
J. Functional Programming 10 (1): 1–18, January 2000. Printed in the United Kingdom

c© 2000 Cambridge University Press

1

Server side web scripting in Haskell

ERIK MEIJER

Department of Computer Science, Utrecht University,

PO Box 80089, 3508 TB Utrecht, The Netherlands

(e-mail: erik@cs.uu.nl)

Abstract

The Common Gateway Interface (CGI) for generating dynamic documents on web servers

imposes much accidental complexity on the programmer. The Haskell/CGI library docu-

mented in this paper hides all this unpleasantness by using the common sense ‘design pattern’

of separating model and presentation. Low-level query string requests are represented by

association lists, and primitive HTTP responses are easily constructed using a set of HTML

generating combinators. The CGI programmer only needs to write a worker function that

maps an abstract request into an abstract response. A (higher-order) wrapper function then

transmutes the worker into a real low-level CGI script that deals with the exact format of

concrete requests and responses as required by the CGI standard.

Capsule Review

This paper proposes a method for using Haskell as a CGI scripting language. The system

allows the programmer to avoid the messy details of the various protocols and data represen-

tations of HTTP and HTML, by creating abstract interfaces that are much higher level and

easier to use. The ideas are novel and the methods are sound, representing a nice application

of functional programming techniques. The system has been implemented and is available as

a Haskell library for Hugs. Overall the system promises to be a useful and practical alternative

to using Perl or other language for CGI scripting.

1 Introduction

Many documents on the web are static, i.e. they are the same each time the server

returns them in response to a client’s request. Dynamic documents, on the other

hand, are generated on-the-fly by running an external CGI script on the server.

The script receives the information embedded in the client’s request from the

server via environment variables and the standard input, and communicates its

result back to the server via the standard output. Hence, any programming language

that can access environment variables, read from the standard input, and write to

the standard output, is in principle suited for writing CGI scripts (Khare, 1997). At

present, most CGI scripts are written in Perl (Wall et al., 1996) because it has rich

features for manipulating text (regular expressions).

The Common Gateway Interface (CGI) specifies exactly how the request and

response are passed between server and script, and as such presents script writers

https://doi.org/10.1017/S0956796899003561 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003561

2 E. Meijer

with a lot of accidental complexity. This paper describes a library for writing CGI

scripts in the lazy functional language Haskell (Peyton Jones & Hughes, 1999).

The library tries to make programming server-side scripts as simple as possible

(section 3). Input and output coding of CGI scripts is handled by a wrapper, a

higher-order function that decodes the incoming request, passes it to the worker,

and then encodes the worker’s response. Thus, the main part of the application,

the worker function inside the wrapper, need not be at all concerned with the

idiosyncrasies of the CGI protocol. Requests are parsed into association lists, and

HTML responses are represented by a simple tree type which comes with a set of

combinators from which complicated HTML pages (Ragget et al., 1997) can be

assembled easily. Most CGI scripts written in Perl do not fully separate model and

presentation; requests are parsed into Perl associative arrays, but scripts usually

print raw HTML string directly on the standard output.

Before we start writing scripts (sections 4–6) and explain how to maintain state

across different invocations of a script (section 7), we briefly sketch the architecture

of the Web (section 2) and the underpinnings of our library (section 3). Finally,

we reflect on what we learned from this exercise, discuss some alternative designs

(section 8), and give a few pointers to relevant literature (section 9).

2 The World Wide Web

The World Wide Web is an instance of the familiar client-server model of compu-

tation. In this model a server provides resources to potentially many clients. Server

and clients communicate via the HTTP protocol (Fielding et al., 1997). The client

sends a request to the server, to which the server replies by sending a response back

to the client. Once such a cycle is completed, the client and server are no longer in

contact; the HTTP protocol is stateless. Section 7 discusses several ways to maintain

state across invocations.

The HTTP protocol transmits all requests and responses as plain ASCII text,

which makes it possible to play client manually. To get a better feeling for the

HTTP protocol, we will establish a connection with an HTTP server by telnetting

on port 80:

% telnet www.cse.ogi.edu 80

Trying

Connected to www.cse.ogi.edu.

Escape character is ’^]’

Now we can type in an HTTP request, in exactly the right syntax and terminated

by an empty line

GET /index.html HTTP/1.0

If we did not make any typos, the server will eventually respond with a HTTP reply

(in this case it contains an HTML document) and close the connection:

HTTP/1.0 200 OK

https://doi.org/10.1017/S0956796899003561 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003561

Server side web scripting in Haskell 3

Content-type: text/html

<HTML>

....

</HTML>

Connection closed by foreign host.

If the world consisted of only computer scientists, we would still be surfing the web

in this way. Fortunately, the physists at CERN recognized that communicating with

an HTTP server using a tty interface is rather tedious, and instead is best done via a

graphical user interface. Contemporary web browsers such as Netscape Navigator do

exactly this. They take an HTML document with embedded requests, or hyperlinks,

and render it on the user’s screen.

HTML is a domain specific language for programming the client side of the

HTTP protocol, and a browser is an interpreter for this language. Requests for

inline images (indicated by the tag) are evaluated eagerly and

displayed inline. Requests for other pages (indicated by the tag) are

evaluated lazily, i.e. only when the user clicks on them. When the user clicks on the

visual rendering of the link OGI CSE Homepage,

the browser connects to the server www.cse.edu.edu and issues the same request

GET /index.html HTTP/1.0 as we did manually. The browser then replaces the

current document by the new one.

The client sees no difference between hyperlinks to static or dynamic documents.

Links to CGI scripts are the same as any other URL. For example, when the

following (hypothetical) document is requested

http://www.cse.ogi.edu/~erik/cgi-bin/helloHTML.cgi

the “Hello World!” script of section 5 is executed and returns the response:

HTTP/1.0 200 OK

Content-type: text/html

<HTML>

<H1>Hello World</H1>

</HTML>

The client couldn’t care less how the server obtains this piece of HTML.

There are two common ways for a server to know that it has to execute a script

and not return its content as a static document. The first option is that scripts

reside in a special directory, usually called cgi-bin, and the server will treat any

URL involving cgi-bin as an executable script. The second possibility is that the

server uses a particular filename extension, usually .cgi, to distinguish scripts from

static documents. In this case, scripts can be stored anywhere within the directory

hierarchy of the server.

https://doi.org/10.1017/S0956796899003561 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003561

4 E. Meijer

3 Programming CGI scripts

The architecture of our CGI library provides the programmer with the illusion of an

idealized HTTP client (the wrapper), which interacts with an idealized HTTP server

(the worker) to be supplied by the programmer:

wrapper worker :: IO ()

worker :: Request -> IO Response

All the low-level details of the communication between the actual HTTP server and

the script are handled by the wrapper function. As far as the server is concerned, the

wrapper is a standard CGI script. As far as the wrapper is concerned, the worker is an

abstract server, a function that produces a result of type Response from an argument

of type Request. Functional programmers might recognize the wrapper as a monadic

representation changer (Hutton & Meijer, 1996), object oriented programmers will

say that we use a variation of the proxy design pattern (Gamma et al., 1994),

Visual Basic programmers will see an instance of the n-tier client-server model, and

Smalltalk programmers will note that it is an extremely primitive use of MVC.

Whatever you want to call it, it is just a matter of good programming practice.

The work done by the wrapper is the same for all CGI scripts; the interesting

bits are performed by the worker. The wrapper decodes a low-level HTTP request

into an abstract value of type Request, passes it to the worker to obtain an abstract

value of type Response, and encodes this back into a low-level HTTP response. If

anything goes wrong we return an error status code depending on the error that

occured (section 3.4):

wrapper :: (Request -> IO Response) -> IO ()

wrapper = \worker ->

do{ request <- getRequest

; response <- worker request

; putResponse response

}

‘catch‘

(\ioerror -> do{ putResponse (status ioerror) })

The worker function of type Request -> IO Response need not be concerned with

any of the gory details of the CGI standard at all, it only has to produce an

abstract response when given an abstract request. Most other CGI libraries do not

decouple abstract and concrete requests and responses. To understand the logic of

a CGI script, we can study the worker function in isolation. This is impossible if

the decoding and encoding of requests and responses is intertwined with the actual

computation of responses from requests.

Because the wrapper function abstracts all details of the CGI standard from

the worker, it is easy to adapt to a platform such as Windows, which prefers a

nonstandard interaction (ISAPI or ASP) between servers and scripts. In that case,

https://doi.org/10.1017/S0956796899003561 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003561

Server side web scripting in Haskell 5

we only have to change the wrapper function once, instead of having to modify

every worker (= CGI script) we have written.

3.1 Requests and responses

The set of abstract HTTP requests is modelled by the data type Request. A client

can either request to retrieve a document using GET, or deposit some Mime content

(section 3.2) using POST:

data Request = GET QueryString | POST Mime

The set of abstract HTTP responses is modelled by the data type Response. The

server can return either some Mime content (using Content), a redirection to another

location (using Location), or an error message (using Status):

data Response = Content Mime | Location Url | Status Code Reason

The types Request and Response are a sound, but not complete abstract syntax

for concrete HTTP requests and responses, they are adequate for most of the CGI

scripts that return parsed HTTP headers.

Besides the constructor functions for the data types Request and Response,

we only assume that we can read requests from the standard input via function

getRequest :: IO Request (section 3.3) and write responses to the standard out-

put via function putResponse :: Response -> IO () (section 3.4).

3.2 MIME

Mime types are the standard way of ‘typing’ binary data transmitted over the internet

(Borenstein & Freed, 1993). Examples include plain text text/plain (section 4), url-

encoded query strings x-application/url-encoded (section 6), HTML documents

text/html (section 5), GIF pictures image/gif, and MPEG movies video/mpeg.

In Haskell we represent Mime types by an algebraic data type with constructors that

hold the Haskell representations of the respective data format (section 8 discusses

an alternative representation using type classes):

data Mime

= ...

| TextPlain String

| TextHtml HTML

| UrlEncoded Query

| ...

Section 5 defines the abstract Haskell representation HTML of HTML document of

Mime type text/html while section 6 defines the Haskell representation Query of

query strings of Mime type x-application/url-encoded.

To implement functions getRequest and putResponse, we must be able to read

Mime types from the standard input and write them to the standard output, hence

we also need functions getMime and putMime. Function mimeType returns the Mime

https://doi.org/10.1017/S0956796899003561 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003561

6 E. Meijer

type description of a value of type Mime, for instance mimeType (TextPlain "...")

yields "text/plain":

getMime :: IO Mime

putMime :: Mime -> IO ()

mimeType :: Mime -> String

To implement functions getMime (section 3.2) and putMime, we need to read and

show the various alternatives (TextPlain, TextHtml, UrlEncoded) of data type

Mime:

showHTML :: HTML -> String

...

readQuery :: String -> Query

We won’t discuss the function showHTML in this paper, but it is worth mention-

ing that showHTML nicely formats its output in human readable form using John

Hughes’ pretty printing combinators (Hughes, 1995), which is extremely convenient

for debugging HTML-generating programs. Section 8 explains why we don’t use

Haskell’s Show and Read classes to overload showHTML and readQuery.

3.3 Decoding requests

Recall from section 2 that the server passes data about the HTTP request to a

script via environment variables and the standard input. The four most important

environment variables that the HTTP server sets for the wrapper are:

REQUEST METHOD The method field of the client’s request

QUERY STRING The query string segment of a GET request.

CONTENT LENGTH The number of bytes of the body of a POST request.

CONTENT TYPE The MIME type of the body of a POST request.

By inspecting these variables, the wrapper can retrieve and decode the incoming

request.

Function getRequest does a simple case analysis on the environment variable

REQUEST METHOD to find out what sort of request has been made by the client:

getRequest :: IO Request

getRequest =

do{ method <- getEnv "REQUEST_METHOD"

; case method of

{ "GET" -> getGET

; "POST" -> getPOST

; otherwise -> userError "501 Not Implemented"

}

}

If REQUEST METHOD equals "GET", then the environment variable QUERY STRING

contains an url-encoded query string, which we decode using function readQuery

(section 6):

https://doi.org/10.1017/S0956796899003561 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003561

Server side web scripting in Haskell 7

getGET :: IO Request

getGET =

do{ query <- getEnv "QUERY_STRING"

; return $ GET (readQuery query)

}

If REQUEST METHOD equals "POST", then function getMime decodes the Mime content

of the request from the standard input:

getPOST :: IO Request

getPOST =

do{ mime <- getMime

; return $ POST mime

}

The function getMime takes the first CONTENT LENGTH bytes of the standard input,

and then reads a value of Mime type CONTENT TYPE.

getMime :: IO Mime

getMime =

do{ contentLength <- getEnv "CONTENT_LENGTH"

; stdin <- getContents

; let mime = take (read contentLength) stdin

; contentType <- getEnv "CONTENT_TYPE"

; case contentType of

{ ...

; "application/x-url-encoded"

-> do{ return $ UrlEncoded (readQuery mime) }

;

}

}

This code shows nicely how Mime types are used to dynamically type data transmit-

ted as raw byte streams between client and server. Note that we use the overloaded

function read here to coerce the contentLength string into a number.

3.4 Encoding responses

The function putResponse puts a response to the standard output in the exact

format that is required by the CGI standard for a parsed header response; a header

and an optional body, separated by a blank line:

putResponse :: Response -> IO ()

putResponse = \response ->

case response of

{ Content mime

-> do{ putStr $ "Content-type: "++mimeType mime++"\n\n"

; putMime mime

https://doi.org/10.1017/S0956796899003561 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003561

8 E. Meijer

}

; Location url

-> do{ putStr $ "Location: "++url++"\n\n" }

; Status code reason

-> do{ putStr $ "Status: "++code++" "++ reason++"\n\n" }

}

Function putMime then prints a value of type Mime as a raw byte stream on the

standard output:

putMime :: Mime -> IO ()

putMime = \mime ->

case mime of

{ TextHtml html -> do{ putStr $ showHTML html }

; TextPlain s -> do{ putStr $ s }

; UrlEncoded query -> do{ putStr $ showQuery query }

}

4 MIME type text/plain

4.1 Hello world!

Using Mime type text/plain we can write our first CGI script, the cut-and-dried

“Hello World!” program. Remember from section 3 that we are only required to

write a worker function of type Request -> IO Response. In this case, the worker

function ignores its request argument, and greets the user in a rather static way:

helloWorld :: IO ()

helloWorld = wrapper $ \request ->

do{ return $ Content (TextPlain "Hello World!") }

4.2 Greetings

One of the environment variables that is passed to a CGI script is REMOTE HOST,

which contains the fully qualified domain name of the client that has sent the request

to the server. An example of a fully qualified domain name is www.cse.ogi.edu.

The top-level domain, the name after the rightmost dot (edu in the example), gives

us some information about the country or type of organization where the client is

located (edu indicates a university or educational institution in the US), and we will

use that to generate a personalized greeting:

type Domain = String

greeting :: Domain -> String

greeting = \domain ->

case (top domain) of

{ "edu" -> "Hi there!"

https://doi.org/10.1017/S0956796899003561 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003561

Server side web scripting in Haskell 9

; "com" -> "Can you find everything OK today?"

; "nl" -> "Hoi, hoe gaat het?"

; "uk" -> "Good afternoon!"

; otherwise -> "Hello!"

}

We can extract the top-level domain by first splitting a fully qualified domain name

at every ’.’ and then taking the last element of the resulting list:

top :: Domain -> Domain

top = last.split (== ’.’)

The standard function split (== ’.’) "www.cse.ogi.edu" returns the list ["www",

"cse", "ogi", "edu"].

The script proper is straightforward. We lookup the REMOTE HOST variable in the

environment, and return a greeting in the appropriate language for the given domain

of the client:

helloWorld :: IO ()

helloWorld = wrapper $ \query ->

do{ host <- getEnv "REMOTE_HOST"

; let message = greetings host

; return $ Content (TextPlain message)

}

5 MIME type text/html

In practice, most CGI scripts return an HTML page of Mime type text/html.

Typically, CGI scripts written in C or Perl print raw, concrete HTML directly on

the standard output. In Perl, the HTML variant of the “Hello World!” CGI script

would look something like:

print << EOF;

Content-type: text/html

<HTML>

<HEAD>

<TITLE>Hello world in Perl</TITLE>

</HEAD>

<BODY>

<H1>Hello, world!</H1>

</BODY>

</HTML>

EOF

This is not very flexible and rather error-prone, especially when we want to generate

more complicated HTML pages. Just for comparison, using the combinators from

Table 1, the script:

https://doi.org/10.1017/S0956796899003561 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003561

10 E. Meijer

helloHTML =

let { hi = page "Hello world in Haskell" [h 1 "Hello, world!"] }

in cgi $ \query -> do{ return hi }

generates the same HTML content as the Perl script above, modulo the page title.

5.1 Modelling HTML

An HTML document consists of a number of nested elements such as headers

(page title, section headings), paragraphs, lists (ordered, unordered), logical markup

(citation, computer code), visual markup (italic, bold), hypertext links, images, fill-in

forms, etc.

Every HTML element is delimited by begin- and end-tags of the form <tag>

respectively </tag>. Most elements take (optional) attributes, which are given as

name = value pairs in the start tag. Boolean attributes can be set by just giving their

name, without a value. Tags and attribute names in HTML are not case sensitive,

so for example <HTML> is equivalent to <html> or <HtMl>. Some tags such as <HR>

and
 do not have a closing tag.

We represent HTML by a simple universal tree type. An HTML value is either

an ordinary text string, or a complex element with a tag, a list of attributes, and an

embedded list of HTML values:

data HTML

= Text String

| Element Tag [(Name,Value)] [HTML]

For simplicity, all HTML related types such as Tag, Name, Value, etc. are synonyms

for String. We don’t expect programmers to use the concrete constructors of the

HTML data type however. Instead we provide a set of combinators from which

complicated HTML pages can be assembled easily.

The basic HTML combinators set, attributedElement, element, and text

provide an abstract interface to construct values of type HTML:

set :: [(Name,Value)] -> (HTML -> HTML)

attributedElement :: Tag -> [(Name,Value)] -> [HTML] -> HTML

element :: Tag -> [HTML] -> HTML

text :: String -> HTML

By hiding the construction of concrete HTML elements we can always decide to

change the representation of the HTML data type.

The set of combinators in Table 1 capture patterns that we have found convenient

for generating complex HTML.

The span combinator is especially useful as it is the only combinator that turns a

list of HTML elements into a single HTML element in a way that does not influence

the rendering of the resulting HTML on the user’s screen.

https://doi.org/10.1017/S0956796899003561 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003561

Server side web scripting in Haskell 11

Table 1. Some compound HTML combinators

page :: String -> [HTML] -> HTML

h :: Int -> String -> HTML

p :: [HTML] -> HTML

href :: URL -> [HTML] -> HTML

name :: String -> [HTML] -> HTML

table :: [[[HTML]]] -> HTML

ul, ol :: [[HTML]] -> HTML

dl :: [(String,[HTML])] -> HTML

span, div :: [HTML] -> HTML

hr, br :: HTML

5.2 Printing the environment

Our first script that employs HTML combinators, maps the list of environment

variables that are set by the server, such as

[("SERVER_NAME","www.cse.ogi.edu")

, ("REQUEST_METHOD","GET")

, ..

]

into an HTML definition list, i.e.

dl [("SERVER_NAME", [text "www.cse.ogi.edu"])

, ("REQUEST_METHOD",[text "GET"])

, ...

]

As we see from the example, we have to construct a pair (dt,[text dd]) for

every (dt,dd) pair in the environment and then wrap the whole resulting list in a

definition list:

envPage = \env ->

page "Environment"

[h 1 "Environment"

, dl (map (\(dt,dd) -> (dt,[text dd])) env)

]

The complete script first gets the list of all environment variables using function

getWholeEnv, and then returns the requested HTML page:

https://doi.org/10.1017/S0956796899003561 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003561

12 E. Meijer

envPassed :: IO ()

envPassed = wrapper $ \query ->

do{ env <- getWholeEnv

; return $ Content (HTML (envPage env))

}

6 MIME type application/x-url-encoded

When surfing the web, everyone has encountered strangely encoded query strings

such as

http://www.altavista.digital.com/cgi-bin/query

?pg=q&what=web&kl=XX

&q=haskell%2B%22cgi+programming%22

&search.x=34&search.y=7

In general, an url-encoded query string of Mime type application/x-url-encoded

consist of a sequence of zero or more url-encoded name=value pairs separated by

ampersands &:

query ::= [name=value{&name=value}]

We model query strings by a simple association list of (name,value) pairs (remember

that Name and Value are just synonyms for String):

type Query = [(Name, Value)]

The grammar for query strings is readily transliterated into a parser using standard

parser (monadic) combinators (Hutton & Meijer, 1998):

readQuery :: String -> Query

readQuery = parse query []

query :: Parser Query

query =

do{ name <- urlEncoded; string "="; value <- urlEncoded

; return (name,value)

} ‘sepby‘ (string "&")

Names and values are url-encoded, which the parser will decode:

urlEncoded :: Parser String

urlEncoded =

many (alphanum ++ extra ++ safe ++ space ++ hexencoded)

Alphanumeric characters and ‘safe’ and ‘special’ characters are not encoded:

extra :: Parser Char safe :: Parser Char

extra = sat (‘elem‘ "@!*’(),") safe = sat (‘elem‘ "$-_.")

Spaces “ ” are encoded by plus signs “+”:

https://doi.org/10.1017/S0956796899003561 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003561

Server side web scripting in Haskell 13

Table 2. Widget combinators

form :: URL -> [HTML] -> HTML

post, get :: [HTML] -> HTML

checkbox :: Name -> HTML

radio :: (Name,Value) -> HTML

menu :: (Name,[Value]) -> HTML

textfield :: (Name,Value) -> HTML

textarea :: (Int,Int) -> (Name,Value) -> HTML

hidden :: (Name,Value) -> HTML

button :: (Name,Value) -> HTML

reset :: Value -> HTML

space :: Parser Char

space = do{ char ’+’ ; return ’ ’}

Nonalphanumeric characters such as ‘%’ are hex-encoded via an escape sequence that

consists of a percent character % followed by two hexadecimal digits, for example

the hex-encoding of % itself is %25.

hexencoded :: Parser Char

hexencoded =

do{ char ’%’; d1 <- hexit; d2 <- hexit

; return $ chr (readHex [d1,d2])

}

6.1 Generating application/x-url-encoded data with forms

Up to now, none of our scripts have really used their request argument. In fact,

we don’t even know how to create query strings on the client! HTML forms give

users a way to dynamically generate GET or POST request with varying query strings

to provide true interaction between client and server. An HTML form can contain

standard GUI widgets such as text-fields, various kinds of buttons, menus, etc.

Table 2 gives a useful interface to HTML forms in Haskell.

Most widgets take a (name,value)-argument whose given initial value can be

changed interactively by the user. When the user clicks on a submit button or enters

a value in a single line textfield all the (name,value)-pairs of the form are url-encoded

and combined into a query string. This query is then included in the request which

the client issues to the server.

The first argument of the form combinator specifies an explicit URL to which the

query is submitted. The post and get combinators submit the form to the URL of

the page that contains the form itself and thus make scripts location independent.

https://doi.org/10.1017/S0956796899003561 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003561

14 E. Meijer

6.2 Specializing the wrapper for HTML generating forms

In practice, most HTTP requests contain url-encoded data and most responses

HTML documents. We can capture this special case by providing a specialized

wrapper function cgi :: (Query -> IO HTML) -> IO () that coerces a simplified

worker function into a proper worker as expected by function wrapper:

cgi :: (Query -> IO HTML) -> IO ()

cgi = \script -> wrapper $ \request ->

do{ html <- script (request2query request)

; return $ Content (HTML html)

}

Function request2query extracts the query string from either a GET or POST request:

request2query :: Request -> Query

request2query = \request

case request of

{ GET query -> query

; POST (UrlEncoded query) -> query

; POST (_) -> []

}

At this point we want to stress once more that in order to write a CGI script,

we only have to provide a function of Query -> IO HTML and everything else is

taken care of by the various wrapper functions; CGI scripting can hardly be more

convenient than this.

6.3 Feedbackform

As an example application of HTML forms, we sketch a design of a script that

processes user feedback:

feedbackForm

= page "User Feedback" []

[header

, introduction

, post

[to

, subject

, from

, body

, resetORsubmit

]

]

The script first parses its input into a mail message using function checkMsg ::

Query -> Maybe MailMsg. If this fails it just returns the original form so that the

https://doi.org/10.1017/S0956796899003561 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003561

Server side web scripting in Haskell 15

user can try again. Otherwise, it mails the message using function sendMail ::

MailMsg -> IO () and returns an acknowledgment form.

feedback = cgi $ \query ->

case checkMsg query of

{ Nothing -> do{ return feedbackForm }

; Just msg -> do{ sendMail msg; return (acknowledgeForm msg) }

}

Returning an initial page whenever the user input is incorrect is a widely used

technique for CGI scripts.

7 Maintaining state

The fact that the HTTP protocol is stateless, presents a nasty problem for CGI

programmers. If an application, such as an electronic shopping cart, requires multiple

interactions between client and server, we must arrange somehow that intermediate

state persists across these interactions.

Ideally, the underlying operating system or run-time system should implement

a stateful protocol on top of HTTP. In principle there is no difference between

standard IO where the ‘server’ program issues responses to the operating system

using

putChar :: Char -> IO ()

and waits for requests from the operating system using

getChar :: IO Char

and the situation where the server issues responses to the client using

putResponse :: Response -> IO ()

and waits for requests from the client using

getRequest :: IO Response

Languages such as Mawl (Ladd & Ramming, 1995), or the arrow-combinators

CGI library of John Hughes (Hughes, 1998) take this route, but such sophisticated

techniques are outside the scope of this paper.

The straightforward solution is to encode the state in the response returned to the

client and decode it from the subsequent request. This can be the complete state, or

only part of the state (for instance a session key) from which the rest of the state,

which is kept on the server, can be retrieved.

7.1 <INPUT TYPE="hidden">

There several commonly used tricks to encode state in responses and requests. The

simplest one is to use hidden fields such as hidden ("state",show state) to

record the state information state in the page returned to the client. Then, on the

https://doi.org/10.1017/S0956796899003561 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003561

16 E. Meijer

next request, the old state is available by doing a read (lookup "state") on the

query string. A very similar technique is to append state as pathinfo on the URL

that will be used by the client to do the next request. In this case, the old state is

available in the environment variable PATH INFO.

7.2 Cookies

The disadvantage of these two methods is that the state is tightly coupled to the

outgoing response and the subsequent request. This makes it hard to maintain state

over multiple sessions, which can be useful, for instance, to avoid having users to

register themselves over and over when they visit a particular site. In such a situation,

we can use cookies. Cookies are simple name-value pairs that are transmitted from

the server to the client with the response (Krisol & Montulli, 1997). The browser

stores any cookies it receives on the client, and whenever it will perform another

request on the server, it will add the cookies to the outgoing request. We provide two

basic functions to set and retrieve cookies as global variables within a CGI script:

setCookie :: (Read a, Show a) => Name -> a -> IO ()

getCookie :: (Read a, Show a) => Name -> IO a

Function getCookie name raises an IO exception when there is no cookie named

name. In reality, cookies have more attributes such as domain, path, expires, and

secure, but we do not need those for most common scripts.

Since cookies are transmitted in HTTP requests and responses, we can easily use

the plain getRequest and putResponse functions as hooks to get and put cookies

into the communication stream between client and server.

8 Lessons learned

Polishing the Haskell/CGI library took surprisingly long. Originally, we designed

the library as an exercise for a compilers course, but along the way we explored

many different design alternatives. For instance, we experimented with a strongly

typed representation for HTML terms that reflects the HTML DTD more closely.

In the end, however, we decided to take simplicity (for both the user as well as for

ourselves) as the leading design principle. In this section, we reflect on an alternative

representation for Mime types using type classes that we rejected for exactly this

reason.

Experienced Haskell programmers know the duality between algebraic data types

and type classes. For example, instead of defining an algebraic type Mime with

alternatives for each individual Mime type such as String, HTML, Query, etc. as we

did in section 3.2:

data Mime

= ...

| TextPlain String

| TextHtml HTML

https://doi.org/10.1017/S0956796899003561 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003561

Server side web scripting in Haskell 17

| UrlEncoded Query

| ...

and then using a big case statement inside function putMime :: Mime -> IO ()

and wrapping the results of getMime :: IO Mime inside constructors, we could

have defined a type class Mime with two members getMime :: Mime a => IO a

and putMime :: Mime a => a -> IO () as follows

class Mime a where { putMime :: a -> IO (); getMime :: IO a }

and make String, HTML and Query instances of class Mime.

At first sight, overloading seems to have the advantage that it is more extensible,

we can always define new instances of class Mime such as GIF images, whereas in

the non-overloaded style, we have to fix type Mime once and for all, otherwise all

functions that pattern-match on values of type Mime break. But as usual life is not

as easy as it looks.

Haskell style overloading is a powerful tool, but it can be dangerous in the

hands of inexperienced programmers. For example many CGI scripts gave rise to

ambiguous types such as Mime a => IO (), akin to the ambiguity in the expression

(show.read) :: (Show a, Read a) => String -> String.

Moreover, to make overloading really convenient we have to use a trick to

simulate overlapping instances that is also used in Haskell’s standard Show and

Read classes. For example, to be able to use putMime on both String = [Char]

and Query = [(Name,Value)] without making them abstract, we have to add two

helper methods putMimeList :: Mime a => [a] -> IO () and getMimeList ::

Mime a => IO [a] to class Mime which will be used to overlap the instances for

String and Query. But this also obliterates extensibility, since users might have to

add members to the Mime class when they want introduce new Mime types.

9 References and further reading

Much of the material on web related technology is not available in traditional

printed media such as conference proceedings, journals and books, and URLs have

the dubious reputation of being pretty volatile so the URLs that we mention

here might be musty by the time you read this paper. Moreover, it is a truly

daunting task to find the needle you are looking for in the enormous haystack of

documents that search-engines return. In the end, we found that the best sources

of information are available on the W3C website http://www.w3.org and on the

Internet-Drafts shadow directories such as ftp://ftp.isi.edu. The RFC-project

page for the CGI standard is http://web.golux.com/coar/cgi/. Most commercial

books are popularized versions of the online draft documents. The Haskell/CGI

library is part of the standard Hugs distribution, which can be downloaded from

www.haskell.org.

https://doi.org/10.1017/S0956796899003561 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003561

18 E. Meijer

Acknowledgements

Joost van Dijk contributed much to the first iteration of Haskell/CGI. Many

thanks to Jim Hook, Tim Sheard, and Daan Leijen for reading draft versions of

these notes, Byron Cook for inviting me to talk about Haskell/CGI at the CISE

summer school, and Dino Oliva for convincing me to drop the all too clever use of

overloading. Special thanks to Phil Wadler who encouraged me to write this paper,

and to Simon Peyton Jones and two anonymous JFP referees for suggesting some

major restructuring and pointing out numerous weakness in both the model and

presentation of this paper. Last but not least, I thank the Nottingham and Yale

Hugs implementors for creating the productive soil in which the library grew and

for including it as one of the demos in the standard distribution.

A large part of this work was done during the author’s sabbatical with the

Pacsoft group at OGI funded by a contract with US Air Force Material Command

(F19628-93-C- 0069).

References

Borenstein, N. and Freed, N. (1993) Mime (Multipurpose Internet Mail Extensions) part one:

Mechanisms for Specifying and Describing the Format of Internet Message Bodies. RFC1521.

Fielding, R., Gettys, J., Mogul, J., Frystyk, H. and Lee, T. (1997) Hypertext Transfer Protocol

– HTTP/1.1. http://www.w3.org/Protocols/rfc2068/rfc2068.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1994) Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley.

Hughes, J. (1995) The Design of a Pretty-Printing Library. Advanced Functional Programming:

Lecture Notes in Computer Science 925. Springer-Verlag.

Hughes, J. (1998) Generalising Monads to Arrows. Submitted.

Hutton, G. and Meijer, E. (1996) Back to Basics: Deriving Representation Changers Func-

tionally. J. Functional Programming, 6(1).

Hutton, G. and Meijer, E. (1998) Monadic Parsing in Haskell. J. Functional Programming,

8(4).

Khare, R. (ed) (1997) Scripting Languages: Automating the Web. World Wide Web Journal,

vol. 2, no. 2. O’Reilly & Associates, Inc.

Krisol, D. M. and Montulli, L. (1997) HTTP State Management Mechanisms.

http://www.w3.org/Protocols/rfc2109/rfc2109.

Ladd, D. A. and Ramming, J. C. (1995) Programming the Web: An Application-Oriented

Language for Hypermedia Services. 4th Int. World Wide Web Conf.

Peyton Jones, S. and Hughes, J. (eds) (1999) Report on the Language Haskell’98.

htpp://www.haskell.org/report.

Ragget, D., Le Hors, A. and Jacobs, I. (1997) HTML 4.0 Specification.

http://www.w3.org/TR/REC-html40.

Wall, L., Christiansen, T. and Schwartz, R. L. (1996) Programming Perl (2nd ed). O’Reilly &

Associates.

https://doi.org/10.1017/S0956796899003561 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003561

