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We consider the stability of Couette flow when travelling vibrations perturb one boundary.
It is demonstrated that if the bounding surface profile takes the form of sinusoidal waves,
then the otherwise stable shear flow becomes unstable for appropriately chosen values of
vibration amplitude, phase speed and wavenumber. When instability arises, it is driven
by centrifugal forces that are created by wave-imposed changes in the direction of fluid
movement. Only subcritical waves, defined as vibrations with phase speed smaller than the
maximum flow velocity, cause instability. As the fluid Reynolds number grows, the interval
of vibration wavenumbers and phase speeds capable of flow destabilisation is enhanced.
A range of parameters is identified for which the vibrations seem to play dual roles: they
decrease the flow resistance while simultaneously generating streamwise vortices. This
vibration class constitutes an energy-efficient control tool that may potentially intensify
the mixing within a flow.

Key words: drag reduction, mixing enhancement

1. Introduction
Vibrations can play a pivotal role in determining the properties of a wide range of
fluid motions. Sometimes, in mechanical systems, vibrations are both unavoidable and
undesirable because they may make the flow sensitive to instability and prone to premature
breakdown to turbulence. On the other hand, vibrations can be used quite intentionally
as a flow control method to reduce the flow resistance or to provide a propulsive effect.
In other applications, we wish to actively encourage the vibrations of the conduit to
enhance fluid mixing, including inducing low Reynolds number chaos (Gepner & Floryan
2020). Then, of course, one is interested in determining changes in the fundamental
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flow properties caused by vibrations. Furthermore, vibrations are known to play a role
in various environmental flow phenomena, with the classic example prototype example
provided by Langmuir circulation, which is driven by wind that blows waves across the
surface of an expanse of water (Leibovich 1983; Thorpe 2004).

Our concern in this work is to provide insight into the stability of shear flows affected by
vibrations used as an active control tool. The principal goal of this class of problems is to
devise a strategy such that energy saving from drag reduction exceeds the energy expended
in applying the control. Until recently, it was thought that this goal was unachievable
(Bewley 2009), but this view has been challenged recently (Floryan 2023). In the work
described below, we consider an active flow distributed propulsion system in which part
of the externally supplied energy is used to reduce the resistance rather than overcome it.
However, rather than just measuring the effectiveness of the process in terms of an energy
balance assuming no change in the performance of the system, we attempt to improve
matters by enhancing the propulsion energy (Haq & Floryan 2022; Floryan, Aman &
Panday 2023b). The concept of distributed propulsion is not new and has a long history
within various biological flows (Taylor 1951; Blake & Sleigh 1974; Katz 1974; Brennen &
Winet 1977; Chan, Balmforth & Hosoi 2005; Lee et al. 2008; Lauga 2016). More recently,
other instances of distributed propulsion have been investigated at larger scales; some
examples include nonlinear streaming created by wall transpiration (Jiao & Floryan 2021),
the so-called pattern interaction effect (Floryan & Inasawa 2021) that leads to thermal
drift (Abtahi & Floryan 2017), patterned heating (Floryan & Floryan 2015), nonlinear
thermal streaming (Floryan et al. 2023), thermal waves (Hossain & Floryan 2023) and
wall vibrations (Floryan & Haq 2022). The previously mentioned biological examples of
distributed propulsion occur on such short scales that the stability of the flow is ensured,
but this issue is not so clear-cut when dealing with the other problems. To date, scant
attention has been paid to this question, and it is this problem that we seek to address
herein.

We tackle our task by selecting a straightforward paradigm problem free from as many
superfluous and distracting effects as is feasible. To that end, we focus on the instabilities
caused by vibrations in wall-bounded shear layers. More precisely, we investigate the effect
of wall vibrations on two-dimensional laminar Couette flow. Since this flow is linearly
stable without vibrations (Romanov 1972), we can be assured that any instability can
be ascribed to the imposition of vibration rather than being an intrinsic property of the
motion. It is already known that this flow can be destabilised using modifications produced
by wall transpiration (Jiao & Floryan 2021) and surface grooves (Floryan 2002), but its
response to wall vibrations is unknown. We focus on disturbances that form streamwise
vortices and explore the system response across a wide range of vibration wavelengths
and phase speeds. Our calculations are restricted to cases in which the amplitude of the
vibrations is less than about 5 % of the slot opening. There are two reasons for this. First,
any uncontrolled vibrations generally are of small amplitude, as any system susceptible to
larger unwanted vibrations normally necessitates a complete redesign. Conversely, when
the vibrations are intentional, they are frequently created using piezoelectric actuators
characterised by small-amplitude and high-frequency displacements. Finally, we mention
limiting the flow Reynolds number to less than 2000 as we are interested in laminar flows.
Experimental evidence suggests that Couette flow becomes turbulent at larger Reynolds
numbers (Tillmark & Alfredsson 1992).

Our control strategy belongs to a class of problems that uses a spatial pattern of actuation
rather than relying solely on the strength of the forcing. In most circumstances, it is thought
that using a pattern-based control is typically associated with lower energy actuation costs.
One question in pattern-based control is how best to select the spatial distribution. Clearly,
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Figure 1. Schematic diagram of the flow system.

an almost limitless range of options is available, and exploring them on a case-by-case
basis is not feasible. If the pattern is spatially periodic, then it is natural to write the
profile of the wall vibration using an appropriate Fourier series. In our analysis, we will
suppose that the wall shape is just a single Fourier mode of a given wavelength. While this
may seem somewhat over-simplistic, there is evidence that the flow characteristics over a
wall of a more general profile can be well modelled by the single component if chosen
carefully (Floryan 2007). The reduced model identifies those parts of Fourier space that
are hydraulically active by considering the projection of an arbitrary pattern onto Fourier
space and determining whether any dynamically important components are involved.

To understand how wall vibrations can influence the stability of wall-bounded shear
flows, we organise the remainder of the paper in the following way. In § 2, we describe
our idealised two-dimensional model problem that consists of an infinite slot bounded
by a translating smooth upper plate and a lower surface whose shape takes the form of
travelling waves. Then, in § 3, we isolate the primary state of the flow, i.e. the Couette flow
modified by the vibrations. This basic state requires a numerical solution of the relevant
field equations. Once this has been found, we move on to § 4, which outlines the key
stability problem and discusses the numerical solution of the disturbance equations. Most
of our results are collected in § 5, where the characteristics of flow instabilities caused by
wall vibrations are described. The paper closes with a few final remarks and observations.

2. Problem formulation
Consider flow in a slot driven by movement of the upper plate with a prescribed velocity
Utop while the lower plate is stationary. The slot extends to ±∞ in the X- and Z-directions
with plates placed at a distance 2h apart, as shown in figure 1. The lower plate is exposed
to vibrations in the form of a sinusoidal travelling wave, resulting in the time-dependent
slot geometry of the form

YL(t, X)= −1 + 1
2 cos[α (X − ct)], (2.1)

where subscript L refers to the lower plate, and h was used as the length scale.
The velocity vector V = (u, v, w) is scaled with the viscous velocity scale Uv = v/h,

the pressure p is scaled with ρU 2
v (where ρ denotes the fluid density), and the time t is

scaled with h/Uv . The relevant boundary conditions are

for Y = 1, u = Re, v= 0, w= 0, for Y = YL(t, X), u = 0, v = ∂YL

∂t
, w= 0,
(2.2a–f )

where

Re ≡ Utoph/ν (2.3)
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is the Reynolds number. Since the flow is driven solely by the movement of the upper
plate, the pressure gradient constraint in the form

∂p

∂X

∣∣∣∣
m

= 0, (2.4)

where subscript m denotes the mean value, must be imposed.
It is simpler to carry out detailed calculations using the frame of reference moving with

the wave, which leads to Galileo’s transformation of the form

x = X − ct, y = Y, z = Z . (2.5a–c)

The complete problem formulation can now be written as

∂u

∂t
+ (u − c)

∂u

∂x
+ v

∂u

∂y
+w

∂u

∂z
= −∂p

∂x
+ ∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2 , (2.6a)

∂v

∂t
+ (u − c)

∂v

∂x
+ v

∂v

∂y
+w

∂v

∂z
= −∂p

∂y
+ ∂2v

∂x2 + ∂2v

∂y2 + ∂2v

∂z2 , (2.6b)

∂w

∂t
+ (u − c)

∂w

∂x
+ v

∂w

∂y
+w

∂w

∂z
= −∂p

∂z
+ ∂2w

∂x2 + ∂2w

∂y2 + ∂2w

∂z2 , (2.6c)

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0, (2.6d)

for y = 1, u = Re, v= 0, w= 0, (2.6e–g)

for y = yL(x)= −1 + 1
2

cos[α(X − ct)], u = 0, v = −c
dyL(x)

dx
, w= 0, (2.6h–j)

∂p

∂x

∣∣∣∣
mean

= 0. (2.6k)

The next section begins with a detailed analysis of the two-dimensional stationary state
in the moving reference frame.

3. Determination of the primary state
The primary state has the form of a two-dimensional stationary flow in the moving
frame of reference, i.e. w= 0, ∂/∂z = 0, ∂/∂t = 0. This flow is expected to bifurcate to a
secondary state consisting of streamwise vortices. This analysis aims to determine critical
conditions leading to such a bifurcation. We begin with a discussion of the properties of
the stationary state before proceeding to stability analysis.

3.1. Problem formulation and numerical solution
The translation of the upper plate in the absence of any vibrations creates a simple Couette
flow. The velocity field v0, pressure p0, pulling force applied to the upper plate (per unit
length and width) F0, shear acting on the upper plate τ0, and flow rate Q0 are given by
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v0(x, y)= [u0, v0] =
[

1
2(1 + y), 0

]
, p0(x, y)= constant, F0 = 1

2 , τ0 = −1
2 , Q0 = 1.

(3.1a–e)

Here, the velocity of the upper plate Utop has been adopted as the velocity scale, ρU 2
top

as the pressure scale, and Utopμ/h as the surface force scale, and the flow rate was
scaled using Utop. To describe the effects of surface vibrations, we represent the total flow
quantities as a sum of the reference flow and the vibration-induced modifications, i.e.

V (x, y)= [
u B(x, y), vB(x, y)

] = [
Re u0(y)+ u1,B(x, y), v1,B(x, y)

]
, (3.2a)

pB(x, y)= C + p1,B(x, y), ψB(x, y)= Re ψ0(y)+ψ1,B(x, y), (3.2b,c)

Q B,mean = Re + Q1B,mean, τB(x)= −1
2 Re + τ1,B(x), FB = 1

2 Re + F1,B .
(3.2d–f )

In the above, (u B, vB), pB , ψB , Q B,mean , τB and FB denote the complete velocity,
pressure, stream function, mean flow rate, shear, and pulling force, respectively, and
(u1,B, v1,B),ψ1,B , p1,B , Q1B,mean and F1,B denote the velocity, stream function, pressure,
mean flow rate, and pulling force modifications caused by vibrations. We eliminate
pressure by introducing stream function modifications ψ1,B defined as

u1,B = ∂ψ1,B

∂y
, v1,B = −∂ψ1,B

∂x
. (3.3a,b)

Taking the y-derivative of (3.2a) and the x-derivative of (3.2b), and subtracting the
latter from the former, leads to the formulation of the form

∇∇∇2
(
∇∇∇2ψ1,B

)
− (Re uo − c)

∂

∂x
∇∇∇2ψ1,B + Re

d2uo

dy2
∂ψ1,B

∂x
= Nuv, (3.4)

for y = +1,
∂ψ1,B

∂y
= 0,

∂ψ1,B

∂x
= 0, (3.5a,b)

for y = yL(x),
∂ψ1,B

∂y
= −Re u0,

∂ψ1,B

∂x
= c

dyL

dx
. (3.5c,d)

In the above, Nuv ≡ (∂/∂y)((∂/∂x)( ̂u1,Bu1,B)+ (∂/∂y)( ̂u1,Bv1,B))− (∂/∂x)((∂/∂x)
( ̂u1,Bv1,B)+ (∂/∂y)( ̂v1,Bv1,B)), and hats denote products of quantities. The above system
needs to be supplemented by the pressure gradient constraint (2.6k), whose explicit form
depends on the type of discretisation.

The discretisation process begins with the transformation

ŷ = 2
y − 1
yb + 2

+ 1, Γ = dŷ

dy
, (3.6)

which maps the strip y ∈ (−1 − yb, 1) in the y-direction into the strip ŷ ∈ (−1, 1) in the
ŷ-direction. Here, yb denotes the location of the lower extremity of the lower plate. This
preliminary step is required to use the standard definition of Chebyshev polynomials in
discretisation. The unknowns are expressed in terms of Fourier expansions of the form

q(x, ŷ)=
+NB∑

n=−NB

q(n)(ŷ) einαx , (3.7)
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where q stands for any of the following quantities: ψ1,B, u1,B, v1,B, ̂u1,Bu1,B,

̂u1,Bv1,B, ̂v1,Bv1,B , and the modal functions q(m)(ŷ) satisfy the reality conditions,
i.e. q(m) is the complex conjugate of q(−m). Substitution of (3.7) into (3.4), and separation
of Fourier modes, lead to a system of nonlinear ordinary differential equations of the form

[
−2n2α2Γ 2D2 + Γ 4D4 + (nα)4 − inα(Re uo − c)(Γ 2D2 − (nα)2)

+inα Re Γ 2D2u0

]
ψ
(n)
1,B(y)= inαΓD ̂u1,Bu1,B

(n) + (Γ 2D2 + (nα)2) ̂u1,Bv1,B
(n)

− inαΓD ̂v1,Bv1,B
(n)
, (3.8)

where D = d/dŷ, and the right-hand side provides coupling between different modes.
These equations need to be supplemented by the relevant form of boundary conditions.
Boundary conditions at the upper plate can be set explicitly for each Fourier mode, i.e.

for y = 1, ψ1,B
(n) = 0 for n �= 0, ΓDψ1,B

(n) = 0. (3.9a,b)

Since (3.9a) does not include mode zero, the relevant boundary conditions required
separate development described below. Boundary conditions at the lower plate involve a
combination of modes coupled through the plate geometry. We start by expressing them
in terms of the stream function in the form

for y = yL(x), ψ1,B = c

Γ

dŷL

dx
, ΓDψ1,B = −Re u0. (3.10a,b)

The condition (3.5d) is written in an alternative way by noting that variations in ψB
along the lower plate can be expressed as

ψB = Re ψ0 +ψ1,B =
(
∂ψB

∂x
dx + ∂ψB

∂ ŷ
dŷ

)∣∣∣∣
ŷL (x)

= c

Γ

dŷL

dx
dx . (3.11)

Integrating (3.11) along this plate yields

ψ1,B(x)= c

Γ

[
ŷL(x)− ŷL(x0)

] − Re ψ0(ŷL), (3.12)

where the constant of integration was selected by assuming that ψ1,B(x0)= 0, with x0
being an arbitrary point along the plate. The stream function is constant along the upper
plate, i.e. ψB = G, where G needs to be determined from the pressure gradient constraint.
This constraint can be expressed as

D2ψ1,B
(0) (1)− D2ψ1,B

(0) (−1)= Γ −2
[
û1v1

(0) (1)− û1v1
(0) (−1)

]
, (3.13)

with details of the derivation explained in Appendix A. The reader may note that this
constraint involves both ends of the solution domain. Expressing the remaining conditions
using modal functions requires invoking the immersed boundary conditions method.

The ordinary differential equations (3.8) arising from Fourier decomposition were
discretised by expressing modal functions as Chebyshev expansions, and algebraic
equations for the expansion coefficients were constructed using the Galerkin projection
method. The irregularity of the flow domain was handled using the spectrally accurate
immersed boundary conditions method, with flow boundary conditions replaced by
constraints. Details of implementations of these conditions are omitted from this
presentation due to their excessive length, but can be found in Szumbarski & Floryan
(1999) and Husain, Szumbarski & Floryan (2009). These constraints were implemented
using the tau method (Canuto et al. 1992). The overall algorithm is gridless and spectrally
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accurate. The computations were carried out with at least five-digit accuracy, and
this requirement was satisfied by selecting the required number of Fourier modes and
Chebyshev polynomials to be used in the computations.

In the solution process, the right-hand side of (3.8) was assumed to be known (taken
from the previous iteration), and the system was solved to provide a new approximation
for ψ1,B(x, ŷ). A new approximation for velocity components was determined, leading to
a new approximation of the right-hand side, then a new approximation for ψ1,B(x, ŷ) was
computed. The process was continued until convergence was achieved.

The stability analysis requires knowledge of the velocity vector V B = (u B, vB, 0) and
the vorticity vector ωB = (ξB, ηB, φB)= (0, 0, ∂vB/∂x − ∂u B/∂y) of the stationary state.
These quantities were determined in the post-processing stage and were represented as

[
u B,vB, φB

] (
x, ŷ

) =
NB∑

n=−NB

[
f <n>
u , f <n>

v , f <n>
φ

] (
ŷ
)

einαx . (3.14)

3.2. Properties of the primary state
Vibrations propel the fluid along the lower plate using the peristaltic effect, thus reducing
the relative fluid velocity with respect to the moving plate and reducing shear stress at that
plate. Reduction of flow resistance was discussed extensively in Floryan & Haq (2022).
Its effectiveness can be gauged by determining the external force required to maintain the
movement of the upper plate at the same velocity with and without vibrations. The shear
stress on the upper plate was integrated over a wavelength to determine the vibrations-
induced change of the pulling force. The shear stress σXv,U that acts on the fluid and the
external pulling force (per unit length and width) on the upper plate FBare given by

σxv,U = ∂u B

∂y

∣∣∣∣
y=1

, FB = λ−1
∫ λ

0

∂u B

∂y

∣∣∣∣
y=1

dx, (3.15a,b)

where λ= 2π/α denotes wavelength. The force correction can be evaluated as

F1,B = FB − 1
2 Re, (3.15c)

and its negative values correspond to a reduction of the required external force.
Figure 2 illustrates variations of F1,B normalised as Fnorm = (F1,B)/(Re F0 A2). The

resistance reduction zones are greyed for easy identification. The c-axis can be divided into
two zones. The lower zone corresponds to 0< c< Re, i.e. the wave velocity is in the fluid
velocity range. Such waves are called subcritical (Floryan & Haq 2022). The upper zone
corresponds to c> Re, i.e. these waves are faster than the fluid and are called supercritical.
The supercritical waves generally reduce flow losses, with this reduction changing in a
fairly regular manner and increasing with c and α. The subcritical waves exhibit complex
behaviour that changes with Re – they generally increase flow losses, but there are islands
in the parameter space where they decrease losses, so making generalisations is difficult.
The natural flow frequencies of the Orr–Sommerfeld modes in the absence of vibrations
overlap with the subcritical waves, but no near resonance was observed.

An analysis of the flow modifications provides another view of the flow response.
Figure 3 shows how subcritical waves modify the streamwise component profiles. These
structures are concentrated in the boundary layer adjacent to the vibrating wall when
the waves are sufficiently short, as illustrated in the third column in figure 3. The fluid
outside the boundary layer behaves as if this layer were a wall moving with the velocity
correction outside the boundary layer having the form of Couette flow driven by the
velocity at the edge of the boundary layer. This type of response has previously been

1006 A25-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.102


N.N. Haq and J.M. Floryan

2.5

2.0

1.0

Supercritical

waves

Subcritical

waves

–10

–12

–8

–6
–3

1

1

2

–1

0.5

0.75

–0.5

–1

–2 –3
–6

–8
–10

–12

0
0.01 1.00 3.00

α

c/
Re c

5.00

2000

1600

800

0

2.5

2.0

1.0

Supercritical

waves

Subcritical

waves

–10

–12

–8

–6

–3

–1
0.5

0.75

–0.5

–1

–2
–3

–6
–8
–10

–12

0
0.01 1.00 3.00

α

c/
Re c

5.00

2500

2000

1000

0

2.5

2.0

1.0

Supercritical

waves

Subcritical

waves

–10

–10

–18

–6

–1
0.5

0.75

–0.5

–1
–2

–3
–6

–8
–10

–12

0
0.01 1.00 3.00

α

c/
Re

(c) (d)

(a) (b)

c

5.00

3750

3000

1500

0

2.5

2.0

1.0

Supercritical

waves

Subcritical

waves

–10

–12

–8

–6

–1
0.50

0.75

–0.25
–1

–2
–3

–6
–8

–10

–12

0
0.01 1.00 3.00

α

c/
Re c

5.00

5000

4000

1000

0

Figure 2. Variations in the normalised force correction Fnorm = F1,B/(Re F0 A2) as a function of α and c for
(a) Re = 800, (b) Re = 1000, (c) Re = 1500, (d) Re = 2000. The grey shading indicates negative values; the
red line shows conditions giving F1,B = 0; zones between the blue lines provide the range of natural frequencies
of the Orr–Sommerfeld modes in the absence of vibrations.

referred to as a ‘moving wall’ pattern (Floryan & Haq 2022). By contrast, long waves
seem to produce modifications in the form of a sloshing-type behaviour that extends across
the whole slot, with the forward movement occurring around the wave troughs, and the
backward movement near the crests. Unsurprisingly, modes of an intermediate wavelength
are somewhat of a hybrid of these two extremes: the middle column of figure 3 shows some
structure concentration near the vibrating wall, while some sloshing still penetrates the slot
interior. The character of the flow response remains qualitatively the same regardless of
the flow Reynolds number (details not shown).

4. Formulation of the linear stability theory and its numerical solution
We have now seen how the imposed wall vibrations modify the basic state, and this
raises the possibility that this new state may possess stability characteristics qualitatively
very different from the unmodified (linearly stable) Couette flow (Romanov 1972). We
investigate this question here, focusing on possible instabilities leading to streamwise
vortices forming.

We begin by writing the governing equations in the moving frame of reference expressed
in terms of the vorticity transport and continuity equations, i.e.

∂ω

∂t
− (ω.∇∇∇) V + (V .∇∇∇)ω − c

∂w

∂x
=∇∇∇2ω, ∇∇∇.V = 0, ω =∇∇∇ × V . (4.1a–c)
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Figure 3. Distributions of the x-component of the vibrations-induced velocity modifications u1,B at
x/λ= 0, 0.25, 0.5, 0.75 for Re = 1000, A = 0.04.

Unsteady three-dimensional disturbances are added to the stationary state in the form

ω = ωB (x, y)+ ωD (x, y, z, t) , V = V B (x, y)+ V D (x, y, z, t) , (4.2a,b)

where subscript D denotes disturbance quantities, ωD = (ξD, ηD, φD), V D =
(u D, vD, wD), the flow quantities (4.2) are substituted into (4.1), the base part is
subtracted, and the equations are linearised. The resulting linear disturbance equations
have the form
∂ωD

∂t
− (ωB .∇∇∇) V D − (ωD.∇∇∇) V B + (V B .∇∇∇)ωD + (V D.∇∇∇)ωB − c

∂wD

∂x
=∇∇∇2ωD,

(4.3a)

∇∇∇.V D = 0, ωD =∇∇∇ × V D, (4.3b,c)
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for y = 1, yL(x), V D(x, y, z, t)= 0. (4.3d)

Since vibrations modulate the stationary state, the disturbance quantities can be
expressed as waves with amplitudes modulated in the x-direction (Floryan 1997), i.e.

[V D,ωD] (x, y, z, t)= [GD,Ω D] (x, y) ei(δx+μz−σ t) + c.c., (4.4a)

where δ and μ are the real wavenumbers in the x- and z-directions, respectively,
σ = σr + iσi is the complex frequency with σi describing the rate of growth of
disturbances and σr describing their frequency, and c.c. stands for the complex conjugate.
The amplitude functions GD(x, y) and Ω D(x, y) are x-periodic as dictated by the type of
modulation. Accordingly, these functions can be expressed in terms of Fourier expansions
of the form

GD (x, y)=
+ND∑

m=−ND

[g<m>
u (y) , g<m>

v (y) , g<m>
w (y)] eimαx + c.c., (4.5a)

Ω D (x, y)=
+ND∑

m=−ND

[g<m>
ξ (y) , g<m>

η (y) , g<m>
φ (y)] eimαx + c.c.. (4.5b)

Quantities in square brackets on the right-hand sides of (4.5) are the modal functions.
Combining (4.4) and (4.5) leads to the final expressions for the disturbance quantities in
the form

V D(x, y, z, t)=
+ND∑

m=−ND

[
g<m>

u (y), g<m>
v (y), g<m>

w (y)
]

ei[(δ+mα)x+μz−σ t] + c.c.,

(4.6a)

ωD (x, y, z, t)=
+ND∑

m=−ND

[
g<m>
ξ (y) , g<m>

η (y) , g<m>
φ (y)

]
ei[(δ+mα)x+μz−σ t] + c.c..

(4.6b)

Substituting (4.6) into (4.3a–c) and separating Fourier modes leads to a system of
coupled ordinary differential equations for the modal functions. These equations are then
combined into a system involving only g<m>

v and g<m>
η in the form

T<m>g<m>
v = −

ND∑
n=−ND

[
(T<m−n>

1 + T<m−n>
2 + T<m−n>

3 )g<m−n>
v

+ (
T<m−n>

4 − T<m−n>
5

)
g<m−n>
η

]
, (4.7a)

S<m>g<m>
η =

+ND∑
n=−ND

[ (
S<m−n>

1 + S<m−n>
2 + S<m−n>

3
)

g<m−n>
v

+ (
S<m−n>

4 − S<m−n>
5

)
g<m−n>
η

]
, (4.7b)

where ND ≤ m ≤ −ND , and all operators are defined in Appendix B.
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The boundary conditions for the modal functions at the upper plate follow from (4.3d)
and have a simple form, i.e.

for y = 1, g<m>
u = g<m>

v = g<m>
w = 0, (4.8)

and when expressed only in terms of g<m>
v and g<m>

η , they take the form

for y = 1, itmDg<m>
v − iμg<m>

η = g<m>
v = iμDg<m>

v + itm g<m>
η = 0. (4.9)

The boundary conditions at the lower plate involve a combination of modes dictated by
the plate geometry. They can be written as

for y = yL(x),
ND∑

m=−ND

g<m>
u eimαx = 0,

ND∑
m=−ND

g<m>
v eimαx = 0,

ND∑
m=−ND

g<m>
w eimαx = 0,

(4.10a–c)
and, when expressed in terms of g<m>

v and g<m>
η , they take the form

for y = yL(x),
ND∑

m=−ND

[−iμg<m>
η + itmDg<m>

v ] eimαx = 0,
ND∑

m=−ND

g<m>
v eimαx = 0,

(4.11a,b)

ND∑
m=−ND

[itm g<m>
η + iμDg<m>

v ] eimαx = 0. (4.11c)

These conditions are replaced by constraints whose form suitable for numerical
implementation is dictated by the discretisation applied to (4.7).

The discretisation of (4.7) relies on Chebyshev expansions, with the first step involving
transformation (3.6) so that a standard definition of Chebyshev expansions can be used.
The modal functions were represented as Chebyshev expansions, i.e.

q(m)D (ŷ)=
NK−1∑
k=0

Gq(m)k,D Tk
(
ŷ
)
, (4.12)

where q(m)D (ŷ) stands for any of the modal functions, and Gq(m)k,D are the unknown
expansion coefficients. The complete discretisation procedure involving a combination
of (4.7), (4.9), and (4.11) provides spectral accuracy. The immersed boundary conditions
method was used to discretise (4.11). Details are omitted from this presentation due to
their length, but can be found in Panday & Floryan (2023). The use of the Galerkin
projection method combined with the tau procedure (Canuto et al. 1992) for incorporation
of the boundary conditions led to an eigenvalue problem for a very large system of linear
algebraic equations for the unknowns Gq(m)k,D . The solution procedure and its accuracy
testing are described in Panday & Floryan (2023). All eigenvalues presented in the
discussion below were determined with an accuracy of no less than four digits.

5. Discussion of results
Secondary structures in the form of vortices are aligned with the flow direction with their
spanwise size given by the spanwise wavenumber μ. These vortices are modulated by
the spatial form of vibrations, which means that their modulation is characterised by
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Figure 4. Variations of the amplification rate σi as a function of the vortex wavenumber μ for selected flow
Reynolds numbers Re, wavenumber α, and wave phase speeds c.

the wavenumber α. Our first set of results pertains to the amplification of vortex-type
disturbances as a function of μ. The growth rates are shown in figure 4 for those waves that
are the most effective in producing instability (we return to this point later). Amplification
of the modes is possible only if the phase speed of the vibration is sufficiently large, and
our calculations show that the phase speed needs to reach at least c ≈ 300. Our calculations
also show that vortices with wavenumbers in the interval μ≈ 1−2 seem to be the most
likely to emerge.

The critical Reynolds number required for instability depends on both α and c; typical
results are depicted in figure 5(a). There is an absolute minimal phase speed required
to produce instability – it is c = 406.4, 260.5, 248.8, 248.1 for α= 0.3, 1, 1.5, 2. This
minimal phase speed increases with the Reynolds number, as documented in figure 6.
The results presented in figure 6 are for Re = 980, 1005, 1230, 1500, which are Reynolds
numbers producing instability for the smallest c for α = 0.3, 1, 1.5, 2, respectively. There
is no upper limit on the phase speed producing instability, but Recr increases nearly
linearly with c at large values of c (see figure 5a). It is clear that waves with phase
speed c ≈ 300−500 lead to the smallest Recr . The minimum Recr depends on the wave
wavelength, and it is Recr = 884.6, 737, 1025.5, 1298.5 for α = 0.3, 1, 1.5, 2.

The vortex properties corresponding to critical conditions exhibit complex behaviour.
In general, μcr increases with an increase of α. Variations of μcr as a function of c
exhibit a local minimum around c ≈ 400 for all α; however, an increase of c away from
this minimum leads to an increase of μcr for midrange α (α = 1, 1.5) and a decrease for
small (α= 0.3) and large (α = 2) values, as illustrated in figure 5(b).

The fact that the wave is required to have a certain minimum phase speed before it can
destabilise the flow is further illustrated in figure 6. Here, it is seen that a small increase
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dotted lines in (a) show the minimum wave speed required to initiate the instability. The horizontal dotted lines
show the minimum critical Reynolds number Recr for all phase speeds c.
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Figure 6. Variations of the amplification rate σi as a function of the phase speed c for waves with amplitude
A = 0.06 and (a) (α, Re)= (0.3, 980), (b) (α, Re)= (1, 1005), (c) (α, Re)= (1.5, 1230), (d) (α, Re)=
(2, 1500).

of c above its minimum value leads to a relatively rapid increase in the amplification rate,
and a significant widening in the vortex wavenumber μ range that is unstable. One may
speculate that once the flow becomes susceptible to this form of instability, a wide range
of vortex sizes may plausibly emerge.

The next two figures concern the structure of the curves that identify neutrally stable
modes. First, figure 7 shows the form of these curves in the (μ, Re)-plane for a selection
of vibration wavenumbers α; the companion plot in figure 8 displays similar data but for a
few phase speeds c.

Given a certain wave speed, there is the most effective wavenumber leading to the
lowest Recr . When c = 300, 400, 500, the most effective α is always α≈ 0.7, leading to
Recr = 680, 700, 790, respectively (see figure 8), producing vortices with similar
wavenumbers, i.e. μ≈ 0.75. When α = 1, 1.5, 2, there is the most effective phase speed,
and it is c = 350, 350, 300 for α = 1, 1.5, 2, with critical vortex wavenumber μcr ≈
0.85, 1.2, 1.85, respectively (see figure 7). All these data demonstrate the existence of
the most effective wavenumber and wave phase speed leading to the smallest Recr .

We deduce from figures 5 and 6 that small changes in the vibration wave characteristics
can significantly alter the corresponding Recr . The resulting vortex size, as measured by
μcr , changes only marginally with c, but is much more sensitive to the precise value of α.

1006 A25-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.102


N.N. Haq and J.M. Floryan

700

μ μ μ

(a) (b) (c)

800 900

Re

0.6

0.8

1.0

1.2
c = 265

270
280290

300

350

400
450

500

1000 1050 1100

Re

1.0

1.2

1.4

1.6

1.8

2.0

500450

400

350

300

290

280

270

1300 1320 1340

Re

1.4

1.6

1.8

2.0

2.2

350

290

280
270 c = 260

375
400

300
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the critical Reynolds number Recr and the critical vortex wavenumber μcr .
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The effects of the changes in the wave amplitude are considered in figure 9. The critical
Reynolds number decreases with larger vibrations A, and seems to grow proportional to
A−2/3 as A → 0. It would be interesting to show theoretically that this is indeed the case,
but such detailed asymptotic work is deferred to later study.
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All the information relating to the instability can be combined to give an overall picture
of the flow characteristics. The results in figure 10 include convincing evidence that only
subcritical waves can produce vortex instability. The range of wave phase speeds leading
to destabilisation expands as Re grows; however, they are always subcritical and cannot
propagate against the flow. As the range of phase speeds expands, so too does the interval
of vibration wavenumbers. Of particular interest in connection with figure 10 is the region
of parameter space where the green- and grey-shaded zones overlap. Those pairs of α
and c that lie in this common zone identify vibration waves that can reduce flow losses
while simultaneously creating vortices through destabilisation. These waves are obviously
of great interest in mixed intensification.

5.1. Disturbance properties and instability characteristics
We will now probe the disturbance properties and instability characteristics in greater
detail. We begin with figure 11, which displays the disturbance spectra that identify
the unstable modes. These modes have zero frequency, demonstrating that they do not
propagate and can be identified as streamwise vortices. They can be connected to the
Squire spectrum in the infinitesimal amplitude limit A → 0, as demonstrated by the data
shown in figure 12. Moreover, these results confirm that wave amplitude A must exceed a
certain minimum size before instability may occur, and that there is a finite range of wave
phase speeds c over which the flow is destabilised.
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Figure 11. Spectra for Re = 1000, A = 0.08, α = 0.7, μ= 0.7, δ = 0. The labels OS and Squire identify the
Orr–Somerfield and Squire modes.
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Figure 12. Variations of the amplification rate σi/Re (a) as a function of the wave amplitude A, and (b) as
a function of the wave phase speed c, for Re = 1000, α = 0.7, μ= 0.7, δ = 0. The horizontal dashed line in
(a) corresponds to the least attenuated Squire mode of Couette flow.

The topology of the disturbance velocity field can be inferred from the plots of
eigenfunctions displayed in figure 13. This structure is characteristic of streamwise vortices
in shear layers. Vibrations produce vortices in cross-planes, which transport low-speed
fluid away from the wall (upwash) and high-speed fluid towards the wall (downwash),
thereby creating longitudinal streaks (Floryan 1991). The disturbance velocity field is
dominated by mode n = 0, representing the vortex motion, while higher-order modes
represent streamwise modulation of this vortex. In particular, we note that the mode shapes
g(0)u and g(0)v are purely real, and g(0)w is purely imaginary, while the remaining modes are
complex. The rotational movement exhibited by vD and wD is quite weak but is sufficient
to result in a large defect in the streamwise velocity distribution. That this is the case is
confirmed by the observation that the mode g(0)u is roughly an order of magnitude larger
than either g(0)v or g(0)w . The disturbance velocity field comprises two layers of vortices
when c = 250 (the first row in figure 13) and one layer when c = 500 (the second row) but
reverts to two layers again once c = 750 (the third row). The structure of g(0)u displayed in
figure 14(a) illustrates these transitions as c increases. The maximum of g(0)u is close to
the vibrating wall when the phase speed is small; the velocity field comprises two layers
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Figure 13. Distributions of the three leading (n = 0, 1, 2) eigenfunctions for the disturbance velocity
components for the wave amplitude A = 0.08, wavenumber α = 0.7, flow Reynolds number Re = 1000, and
vortex wavenumber μ= 0.7.

of vortices, and the flow is stable. As c increases, the principal zone of intense activity
shifts towards the middle of the slot; the flow field now consists of only a single layer of
vortices, and the flow is unstable. Further increase of c moves the activity zone towards the
smooth plate; the flow field consists of two layers of vortices, and the flow becomes stable
again. The change from one layer of vortices to two layers tends to increase the velocity
gradients, enhancing the dissipation, and is conducive to flow stabilisation.

A characteristic flow field topology associated with unstable vortices is illustrated in
figure 15. The structure of the disturbance velocity field corresponding to unstable vortices
is independent of the wavenumber α (see figures 16a,b). The centre of the vortex moves
closer to the vibrating wall as Re increases, and the disturbance velocity field eventually
splits into two layers of vortices, with the primary vortex near the vibrating wall being
directly driven by the instability (figures 16c,d).
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Figure 14. (a) Distributions of mode zero g(0)u of the x-component of the disturbance velocity vector, and
(b) variations of the position ymax of the maximum of g(0)u as a function of the wave phase speed c for the
wave amplitude A = 0.08, wavenumber α = 0.7, flow Reynolds number Re = 1000, and vortex wavenumber
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Figure 15. Contour plot of the streamwise disturbance velocity component uD for the wave amplitude
A = 0.08, wavenumber α = 0.7, wave speed c = 500, flow Reynolds number Re = 1000, and vortex
wavenumber μ= 0.7.

Finally, we point out that the vortices‘ streaks are susceptible to instabilities (Park,
Hwang & Cossu 2011). If these occur, then they may lead to either optimal roll structures
that maximise the transient temporal growth of the streaks (Schmid & Henningson 2001)
or asymptotic growth in the form of normal modes leading to secondary instabilities
(Floryan 1991).

6. Energy analysis
Further information concerning the properties of the flow can be gleaned by considering
the form of the energy transfer between the base flow and the disturbances. To explore this,
we can start with the field equations expressed in terms of primitive variables, i.e.

∂V
∂t

+ V .∇∇∇V +∇∇∇ p =∇∇∇2V , ∇∇∇.V = 0. (6.1a,b)

The variables are separated into the basic state plus the disturbances, so that

V = V B + vD, p = pB + pD. (6.2a,b)
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Substitution of (6.2) into (6.1) and linearisation show that

∂vD

∂t
+ V B .∇∇∇vD + vD.∇∇∇V B +∇∇∇ pD =∇∇∇2vD, ∇∇∇.vD = 0. (6.3)

An appropriate mechanical energy functional can be constructed by taking the scalar
product of the momentum equation with the disturbance velocity vector. The result is then
integrated over a control volume that extends across the channel and over one wavelength
in the x- and z-directions. This gives (in index notation)∫ 1

−1

∫ λz

0

∫ λx

0

(
1
2
∂

∂t

(
vD,ivD,i

) + vD,i VB, j
∂vD,i

∂x j
+ vD,ivD, j

∂VB,i

∂x j
+ vD,i

∂pD

∂xi

)
dx dz dy

=
∫ 1

−1

∫ λz

0

∫ λx

0

(
∇∇∇2vD,i

)
.vD,i dx dz dy. (6.4)

The application of periodicity conditions and Green’s theorem leads to

λ−1
x λ

−1
z

∫ 1

−1

∫ λz

0

∫ λx

0

1
2
∂

∂t

(
vD,ivD,i

)
dxdzdy

= −λ−1
x λ

−1
z

∫ 1

−1

∫ λz

0

∫ λx

0

∂vD,i

∂x j

∂vD,i

∂x j
dxdzdy

− λ−1
x λ

−1
z

∫ 1

−1

∫ λz

0

∫ λx

0
vD,ivD, j

∂VB,i

∂x j
xdzdy (6.5)
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Integration interval Ikin I1 I2 I3 I4 Iinertia

c = 250 0 < x < λ/2 −0.0371 0.0489 −0.3753 0.0012 −1.479 × 10−4 −0.3252
λ/2 < x <λ −0.0484 −0.0766 −0.5153 0.0025 2.158 × 10−4 −0.5892
0 < x < λ −0.0855 −0.0277 −0.8906 0.0038 6.795 × 10−5 −0.9144

c = 500 0 < x < λ/2 0.6508 0.2382 −1.3603 0.0124 −0.0011 −1.1107
λ/2 < x <λ 0.6567 −0.2291 −0.9803 0.0116 8.474 × 10−4 −1.1969
0 < x < λ 1.3076 0.009 −2.3406 0.0241 −2.789 × 10−4 −2.3076

c = 750 0 < x < λ/2 −0.1977 0.3665 −0.9492 0.0055 −6.383 × 10−4 −0.5777
λ/2 < x <λ −0.1453 −0.2427 0.1596 0.0036 4.217 × 10−4 −0.0790
0 < x < λ −0.3431 0.1237 −0.7896 0.0091 −2.166 × 10−4 −0.6568

Table 1. Elements of the energy integral for A = 0.08, Re = 1000, α = 0.7, μ= 0.07.

where the factor λ−1
x λ

−1
z is included to demonstrate that all quantities are evaluated per

unit length in the x- and z-directions. The first term on the right-hand side of this balance
describes dissipation, which is always positive, with the normalisation of the disturbance
velocity field chosen to make this integral unity. The normalised energy relation then
becomes

λ−1
x λ

−1
z

∫ 1

−1

∫ λz

0

∫ λx

0

1
2
∂

∂t

(
vD,ivD,i

)
dx dz dy

= −1 − λ−1
x λ

−1
z

∫ 1

−1

∫ λz

0

∫ λx

0
vD,ivD, j

∂VB,i

∂x j
dx dz dy. (6.6)

The left-hand side (Ikin) denotes the rate of growth of kinetic energy of disturbances.
This energy increases with time if the second term on the right-hand side, which captures
the inertial effects (Iinertia), dominates over the dissipation. This occurs when Iinertia <−1.
The identification of elements of the base flow responsible for the instability requires an
explicit decomposition of the inertial integral so that

Iinertia = λ−1
x λ

−1
z

∫ 1

−1

∫ λz

0

∫ λx

0

(
u Du D

∂u B

∂x
+ u DvD

∂u B

∂y
+ vDu D

∂vB

∂x
+ vDvD

∂vB

∂y

)
× dx dz dy = I1 + I2 + I3 + I4. (6.7)

Integration in the x-direction was divided into two parts to enable easy identification
of those contributions ascribed to effects of the downwelling and those corresponding to
the upwelling parts of the wave. Some typical results are summarised in table 1. These
demonstrate that ∂u B/∂y combined with Reynolds stresses is mainly responsible for the
energy transfer to the disturbances, with other terms having an almost negligible effect.
The upwelling and downwelling parts of the wave contribute similar amounts to the energy
transfers. The inertial terms have insufficient strength to overcome dissipation when
c = 250 and c = 750, but can do it when c = 500. When this happens, the Reynolds stress
is responsible for the energy transfer.

A qualitative analysis of the energy transfers aids insight into the flow dynamics. The
reference flow dominates the primary state as the vibration-created flow modifications are
at least an order of magnitude smaller, as was seen in figure 3. This means that

u B ≈ Re u0 (y) ,
∂u B

∂y
≈ 1

2
Re, vB ≈ 0,

∂u B

∂x
≈ ∂vB

∂x
≈ ∂vB

∂y
≈ 0. (6.8a–d)
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Figure 17. Sketch of the unstable fluid movement.

The disturbance velocity field is dominated by mode zero, as portrayed in figure 13. This
means that

u D(x, y, z)≈ g〈0〉
u (y)eiμz + g〈0〉

u (y)e−iμz = 2g〈0〉
u (y) cos(μz), (6.9a)

vD(x, y, z)≈ g〈0〉
v (y)eiμz + g〈0〉

v (y)e−iμz = 2g〈0〉
v (y) cos(μz). (6.9b)

Energy integrals I1, I3, I4 can be neglected, and I2 can be approximated as

I2 = Re
∫ 1

−1
g〈0〉

u g〈0〉
v dy. (6.10)

This integral must be sufficiently negative to enable growth in the disturbance energy.
This is possible only if the x- and y-disturbance velocity components are out of phase,
which indeed is the case as illustrated in the eigenfunctions displayed in figure 13. The
phase difference between u D and vD can be explained with the help of the sketch displayed
in figure 17. Vortex motions in the downwash zone have a negative vD that brings high-
velocity fluid closer to the lower plate and generates a positive uD . The product vDu D is
therefore negative, which is the necessary condition to maintain the instability.

Experimental verification of the above predictions would be desired. Theoretically, at
least, one could create well-controlled surface vibrations using a system of piezoelectric
pistons turned on and off in a proper sequence to produce surface waves with the desired
wavelength and phase speeds. However, this description is somewhat over-simplistic, for it
should be recognised that many practical difficulties are associated with constructing such
a system. Practical progress is likely to be slow.

7. Summary
This study shows how vibrations applied to a bounding plate can transform the otherwise
linearly stable Couette flow into a form susceptible to instability. Appropriately applied
vibrations may reduce flow resistance; supercritical waves, i.e. those faster than the flow,
always reduce losses. In contrast, the situation for subcritical waves is somewhat more
involved and can be determined only after more careful analysis. The vibrations can also
lead to instability, and constitute a mechanism capable of generating a secondary flow that
manifests as streamwise vortices. If the physical properties of the vibration waves are tuned
properly, then instability may set in at a fluid Reynolds number as small as a few hundred.
The instability is driven by centrifugal forces created by the wave-imposed changes in the
direction of fluid movement, and the process is operative as long as the vibrations are
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of sufficient size. The disturbance velocity field is characterised by a streamwise velocity
component larger than the wall-normal and spanwise components. The resulting streaks
are expected to initiate a travelling wave instability driven by an inviscid mechanism
associated with inflection points in the distribution of the spanwise velocity component.
Such an instability can ultimately lead to Lagrangian chaos.

Surface vibrations may arise as an uncontrolled effect or be introduced intentionally. The
calculations described herein form a basis that may guide how the effects of uncontrolled
vibrations may be assessed. Such disturbances have the undesirable property that they
may prove capable of initiating processes that eventually lead to a premature transition to
turbulence.

The mechanisms described here are inherently somewhat complicated. To enable an
appreciation of the processes at play, we have supposed that the imposed surface vibration
takes the form of a single Fourier mode. In a practical setting, it would be expected that any
boundary perturbation would consist of several components of various wavelengths. One
could derive the associated stability properties only by conducting careful calculations
replicating the exact vibration profile; this may prove difficult. On the other hand,
an investigation into the spectrum of vibrations should facilitate the identification of
any waves present that might prove particularly effective in causing instability. Such
considerations would also provide a means for selecting possible structures for those
vibrations that might prove good candidates for achieving some specified control flow
objective; conceivably, this might be to reduce the flow resistance, provide a propulsion
effect, or increase the efficacious of fluid mixing. Streamwise vortices are particularly
relevant to mixing intensification as they include a component of the transverse transport
of scalar quantities.

In summary, the considerations described above constitute some of the first calculations
aimed at throwing light on the properties of simple shear flows when modified by surface
vibrations. We have seen that the situation is somewhat intricate, and there is much scope
for extension into various regimes, such as large-amplitude vibrations and practically-
important shear flows. We hope to explore and report on some of these avenues in due
course.
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Appendix A
We find a form of the pressure gradient constraint suitable for numerical implementation.

Start with the explicit form of (3.7), i.e.

ψ1,B(x, ŷ)=
+NB∑

n=−NB

ψ1,B
(n)(ŷ)einαx , u1,B

(
x, ŷ

) =
+NB∑

n=−NB

u1,B
(n) (ŷ

)
einαx ,

(A1a,b)

v1,B(x, ŷ)=
+NB∑

n=−NB

v1,B
(n)(ŷ)einαx , ̂u1,Bu1,B

(
x, ŷ

) =
+NB∑

n=−NB

̂u1,Bu1,B
(n) (ŷ

)
einαx ,

(A1c,d)
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̂u1,Bv1,B(x, ŷ)=
+NB∑

n=−NB

̂u1,Bv1,B
(n)
(ŷ)einαx , ̂v1,Bv1,B

(
x, ŷ

) =
+NB∑

n=−NB

̂v1,Bv1,B
(n)(ŷ

)
einαx,

(A1e,f )

p1,B
(
x, ŷ

) = −Bx +
+NB∑

n=−NB

p1,B
(n) (ŷ

)
einαx , (A1g)

where B is the linear pressure gradient correction. Use of the definition of the stream
function, i.e.

u1,B = ∂ψ1,B

∂y
= Γ

∂ψ1,B

∂ ŷ
, v1,B = −∂ψ1,B

∂x
, (A2a,b)

leads to

u1,B = Γ

+NB∑
n=−NB

Dψ1,B
(n)(ŷ)einαx , v1,B = −iα

+NB∑
n=−NB

nψ1,B
(n) (ŷ

)
einαx . (A3)

The x-momentum equation written in terms of the reference flow and flow modifications
has the form

∂p1,B

∂x
= − (Re u0 − c)

∂u1,B

∂x
− Re

duo

dy
v1,B + ∂2u1,B

∂x2 + ∂2u1,B

∂y2 − u1,B
∂u1,B

∂x

− v1,B
∂u1,B

∂y
. (A4)

Writing (A4) in the (x, ŷ)-coordinates in terms of the stream function yields

∂p1,B

∂x
= − (Re u0 − c)

∂

∂x

(
Γ
∂ψ1,B

∂ ŷ

)
− Re

duo

dy

(
−∂ψ1,B

∂x

)
+ ∂2

∂x2

(
Γ
∂ψ1,B

∂ ŷ

)

+ Γ 2 ∂
2

∂ ŷ2

(
Γ
∂ψ1,B

∂ ŷ

)
− ∂

∂x
(u1,Bu1,B)− Γ

∂

∂ ŷ
(u1,Bv1,B). (A5)

Substitution of (A1) into (A5) and separation of Fourier modes results in modal
equations of the form

−B + inαp1,B
(n) = − (Re u0 − c) Γ inαDψ1,B

(n) + Re
duo

dy
inαψ1,B

(n)

− Γ n2α2 Dψ1,B
(n) + Γ 3 D3ψ1,B

(n) − ̂inαu1,Bu1,B
(n)

− Γ ̂Du1,Bv1,B
(n)
. (A6)

The above equation reduced for mode zero has the form

B = −Γ 3 D3ψ1,B
(0) + Γ ̂Du1,Bv1,B

(0)
. (A7)

Integration of (A7) between +1 and −1 leads to

2B = −Γ 3
[

D2ψ1,B
(0)(+1)− D2ψ1,B

(0)(−1)
]

+ Γ
[

̂u1,Bv1,B
(0)
(+1)− ̂u1,Bv1,B

(0)
(−1)

]
. (A8)
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The fixed pressure gradient constraint requires that B = 0, which reduces (A8) to

D2ψ1,B
(0) (+1)− D2ψ1,B

(0) (−1)= Γ −2
̂[u1,Bv1,B

(0)
(+1)− ̂u1,Bv1,B

(0)
(−1)], (A9)

which is the form of the pressure gradient constraint suitable for numerical
implementation.

Appendix B
Definitions of operators used in (4.7):

Dq = dq

dyq
, tm = δ + mα, k2

m = t2
m +μ2, (B1)

T<m> =
(

D2 − k2
m

)2 + iσ
(

D2 − k2
m

)
+ ictm

(
D2 − k2

m

)
,

S<m> =
(

D2 − k2
m

)
+ iσ + ictm, (B2)

T<m−n>
1 = i tm−n

k2
m−n

(
−t2

m D f <n>
u D + inαk2

m f <n>
v D − t2

m f <n>
u D2 + i tm D f <n>

v D2

+i tm f <n>
v D3

)
, (B3)

T<m−n>
2 = ik2

mtm−n f <n>
u + k2

m D f <n>
v + k2

m f <n>
v D + i tm D2 f <n>

u + i tm D f <n>
u D,

(B4)

T<m−n>
3 = iμ

k2
m−n

(
−μtm−2n f <n>

u D2 + iμ f <n>
v D3 −μtm−n D f <n>

u D
)
, (B5)

T<m−n>
4 = i tm−n

k2
m−n

(
−μtm−2n f <n>

u D + iμ f <n>
v D2 −μtm−n D f <n>

u

)
, (B6)

T<m−n>
5 = iμ

k2
m−n

(
−t2

m D f <n>
u + inαk2

m f <n>
v − t2

m f <n>
u D + i tm D f <n>

v D

+i tm f <n>
v D2

)
, (B7)

S<m−n>
1 = iμ

k2
m−n

(
tm−ntm f <n>

u D − i tm f <n>
v D2

)
, (B8a)

S<m−n>
2 = iμD f <n>

u , (B8b)

S<m−n>
3 = i tm−n

k2
m−n

(
iμ f <n>

v D2 −μtm f <n>
u D

)
, (B8c)

S<m−n>
4 = i tm−n

k2
m−n

(
tm−ntm f <n>

u − i tm f <n>
v D

)
, (B8d)

S<m−n>
5 = iμ

k2
m−n

(
iμ f <n>

v D −μtm f <n>
u

)
. (B8e)
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