1 may not be of great interest
to practitioners. However, utilizing the duality between the hypothesis testing and
confidence interval estimation, we can obtain a refined confidence interval of the
estimator directly from the bootstrap t-test critical values. The 100(1−a)% con-
fidence interval obtained from the test-inversion technique is given by [κL ,κU ],
where κL and κU are solutions to

P∗
(

θ̂∗
r

(
θ̂ κU

)−κU

ς̂
∗1/2
rr

(
θ̂ κU

) ≤ θ̂r −κU

ς̂
1/2
rr

)
= a

2
,

P∗
(

θ̂∗
r

(
θ̂ κL

)−κL

ς̂
∗1/2
rr

(
θ̂ κL

) ≥ θ̂r −κL

ς̂
1/2
rr

)
= a

2
,

(9)

where θ̂∗
r

(
θ̂ κU

)
is the bootstrap version of the estimator of θr obtained from a sam-

ple generated at parameter values θ̂ κU , and ς̂∗
rr

(
θ̂ κU

)
is the corresponding variance

estimator. Here we denote θ̂ κU as the parameter estimator θ̂ , whose r th element
is replaced by κU . We define θ̂∗

r

(
θ̂ κL

)
and ς̂∗

rr

(
θ̂ κL

)
in the same way as θ̂∗

r

(
θ̂ κU

)
and ς̂∗

rr

(
θ̂ κU

)
, respectively. This is called the standardized test-inversion boot-

strap (STIB) confidence interval. This test-inversion technique is introduced in
Carpenter (1999) and many others, with slightly different definitions.

For this STIB confidence interval, we obtain the following corollary from
Theorem 1.

COROLLARY 2. Let κU and κL satisfy (9) for some a ∈ (0,1). Then, under
Assumption 1, we have

P
(
θ0,r ≥ κU or θ0,r ≤ κL

) = a +o
(

n−1+δ
)

as n → ∞ for any δ > 2/p, where θ0 is the true parameter value of the model.

The convergence rate of the first order asymptotic approximation is given by

P

(
θ0,r ≥ θ̂r + za/2

ς̂
1/2
rr

n1/2
or θ0,r ≤ θ̂r − za/2

ς̂
1/2
rr

n1/2

)
= a + O

(
n−1/2

)

as n → ∞. Therefore, the confidence interval obtained from the residual-based
bootstrap also reduces the error in the coverage probability by up to O

(
n−1/2

)
.
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4. CONCLUSION

In this paper, we revisit the residual-based bootstrap for the GARCH(1,1)
model and show that it achieves asymptotic refinement. Utilizing the analysis
of Andrews (2001, 2002), we show that it has a faster convergence rate than the
first order limit distributions, under mild assumptions on the tail behaviors and
smoothness of the distribution function of the innovations. The convergence order
of the residual-based bootstrap is obtained as o

(
n−1+δ

)
for some δ > 0 given by

the moment condition, which is faster than O
(
n−1/2

)
, the convergence rate of the

first order limit distribution.
Though the block bootstrap can ideally achieve the convergence rate O

(
n−3/4

)
by appropriately choosing the block length parameter, the performance of the
block bootstrap heavily depends on the block size, which is often not easy
to determine optimally from a given sample. Unlike the block bootstrap, the
residual-based bootstrap is robust to user dependent choices and achieves a faster
second order asymptotic refinement comparable to that of the i.i.d. bootstrap, as
long as sufficient moment conditions are satisfied.

NOTES

1. See Choi and Hall (2000).
2. The GARCH process is Markovian if we consider the bivariate process {ut ,σ

2
t } defined in (1).

3. The IGARCH(1,1) model has an infinite second moment and, therefore, is not covariance
stationary.

4. The stationary distribution of {σ̂ 2
t } in (3) is generally not given in a closed-form. Therefore, we

rely on numerical methods to obtain the initial values of the bootstrap. For example, first set arbitrary
values for σ̂ 2

0 and ε̂0. Then we obtain the distribution of {ε̂t } by generating ε̂t for t = 1, . . . ,n using

(5). Next, we randomly draw ε̂0 and σ̂ 2
0 using the distribution of {ε̂t } and the formula

σ̂ 2
0 = ω̂

⎡
⎣1+

m∑
k=1

k∏
i=1

(
α̂ε̂2−i + β̂

)⎤
⎦ (10)

for some large m > 0, where m is chosen for the desired precision. We iterate (5) and (10), then the
initial values for (ii) are obtained up to an arbitrary precision.

5. See Theorem 4.2 and Remark 4.5 of Berkes et al. (2003).
6. See, e.g., Davis and Mikosch (2009).
7. See the proof of Lemma 1 in the online supplement for details.
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APPENDIX A

In this section, we provide useful lemmas and the proofs of theorems. Here we only
present the outline of the proofs and leave the rest of them to the online supplement.

A.1. Useful Lemmas

LEMMA A.1. We have

lim
n→∞nP

(
n1/2−δ sup

x∈R
∣∣F∗(x)− F(x)

∣∣ > ε

)
= 0

for any ε > 0 and δ > 2/p.

Proof. To show the statement of the lemma, we first show the uniform convergence
between ε̂t and εt in the sense that

lim
n→∞nP

(
n1/2−δ |ε̂t − εt | > ε

)
= 0 (A.1)

uniformly in na ≤ t ≤ n for arbitrarily small a > 0, and then establish the convergence
between their distribution functions F∗ and F using (A.1) and the convergence theorem
for extremal processes in Mikosch and Stărică (2000). We omit the proof here and provide
detailed derivations in the online supplement. n

LEMMA A.2. Let Sn = n−1 ∑n
t=1 ϕt (θ0), S = ESn, S∗

n = n−1 ∑n
t=1 ϕ∗

t
(
θ̂
)

and S∗ =
E

∗S∗
n . Further define �n = n1/2(Sn − S) and �∗

n = n1/2(S∗
n − S∗), and denote �n,k

and �∗
n,k as the kth elements of �n and �∗

n , respectively. Also, let νn and ν∗
n be vec-

tors of moments of the form nα(m)
E

∏m
μ=1 �n,kμ and nα(m)

E
∗ ∏m

μ=1 �∗
n,kμ

for kμ ∈
{1, . . . ,dim(�n)}, respectively, where α(m) = 0 when m is even and α(m) = 1/2 when m
is odd, for 2 ≤ m ≤ 4, and let ν = limn→∞ νn. Then we have

lim
n→∞nP

(
n1/2−δ

∥∥ν∗
n −ν

∥∥ > ε
)

= 0

for any ε > 0 and δ > 2/p.

Proof. Let ψt = ∏k
i=1[ϕt,ri (θ0)−Eϕt,ri (θ0)] and ψ∗

t = ∏k
i=1

[
ϕ∗

t,ri

(
θ̂
)−E∗ϕ∗

t,ri

(
θ̂
)]

for k > 0 and ri ∈ {1, . . . ,dim(ϕt )}. To prove the statement of the lemma, we first
focus on the convergence of E∗(ψ∗

t ) − E(ψt ), and show that each additive term of
ϕt,r (θ0)−Eϕt,r (θ0) as a function of εi for i = 0, . . . , t has a specific functional form,
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where we omit the details here. Then utilizing this specific functional form and the conver-
gence of the distribution function in Lemma A.1, we deduce that

E
∗(

ψ∗
t
)−E(ψt ) = O

(
n−1/2+δ

)
+ O

(
ηt ) (A.2)

for some 0 < η < 1 as n → ∞ and t → ∞ with probability 1−o(n−1), where the detailed
derivations are omitted here. After we establish the convergence order in (A.2), we obtain
the main statement of the lemma as follows:

nα(m)
E

∗
m∏

μ=1

�∗
n,kμ

− lim
n→∞nα(m)

E

m∏
μ=1

�n,kμ = O
(

n−1/2+δ
)

as n → ∞ for m = 2,3,4 with probability 1 − o(n−1), where the convergence order is
obtained similar to the proofs in Andrews (2002), using the covariance inequality in Rio
(1993), the strong mixing inequality in Doukhan (1994), and the β-mixing properties of
{ϕt }. We also omit the derailed derivation here and leave it to the online supplement. n

A.2. Proofs of Theorem 1 and Corollary 2

The proofs for Theorem 1 and Corollary 2 are slight modifications of the proofs in Andrews
(2002) and Carpenter (1999), respectively, for which we utilize the convergence of the
moments in Lemma A.2, as well as the results in Bhattacharya (1987) and Götze and Hipp
(1994). We omit the proof here, and provide detailed derivations in the online supplement.
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