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Abstract
We exhibit the Hodge degeneration from nonabelian Hodge theory as a 2-fold delooping of the filtered loop space
𝐸2-groupoid in formal moduli problems. This is an iterated groupoid object which in degree 1 recovers the filtered
circle 𝑆1

𝑓 𝑖𝑙
of [MRT22]. This exploits a hitherto unstudied additional piece of structure on the topological circle,

that of an 𝐸2-cogroupoid object in the ∞-category of spaces. We relate this cogroupoid structure with the more
commonly studied ‘pinch map’ on 𝑆1, as well as the Todd class of the Lie algebroid T𝑋 ; this is an invariant of a
smooth and proper scheme X that arises, for example, in the Grothendieck-Riemann-Roch theorem. In particular,
we relate the existence of nontrivial Todd classes for schemes to the failure of the pinch map to be formal in the
sense of rational homotopy theory. Finally, we record some consequences of this bit of structure at the level of
Hochschild cohomology.

1. Introduction

The de Rham cohomology of a ring or scheme comes equipped with a complete, decreasing filtration,
known as the Hodge filtration. This has been studied in many capacities, and in particular occupies a
paradigmatic role in the theory of Hodge structures. Carlos Simpson, in his work on nonabelian Hodge
theory, understood this filtration in the geometric language of stacks, using the paradigm of filtrations and
geometric objects over the stackA1/G𝑚. Using a deformation to the normal cone construction of Fulton-
Macpherson (cf. [Ful84]), Simpson displayed the stack parametrizing 𝜆-connections as a 1-parameter
degeneration of the de Rham stack 𝑋𝑑𝑅, which itself parametrizes bundles with flat connection over a
fixed scheme X. These 𝜆-connections are exactly the objects which interpolate between Higgs bundles
and bundles with flat connection and give rise, upon passing to subcategories of harmonic bundles, to
equivalences between the two structures.

Meanwhile, there exists another one-parameter degeneration relating a sheared version of the de
Rham cohomology of a scheme with its Hochschild homology. This was studied in depth in [MRT22]
(see also [Rak20] for another perspective on the matter), wherein the authors constructed a filtration
on Hochschild homology whose associated graded recovers the derived de Rham algebra. This was
accomplished algebro-geometrically, by way of the filtered loop space L 𝑓 𝑖𝑙 (𝑋); this is a relative derived
scheme overA1/G𝑚 which base-changes to the loop spaceL𝑋 and to the shifted tangent bundle T𝑋 [−1],
thus recovering the 𝑆1-equivariant HKR filtration on Hochschild homology.

The purpose of this work is to relate these two constructions in the setting of derived geometry. Our
main theorem can be stated as follows:

Theorem 1.1. Let X be a derived scheme. Then the filtered loop space L 𝑓 𝑖𝑙 (𝑋) fits as the degree (1, 1)
piece of a 2-groupoid L•,•𝑓 𝑖𝑙 (𝑋) in formal derived stacks over A1/G𝑚. Taking the 2-fold delooping of this
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2 T. Moulinos

groupoid gives the following equivalence:

𝐵 (2)L•,•𝑓 𝑖𝑙 (𝑋) � 𝑋𝐻𝑜𝑑 .

As a corollary, one obtains the following relationship between the de Rham space 𝑋𝑑𝑅 and the loop
space L𝑋:
Corollary 1.2. The derived loop space L𝑋 admits a 2-groupoid structure whose iterated delooping is
the de Rham space – that is, there is an equivalence

𝐵 (2) (L𝑋) � 𝑋𝑑𝑅

of formal derived stacks.
These statements follow directly from a canonical 𝐸2-cogroupoid (which we often call a

2-cogroupoid) structure on the filtered loop space, 𝑆1
𝑓 𝑖𝑙 . More precisely, the filtered loop space sits

as the ‘(1, 1) space of morphisms’ of a bi-cosimplicial stack satisfying an analog of the Segal conditions
(cf. [Lur09a, Section 6.1]). Given a stack X, the formation of mapping objects out of a 𝐸2-cogroupoid
object into X gives rise to a 𝐸2-groupoid; in this particular case where the cogroupoid is 𝑆1

𝑓 𝑖𝑙 , we obtain
L•,•𝑓 𝑖𝑙 (𝑋).

We note the following interesting consequence about the filtered circle. In [MRT22], it was verified
that, when working over Q, there is an equivalence

(𝑆1
𝑓 𝑖𝑙)

𝑢 := 𝜂∗(𝑆1
𝑓 𝑖𝑙) � 𝐵G𝑎 � 𝜄(𝑆1

𝑓 𝑖𝑙) =: 𝑆1
𝑔𝑟 .

Here, 𝜂 : Spec𝑘 → A1/G𝑚 denotes the inclusion of the ‘generic’ point of A1/G𝑚, whereas 𝜄 : 𝐵G𝑚 →
A1/G𝑚 denotes the inclusion of the ‘closed’ point; in the language of [Mou21b], restriction of a stack
X→ A1/G𝑚 along these maps recovers the underlying and associated graded stacks of X, respectively.

Thus, 𝑆1
𝑓 𝑖𝑙 is a constant degeneration (see Section 7.1 for this terminology) of stacks. This is not the

case when one takes the 𝐸2-cogroupoid structure into account:
Corollary 1.3. The 𝐸2-cogroupoid 𝑆1,•,•

𝑓 𝑖𝑙 → A
1/G𝑚 is not a constant degeneration of 𝐸2-cogroupoids.

In particular, the pullbacks of 𝑆1,•,•
𝑓 𝑖𝑙 along Spec𝑘 → A1/G𝑚 and 𝐵G𝑚 → A1/G𝑚 are not equivalent.

In order to prove Theorem 1.1, we work in the setting of formal geometry and formal moduli
problems. As a clue for why we find ourselves in this setting essentially at the outset, we remark that
the derived loop space L𝑋 is formally complete along X when X is a scheme. More generally, we will
see that the filtered loop space obtains the structure of an 𝐸2-groupoid L•,•𝑓 𝑖𝑙 (𝑋) in the ∞-category of
formal moduli problems over X. Meanwhile, the map 𝑋 → 𝑋𝑑𝑅 to the de Rham space of X is also a
nil-isomorphism. In fact, 𝑋𝑑𝑅 is the final object in the category of formal moduli problems under X.

A key property which we exploit in the setting of formal moduli problems is the following: given
a map 𝑓 : 𝑋 → 𝑌 , which is a nil-isomorphism, Y may be recovered as the classifying space of the
Čech nerve. In this sense, the class of nil-isomorphisms plays the same role within formal geometry
as the class of effective epimorphisms in derived geometry. Due to all this, the relation between the
Hodge degeneration and the filtered loop space is most easily distilled in this setting of formal moduli
problems, which we shall briefly review in Section 2.

1.1. The pinch map on 𝑆1 and the Todd class

In a very influential paper [Mar09], N. Markarian described the Todd genus of a smooth proper scheme
X as an invariant volume form with respect to the Hopf algebra structure on Hochschild homology.
This was made more precise in [KP19], in terms of the formal group structure on the derived loop
space L(𝑋). In this paper, we expand on this story by describing the group structure on L(𝑋) as arising
from an 𝐸1-cogroupoid structure on the circle 𝑆1. This 𝐸1-cogroupoid structure, equivalently a cogroup
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structure on 𝑆1 as a pointed space, is none other than the well-known ‘pinch map’, which gives rise to
the group structure on the fundamental groups of topological spaces. This 𝐸1 cogroupoid, which exists
since 𝑆1 is a suspension of a space, can also be extracted as either the row or column 1 sub-cogroupoid
of the 𝐸2-cogroupoid 𝑆1,•,•. It is well known that over the rationals, the cochain dga 𝐶∗(𝑆1, 𝑘) is formal,
so that there is an equivalence

𝐶∗(𝑆1, 𝑘) � 𝐻∗(𝑆1, 𝑘).

We show that this formality statement is not true at the level of 𝐸1 cogroupoids, and in particular, this
failure is measured by the Todd class:
Theorem 1.4. The existence of nontrivial Todd classes implies that the cogroupoid (equivalently pointed
cogroup) structure on 𝑆1 corresponding to the pinch map is not formal.

One can summarize the above by saying that the ‘pinch map’ on 𝑆1 is not formal, even though the
dga of cochains on 𝑆1 is well known to be formal when working rationally. Furthermore, the difference
between the induced groupoid structure on 𝐶∗(𝑆1, 𝑘) and that on 𝐻∗(𝑆1, 𝑘) manifests itself algebro-
geometrically, by way of the two different group structures on the shifted tangent bundle T𝑋 [−1], which,
in turn, is measured by the Todd class of the tangent Lie algebroid T𝑋 .

1.2. Remarks on Hochschild cohomology

The cogroupoid structures on 𝑆1 also manifest themselves at the level of Hochschild cohomology. As
we will remark in Section 8, the well-known 𝐸2-algebra structure on Hochschild cohomology together
with its (dual) HKR filtration arises from the 𝐸2-cogroupoid 𝑆1

𝑓 𝑖𝑙 .

Proposition 1.5. Let X be a derived scheme. The 𝐸2-cogroupoid 𝑆1
𝑓 𝑖𝑙 gives rise to filtration on HH∗(𝑋)

compatible with its 𝐸2-algebra structure.
Perhaps more surprisingly, we highlight that one only needs an 𝐸1-cogroupoid structure on the zero

sphere 𝑆0 to recover the 𝐸2-algebra structure on Hochschild cohomology. As the zero sphere is not a
suspension of a space, there exists no cogroup structure on it; in general, there is no group structure on
𝜋0 (𝑋) of a topological space in general. However, by taking the conerve of the map ∅ → ∗ from the
initial object to the final object in spaces, we recover a cogroupoid with 𝑆0 in degree 1.

We summarize the corresponding discussion in Section 8 with the following proposition:
Proposition 1.6. The cogroupoid 𝑆0,•

𝑓 𝑖𝑙 (cf. Section 3) gives rise to a monoidal structure on

QCoh(MapdStk
A1/Gm
(𝑆0

𝑓 𝑖𝑙 , 𝑋 |A1/G𝑚
)), (1.7)

the ∞-category of quasi coherent sheaves on the mapping stack MapdStk
A1/Gm
(𝑆0

𝑓 𝑖𝑙 , 𝑋 |A1/G𝑚
). This

specializes, by pulling back along the generic fiber, to the convolution monoidal structure on

QCoh(𝑋 × 𝑋) � Fun𝑘 (QCoh(𝑋), QCoh(𝑋)).

Forming endomorphisms of the unit in (1.7) gives an 𝐸2-algebra HH∗𝑓 𝑖𝑙 (𝑋) in filtered complexes
Fil(Mod𝑘 ), which specializes along the generic fiber of A1/G𝑚 to Hochschild cohomology.

Finally, we remark that one may iterate the constructions to obtain 𝐸𝑛+1 cogroupoids 𝑆𝑛,•, · · · ,•𝑓 𝑖𝑙 over
A1/G𝑚. These give rise, verbatim to the filtrations on iterated Hochschild cohomology 𝐻𝐻∗𝐸𝑛

compatible
with the 𝐸𝑛+1-algebra structure.

Conventions. In general, we work over a characteristic zero base k, although many of the constructions
work more generally. In another vein, we work freely in the setting of ∞-categories and higher algebra
from [Lur17]. Similarly, we heavily utilize at times the formalism of formal geometry in [GR19, GR20],
which, in particular, does depend on the fact we work over Q.
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2. Formal moduli problems and formal groupoids

Much of the interesting geometry of a derived stackX is detectable at the infinitesimal level. Heuristically,
a derived stack can be viewed as a family of infinitesimal thickenings of a scheme, parametrized by
its points. In the language of formal geometry, this can be made precise by the slogan that the map
𝑋 → 𝑋𝑑𝑅 of a (nice enough) derived stack to its de Rham stack is a crystal of formal derived stacks.
The reader may consult [CPT+17a, Section 2] for more on this perspective.

The sought-after relationship between the filtered loop space and the de Rham stack will exploit the
fact that these two objects admit the structure of a formal moduli problem (at least when X is a scheme)
relative to X. A key feature of the theory of formal moduli problems, which we lift from [GR20], is the
well behaved correspondence between groupoid objects and formal moduli problems under X. We will
eventually exploit this to relate the filtered loop space with the Hodge degeneration 𝑋𝐻𝑜𝑑 .

As we follow the formalism developed in [GR20], we review some basic constructions and definitions
found therein. In particular, we highlight the distinction between formal moduli problems over a given
stack and formal moduli problems under a stack. In order to proceed, we first recall what it means for a
stack to admit a deformation theory. The basic setup here is over a field k of characteristic zero.

2.1. DAG preliminaries

Before diving into some formal geometry, we review the notions of derived stacks which we will be
working in.

We recall that there are two variants of ‘derived’ geometric objects, one whose affine objects are
connective 𝐸∞-rings and one where the affine objects are simplicial commutative rings. In characteristic
zero, the two contexts are equivalent. We review parallel constructions from both simultaneously, as we
will switch between both settings.

Fix a commutative ring R and let C = {CAlgcn
𝑅 , sCAlg𝑅} denote either of the∞-category of connec-

tive R-algebras or the ∞-category of simplicial commutative R-algebras. Recall that the latter can be
characterised as the completion via sifted colimits of the category of (discrete) free R-algebras. There
exists a functor

𝜃 : sCAlg𝑅 → CAlgcn
𝑅 ,

which takes the underlying connective 𝐸∞-algebra of a simplicial commutative algebra. This preserves
limits and colimits so is, in fact, monadic and comonadic. In characteristic zero, this is, in fact, an
equivalence, and this is often the setting we will find ourselves in within this paper.

In any case, one may define a derived stack via its functor of points, as an object of the ∞-category
Fun(C,S) satisfying hyperdescent with respect to a suitable topology on C𝑜𝑝 (e.g., the étale topology).
Throughout the sequel, we distinguish the context we are working in by letting dStk𝑅 denote the
∞-category of derived stacks and let dStk𝐸∞𝑅 denote the∞-category of ‘spectral stacks’ over R. In either
case, one obtains an ∞-topos, which is Cartesian closed, so that it makes sense to talk about internal
mapping objects: given any two 𝑋,𝑌 ∈ Fun(C,S), one forms the mapping stack MapC(𝑋,𝑌 ), In various
cases of interest, if the source and/or target is suitably representable by a derived scheme or a derived
Artin stack, then this is the case for MapC(𝑋,𝑌 ) as well.

In addition, we also will occasionally find ourselves working with higher stacks. This genre of
geometric objects was introduced by Simpson and essentially is composed of stacks on the site of discrete
commutative rings equipped with for example the étale or fppf topology. For the sake of maintaining a
somewhat self-contained exposition, we now define this as following:

Definition 2.1. Let Aff𝑅 be the category of affine schemes, equivalently the opposite of the category of
discrete commutative R-algebras equipped with some (classical) Grothendieck topology. Then we set

Stk𝑅 := Shv𝜏𝑅 := Fun(CAlg𝑅,S)𝜏
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to be the ∞-category of higher stacks, equivalently that of sheaves of spaces with respect to the
topology 𝜏.

Remark 2.2. Higher stacks provide the natural ambient setting for the notion of affine stacks, introduced
by Toën in [Toë06], which we will briefly review in Section 4. The cogroupoid objects we construct and
study in this Section 4 will typically live in this setting of higher stacks. It is an interesting phenomenon
that this setting, which is somehow ‘discrete in the domain’ and ‘derived’ or ‘homotopical’ in the target,
provides a home for affine objects which are by their very nature coconnective, at least when viewed as
𝐸∞-algebras.

2.2. Formal moduli problems

In this section, we set up the necessary background regarding formal moduli problems. These objects
capture the infinitesimal part of the geometry of derived stacks and feature prominently in this work.
First we recall some auxiliary notions leading up to the notion of a formal moduli problem.

Definition 2.3. A stack X is convergent or nil-complete if for derived affine scheme Spec𝐵, the natural
map

X(𝐵) → lim
𝑘

X(𝜏≤𝑘𝐵)

is an equivalence.

Definition 2.4. ([GR20, Section 0.1]) Let X be a derived stack. We say that X admits a deformation
theory if it is convergent, and such that for every pushout square of affine schemes

𝑆1

��

�� 𝑆2

��
𝑆
′

1
�� 𝑆
′

2,

where the map 𝑆1 → 𝑆
′

1 is a nilpotent embedding (i.e., the map on truncations is a closed embedding
with nilpotent ideal of definition), the resulting diagram

Map(𝑆′2,X)

��

�� Map(𝑆2,X)

��
Map(𝑆′1,X) �� Map(𝑆1,X),

is a pullback diagram.

Remark 2.5. In fact, this is enough, by [GR20], to guarantee the existence of the pro-cotangent complex
of X. This is an assignment, for every derived scheme 𝑥 : 𝑆 → X,of a pro-object

𝑇∗𝑥 (X) ∈ Pro(QCoh(𝑆)),

which governs the infinitesimal behavior of X at the point x.

Remark 2.6. Any n-Artin stack, for example, satisfies the properties of Definition 2.4 and thus admits
a deformation theory.

We also recall the notion of ‘locally almost of finite type’(=laft) from [GR19]. For this, we first need
to recall what it means for an (derived) affine scheme to be locally of finite type.
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6 T. Moulinos

Definition 2.7. Let 𝑋 = Spec𝐴 be a derived affine scheme. Then X is of finite type if 𝜋0 (𝐴) is of finite
type over k and if each 𝜋𝑛 (𝐴) is finitely generated as a module over 𝜋0 (𝐴).

Next, one defines what it means for a (pre)stack to be locally of finite type.

Definition 2.8. Let X be an ‘n-coconnective’ derived stack. We say that X is locally of finite type if it
arises as the left Kan extension of its own restriction along the embedding

Schaff
ft ↩→ Schaff .

In particular, this means that X is locally of finite type if it is determined by its values on affine schemes
of finite type.

Now we define what it means for a general stack to be ‘laft’.

Definition 2.9. Let X be an arbitrary stack. Then we say that it is locally almost of finite type if the
following conditions hold:

◦ X is nil-complete (or convergent) (Definition 2.3)
◦ For every n, we have that ≤𝑛X is locally of finite type.

Remark 2.10. A key reason for working with laft stacks (as well as the notion of an inf scheme appearing
in the following definition) is that this is the ‘right’ framework in order to set up the correct functoriality
for IndCoh(−). For the sake of completeness, we have included the definitions, but we will not need to
focus on this condition in any particular depth.

We are finally ready to define the main objects of this section: formal moduli problems.

Definition 2.11. Let X be a derived stack locally almost of finite type. The∞-category of formal moduli
problems over X is the full subcategory spanned by Y→ X for which the map is

◦ inf-schematic. This means that the base change along a map Spec𝐵 → X is an inf-scheme (i.e., it
satisfies the laft condition), it admits a deformation theory and its reduction will be a reduced quasi-
compact scheme. (cf. [GR20, Chapter 2])

◦ a nil-isomorphism. Recall that this means that the map of the ‘reduced stacks’ X𝑟𝑒𝑑 → Y𝑟𝑒𝑑 is an
isomorphism.

We denote this category by FMP/X.

Next, we define the notion of formal moduli problems under a fixed (pre)stack.

Definition 2.12. Let X ∈ dStklaft-def be a fixed (pre)stack which is both locally almost of finite type and
which admits a deformation theory. The∞-category of formal moduli problems under X is spanned by
those X→ Y for which

◦ Y is itself locally of finite type and admits a deformation theory.
◦ the map X→ Y is a nil-isomorphism.

We denote this∞-category by FMPX/.

Next, we define the notion of a formal groupoid:

Definition 2.13. Let X be a fixed derived stack, locally almost of finite type. We let FormGrpoid(X)
denote the∞-category of groupoid objects in FMP/X.

The key result which we borrow from this theory will be the following:

Theorem 2.14. ([GR20, Theorem 2.3.2] Let X be a stack which admits a deformation theory. Then
there is an equivalence of∞-categories:

𝐵X : FormGrpoid(X) � FormModX/ : NX(−).
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In effect, this states that there is a well-defined procedure of taking the quotient by a formal groupoid
to obtain a formal moduli problem under X.

Remark 2.15. It is sensible to study 𝐸2-formal groupoids and, indeed, 𝐸𝑛-formal groupoids. As a formal
consequence of Theorem 2.14, there exists an ‘iterated’ quotient or classifying stack of an n-formal
groupoid over X; this will give rise to a formal moduli problem under X.

Corollary 2.16. Let X be as above. Then there exists an equivalence

𝐵 (𝑛)
X

: FormGrpoid(𝑛) (X) � FormModX/ : N(𝑛)
X
(−).

Here, the left-hand side denotes the∞-category of 𝐸𝑛-groupoid objects in FormGrpoid/X.

2.3. Formal completions

Given a morphism X→ Y, there exists a canonical formal moduli problem under X; we may view this
as an infinitesimal thickening on X in Y. We now briefly review this construction cf. [GR20, CPT+17b].

Construction 2.17. Let X→ Y be a morphism of derived stacks. The formal completion of Y along X

is defined to be the pullback

Y∧X := Y ×Y𝑑𝑅 X𝑑𝑅 .

The maps X → Y and X → X𝑑𝑅 induce a map X → Y∧
X

which is a nil-isomorphism. Hence, this
procedure defines an object in FormModX/

As a consequence of Theorem 2.14, the canonical morphism X→ Y∧
X

to the infinitesimal thickening
in Y may be recovered as the realization of its Čech nerve. The reader can compare this to the discussion
in [Toë14, Section 4.2] for a related universal property of the formal completion with respect to maps
into arbitrary derived schemes.

3. Cogroupoid objects

In this section, we recall some basic facts about groupoid objects in ∞-categories, as well as the dual
notion of a cogroupoid object, which will play a key role in our constructions.

Definition 3.1. Let C be an∞-category and let Fun(Δ𝑜𝑝 ,C) be the∞-category of simplicial objects in
C. We say 𝑋• ∈ Fun(Δ𝑜𝑝 ,C) is a groupoid object of C if for every 𝑛 ≥ 0 and every partition [𝑛] = 𝑆∪𝑆′,
such that 𝑆 ∩ 𝑆′ consists of a single element s, the diagram

𝑋 ([𝑛])

��

�� 𝑋 (𝑆)

��
𝑋 (𝑆′) �� 𝑋 ({𝑠})

is a pullback square in C.

Remark 3.2. A group object in C is a groupoid object 𝑋• for which 𝑋0 � ∗.

We have the following dual notion of a cogroupoid.

Definition 3.3. Let C be as above and let Fun(Δ ,C) denote the∞-category of cosimplicial objects of C.
We say 𝑋• ∈ Fun(Δ ,C) is a cogroupoid object if it is a groupoid object in the opposite category C𝑜𝑝 .
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In particular, for every partition [𝑛] = 𝑆∪ 𝑆′, such that 𝑆∩ 𝑆′ consists of a single element s, the diagram

𝑋 ({𝑠})

��

�� 𝑋 (𝑆)

��
𝑋 (𝑆′) �� 𝑋 ([𝑛])

is a pushout square in C. We use the notation coGrpd(C) to denote the∞-category of cogroupoid objects
in C.

Remark 3.4. A cogroup object in C is a cogroupoid object 𝑋• for which 𝑋0 � ∅.

Example 3.5. Let C = denote the ∞-category of pointed spaces. For any pointed space 𝑋 ∈ S∗, its
suspension Σ𝑋 is canonically a cogroup object. To see this, let 𝜋 : 𝑋 → ∗ be the map from X to the
final object. Then the conerve, coNerve(𝜋),

∗⇒ ∗
⊔
𝑋

∗→→
→ ∗

⊔
𝑋

∗
⊔
𝑋

∗...

precisely packages Σ𝑋 � ∗ �𝑋 ∗ together with its cogroup structure maps. Setting 𝑋 = 𝑆0 recovers the
𝐸1 cogroup structure on 𝑆1 in pointed spaces.

Construction 3.6. The above example is an instance of the conerve construction, which we now describe.
Let C be an ∞-category which admits finite colimits. Let 𝑓 : 𝑌 → 𝑋 be a morphism in C. Then we
define the conerve of f, coNerve( 𝑓 ) to be the cosimplicial object

coNerve( 𝑓 ) := 𝑋 ⇒ 𝑋
⊔
𝑌

𝑋→→
→
𝑋
⊔
𝑌

𝑋
⊔
𝑌

𝑋...

One can iteratively define the notion of an 𝐸𝑛-cogroupoid:

Definition 3.7. We define an 𝐸2-cogroupoid object to be a cogroupoid object in the ∞-category
coGrpd(C). Proceeding iteratively, we define an 𝐸𝑛-cogroupoid to be an a cogroupoid object in
coGrpd𝑛−1 (C).

Example 3.8. Let 𝜙 : ∅ → pt be the map in spaces from the initial object to the final object. Then we set

𝑆0,• := coNerve(𝜙).

Now let 𝜙• : 𝑆0,• → ∗ be the map to the final cogroupoid object in spaces. We set

𝑆1,•,• := coNerve(𝜙•).

Of course, one need not stop here; for each n, there is an 𝐸𝑛+1 cogroupoid with the n-sphere as the
degree (1, ..., 1) space of morphisms.

4. Affine cogroupoids over A1/G𝑚
Let R be a commutative ring. There exists a distinguished class of (higher) stacks over R which are
completely determined by their cohomology (together with its additional yet canonical structure) as a
cosimplicial commutative algebra. The study of this class of stacks, known as affine stacks, was initiated
in [Toë06].

The purpose of this section is to rephrase these constructions internally to the filtered setting (i.e.,
over the stack A1/G𝑚).
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4.1. Filtrations and A1/G𝑚
We would like to remind the reader of some basic notions from [Mou21b], motivating our extensive
usage of the stack A1/G𝑚.

Definition 4.1. We define the∞-category of filtered R-modules to be

Fil(Mod𝑅) = Fun(Z𝑜𝑝 , Mod𝑅),

where Z is to be viewed as a poset. Similarly, we define the∞-category

Gr(Mod𝑅) = Fun(Z𝑑𝑠,𝑜𝑝 , Mod𝑅)

to be the ∞-category of graded R-modules, where Z𝑑𝑠 denotes the integers viewed as a discrete space.
These both obtain a symmetric monoidal structure, given by Day convolution.

Construction 4.2. There exist symmetric monoidal functors

Und : Fil(Mod𝑅) → Mod𝑅,

taking a filtered R-module to its underlying object, and

gr : Fil(Mod𝑅) → Gr(Mod𝑅).

Now we turn to an algebro-geometric incarnation of these notions. Let A1/G𝑚 be the quotient stack
of A1 by the canonical G𝑚 action by dilation. This stack comes equipped with two distinguished maps:

Spec𝑘
𝜂
−→ A1/G𝑚

𝜄←− 𝐵G𝑚,

which throughout this paper, we refer to as the generic point and central point, respectively. Viewing it as
a derived stack, one obtains the following relationship with filtered objects at the level of quasi-coherent
sheaves:

Theorem 4.3 (cf. [Mou21b]). There is a symmetric monoidal equivalence of stable∞-categories

QCoh(A1/G𝑚) � Fil(Mod𝑅).

Under the above equivalence, the associated graded functor gr : Fil(Mod𝑅) → Gr(Mod𝑅) is naturally
identified with the pullback

QCoh(A1/G𝑚) → QCoh(𝐵G𝑚) � Gr(Mod𝑅);

the functor Und : Sp 𝑓 𝑖𝑙 → Sp sending a filtered R-module to the R-module underlying the filtration is
naturally identified with the pullback

QCoh(A1/G𝑚) → QCoh(Spec𝑅) � Mod𝑅 .

Remark 4.4. Given the above equivalence, we may view (derived) stacks admitting a map

X→ A1/G𝑚

in two ways. First, we may think of them as degenerations, from the generic fiber X1 := 𝜂∗(X) to the
special fiber X0 := 𝜄∗(X). We may also think of them as filtrations on the cohomology 𝑅Γ(X1,OX1) of
the generic fiber. In this paper, we straddle the line between these two perspectives.
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4.2. Affine stacks over A1/G𝑚
Definition 4.5. Let QCoh(A1/G𝑚)♥ denote the heart of the stable∞-category of quasi-coherent sheaves.
By [Mou21b, Section 8], this abelian category is equivalent to the filtered diagrams of objects belonging
to the heart of Mod𝑅. Let CAlg(QCoh(A1/G𝑚))♥ denote the category of algebras in QCoh(A1/G𝑚)♥.
We set

coSCRA1/G𝑚
:= coSCR(CAlg(QCoh(A1/G𝑚)♥))

to be the underlying∞-category of the category of cosimplicial objects in CAlg((QCoh(A1/G𝑚)♥)).

Remark 4.6. There is an alternative way to understand the∞-category coSCRA1/G𝑚
. Let QCoh(A1)♥ �

Mod𝑘 [𝑡 ] denote the classical abelian category of 𝑅[𝑡]-modules. The canonical inclusionG𝑚 → A1 gives
an action ofG𝑚 onA1, and thus, we may studyG𝑚-equivariant objects in the above abelian category. This
forms an abelian category, which we denote by RepA1 (G𝑚) and we can canonically form the category of
cosimplicial modules in this category, RepA1 (G𝑚)Δ . This admits a symmetric monoidal structure (the
pointwise one), and so we may take commutative monoids here. By the arguments of [KPT09, Section
3.4], this forms a model category and we can define coSCRA1/G𝑚

to be its underlying∞-category.

Remark 4.7. Let Modccn
𝑅 denote the full subcategory of Mod𝑅 consisting of modules M for which

𝜋𝑛 (𝑀) = 0 if 𝑛 > 0. We remark that there exists a monad T on Modccn
𝑅 for which there is an equivalence

Alg𝑇 � coSCR𝑅 .

This can be extracted from [Toë06, Proof of Théorème 2.1.2]. When R is a Q-algebra, this agrees with
the free 𝐸∞-algebra functor so that, in fact, we have an equivalence

coSCR𝑅 � CAlgccn
𝑅 ;

thus, one may think of cosimplicial commutative algebras as coconnective 𝐸∞-algebras in this context.
Similarly, when working over A1/G𝑚 in characteristic zero, there will be an equivalence

coSCRA1/G𝑚
� CAlgccn(QCoh(A1/G𝑚)).

Construction 4.8. Let SpecA1/G𝑚
: CAlg(QCoh(A1/G𝑚)♥)𝑜𝑝 → StkA1/G𝑚

denote the relative spec-
trum functor, sending a commutative algebra in QCoh(A1/G𝑚)♥ to a relative affine (underived) scheme
over A1/G𝑚. We form the Kan-extension of this functor along the inclusion

CAlg(QCoh(A1/G𝑚)♥) → coSCR(QCoh(A1/G𝑚)♥)

to obtain a functor

SpecΔ
A1/G𝑚

: coSCR𝑜𝑝

A1/G𝑚
→ StkA1/G𝑚

.

Remark 4.9. This possesses a left adjoint – namely, the global sections functor

O : StkA1/G𝑚
→ coSCR𝑜𝑝

A1/G𝑚
.

To understand this functor, we remark that one can work with a point-set model of StkA1/G𝑚
where

every object F in StkA1/G𝑚
has a a model as a simplicial object {F•} in presheaves (of sets) over the

stack A1/G𝑚. Thus, we define the cosimplicial algebra O(F)•

O(F)𝑛 := O(F𝑛).
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As in [Toë06, Section 2.2], this functor is left Quillen and thus induces a functor at the level of ∞-
categories.

Proposition 4.10. The functor

SpecΔ
A1/G𝑚

: coSCR𝑜𝑝

A1/G𝑚
→ StkA1/G𝑚

is fully faithful.

Proof. Note that we may write any cosimplicial algebra 𝐴• as the cosifted limit of objects in CAlg𝑅
(i.e., of discrete R-algebras). Then it follows that

𝐴• � lim
Δ

𝐴𝑛 � O(colimΔ𝑜𝑝 [SpecΔ
A1/G𝑚

(𝐴𝑛)]) � OSpecΔ
A1/G𝑚

(𝐴•)

is an equivalence. �

The following proposition, motivated by [Toë06, Théorème 2.29, Corollaire 2.2.10], says that modulo
potential size issues, the ∞-category of (filtered) affine stacks, behaves like a localization of the ∞-
category of higher stacks.

Proposition 4.11. Let StkA1/G𝑚
denote the subcategory of stacks such that O(𝑋) isU-small with respect

to a fixed universe U. Then the functor

𝑋 ↦→ Aff (𝑋) = SpecΔ
A1/G𝑚

O(𝑋)

is a localization. Moreover, X is an affine stack over A1/G𝑚 if and only if the adjunction morphism

𝑋 → Aff (𝑋)

is an equivalence in StkA1/G𝑚
.

Proof. The arguments for the proof of [Toë06, Théorème 2.29] work verbatim when working with
coSCRA1/G𝑚

instead of coSCR𝑅. �

5. Filtered n-spheres and (higher) loop spaces

In [MRT22], the authors constructed the filtered circle as an affine abelian group stack overA1/G𝑚. This
roughly packages the data arising from the Postnikov filtration on the cochain complex on 𝑆1, together
with its compatibility with the group strucure on 𝑆1. We will now see that it fits into the larger structure
of an 𝐸2-cogroupoid object in affine stacks.

Definition 5.1. Following the discussion in [Toë20, Section 1.3], we define the ‘quantum point’ as the
stack Q := 𝐵G𝑚 viewed as an object over A1/G𝑚 via the morphism 𝜄 : 𝐵G𝑚 → A1/G𝑚. This will have
generic fiber the ‘null scheme’

Q1 = Q ×A1/G𝑚
Spec𝑅 = ∅

and as central fiber the derived scheme

Q0 = Q ×A1/G𝑚
𝐵G𝑚 = Spec(𝑅 ⊕ 𝑅[1] (−1)).

Remark 5.2. This can alternatively be described as SpecA1/G𝑚
(A) (this denotes the relative spectrum)

where A is the image of the unit 1 ∈ Gr𝑅 � QCoh(𝐵G𝑚) in QCoh(A1/G𝑚) � Fil𝑅 along the
pushforward functor

𝜄∗ : QCoh(𝐵G𝑚) → QCoh(A1/G𝑚)
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This is a lax symmetric monoidal (in fact, it ends up being symmetric monoidal), so that A acquires an
𝐸∞-algebra structure. Alternatively, one may describe this functor as the symmetric monoidal functor
𝐼 : Gr𝑅 → Fil𝑅 given by left Kan extension along Z𝑑𝑠 ↩→ Z.

We now use Q to construct a cogroupoid object in the∞-topos StkA1/G𝑚
.

Construction 5.3. Let 𝜄 : 𝐵G𝑚 � Q→ A1/G𝑚. Let

𝜙 : OA1/G𝑚
→ 𝜄∗(O𝐵G𝑚 )

be the unit map of commutative algebra objects in

CAlg(QCoh(A1/G𝑚)) � CAlg(Fil(Mod𝑅)).

Finally, let 𝑁 (𝜙)• be the nerve of this map, viewed as a simplicial object in this ∞-category; by
construction this will be a groupoid object in CAlg(Fil(Mod𝑅)). We note that this is levelwise discrete,
in the homotopical sense. We define

𝑆0,•
𝑓 𝑖𝑙 = Spec(𝑁 (𝜙)•);

this will be a cogroupoid object in the∞-category of derived affine schemes over A1/G𝑚.

Remark 5.4. In simplicial degree 1, one recovers the filtered stack (cf. [Mou21a, Section 5.1]) 𝑆0
𝑓 𝑖𝑙 ,

which we refer to as the filtered zero sphere. As is described in loc. cit., one may express the fiber
product OA1/G𝑚

× 𝜄∗ (O𝐵G𝑚 ) OA1/G𝑚
in terms of the equivalence of QCoh(A1/G𝑚) with 𝑘 [𝑡]-modules

in graded complexes as the discrete ring

𝑘 [𝑡1, 𝑡2]/(𝑡1 + 𝑡2) (𝑡1 − 𝑡2).

Since the 𝜂∗𝜄∗(O𝐵G𝑚 ) � 0, one has equivalences

𝑆0
𝑓 𝑖𝑙 |Spec(𝑘) � 𝑆0 � Spec(𝑘) � Spec(𝑘)

and

𝑆0
𝑓 𝑖𝑙 |𝐵G𝑚 � Spec(𝑘 [𝜖]/(𝜖2))

where in the latter equivalence, we view 𝑘 [𝜖]/(𝜖2) as a graded commutative ring with 𝜖 in weight −1.
Remark 5.5. One may try to define this cogroupoid directly as the conerve of the map 𝜄 : Q→ A1/G𝑚,
which we write as coNerve•(𝜄). We remark that this is related by affinization in the sense that there is
an equivalence

𝑆0,•
𝑓 𝑖𝑙 � AffA1/G𝑚

(coNerve•(𝜄))

Note that in degree 1 of this construction, we obtain the suspension ΣQ in the ∞-category of derived
stacks over A1/G𝑚 whereas for 𝑆0,•

𝑓 𝑖𝑙 , we obtain the suspension Σ𝑎 𝑓 𝑓 Q in the full subcategory of affine
stacks. These are not in general equivalent. Indeed, by [Toë06], the inclusion of affine stacks into all
stacks is a right adjoint functor, which typically does not preserve colimits.
Construction 5.6. Given any derived stack 𝑋 ∈ dStkA1/G𝑚

, we may form the levelwise mapping stack

MapA1/G𝑚
(𝑆0,•

𝑓 𝑖𝑙 , 𝑋);

this is a simplicial object in dStkA1/G𝑚
which by construction of 𝑆0,•

𝑓 𝑖𝑙 , admits the structure of a groupoid
object in derived stacks over A1/G𝑚. Note that we are working in an ∞-topos, where every groupoid
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object G• arises as the Čech nerve of an effective epimorphism. Hence, we may form the associated
classifying stack 𝐵G•, for which G0 → 𝐵G• is an effective epimorphism.

5.1. The filtered circle as 𝐸2-cogroupoid

One can give a construction of the filtered circle of [MRT22] as a 2-cogroupoid in the ∞-category
of affine stacks. This is done by taking the iterated nerve of the map 𝜙 : OA1/G𝑚

→ 0∗(O𝐵G𝑚 ) in
cosimplicial commutative algebra objects in QCoh(A1/G𝑚).
Construction 5.7. Let 𝑁 (𝜙)• be as above. We define the 2-fold iterated nerve of 𝜙 to be the bi-simplicial
object 𝑁 (𝜙)•, defined to be the nerve of the map of simplicial objects

OA1/G𝑚
→ 𝑁 (𝜙)•,

where the left-hand side is considered as a constant simplicial object. This will canonically give rise to a
bisimplicial object in cosimplicial algebras which we denote by 𝑁 (𝜙)•,•. This gives rise to a 2-groupoid
object in the∞-category coSCR𝑅. We can alternatively restrict to the diagonal simplicial object, at this
stage. In any case we set

𝑆1,•,•
𝑓 𝑖𝑙 := SpecΔ

A1/G𝑚
(𝑁 (𝜙)•,•)

This will be a 2-cogroupoid in the∞-category of affine stacks over A1/G𝑚.
Construction 5.8. We introduce a variant of the above. Let 𝑆0,•

𝑓 𝑖𝑙 be as above and let

𝜙 : 𝑆0,•
𝑓 𝑖𝑙 → ∗

be a map in the∞-category of cosimplicial objects in derived stacks. Here, the right-hand side is taken
to be the constant cosimplicial object, which is A1/G𝑚 in each degree.

Σ𝑆0
𝑓 𝑖𝑙 := coNerve(𝜙)

denotes the conerve of this map, cf. Construction 3.6. This will be a bicosimplicial object and, by the
discussion above, a cogroupoid object in Stk𝑅.
Proposition 5.9. The cogroupoid object of Construction 5.7 is the affinization of Σ𝑆0

𝑓 𝑖𝑙 – that is, there
exists an equivalence

𝑆1,•,•
𝑓 𝑖𝑙 � AffA1/G𝑚

(Σ𝑆0
𝑓 𝑖𝑙).

Proof. This is immediate upon noticing that there is a natural map

Σ𝑆0
𝑓 𝑖𝑙 → 𝑆1,•,•

𝑓 𝑖𝑙

which is an equivalence on cohomology. Indeed, one obtains the 𝐸2-groupoid object of Construction
5.7 by applying the global sections O(−) functor to Construction 5.8. Applying then SpecΔ

A1/G𝑚
(−) and

noticing that we obtain the canonical affinization morphism, the unit of the adjunction SpecΔ
A1/G𝑚

�
O(−). This will be an equivalence on cohomologies. �

Via this description, we see that the degree (1, 1) piece of the 𝐸2-cogroupoid 𝑆1,•,•
𝑓 𝑖𝑙 is none other

than the filtered circle of [MRT22].
Corollary 5.10. There is an equivalence

𝑆1
𝑓 𝑖𝑙 � 𝑆1,1,1

𝑓 𝑖𝑙

of affine stacks.
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Remark 5.11. Putting this together with Construction 5.3, we have the following identification:

𝑆1
𝑓 𝑖𝑙 � Σ2

𝑎 𝑓 𝑓 (Q),

exhibiting the filtered circle as a 2-fold suspension in affine stacks of Q.
Remark 5.12. The reason we want to work with AffA1/G𝑚

(Σ2Q) here as opposed to just Σ2Q is that
we would like to to recover the cogroupoid structure on the affine stack 𝑆1

𝐹𝑖𝑙 of [MRT22]. Indeed, the
filtered loop space L 𝑓 𝑖𝑙 (𝑋) was defined in loc. cit. as the stack of maps out of 𝑆1

𝐹𝑖𝑙 . Thus, we would
like to study groupoid structures on the filtered loop space itself, as opposed to studying them on some
object which is merely equivalent to it.
Remark 5.13. We remark that while one may recover the affine stack 𝑆1

𝑓 𝑖𝑙 in this way, this does not
capture its structure as an abelian group stack. Indeed, this was studied in [MRT22] by exhibiting it as
the classifying stack of a filtered abelian group scheme H over A1/G𝑚, which interpolates between the
kernel and fixed points of the Frobenius on the Witt vector ring schemeW(−).
Construction 5.14. One can, in fact, iterate all of the above (e.g., by taking iterated nerves of the
map OA1/G𝑚

→ 0∗𝐵G𝑚 in coSCRA1/G𝑚
and applying the 𝑆𝑝𝑒𝑐Δ

A1/G𝑚
functor to obtain 𝑆𝑛𝑓 𝑖𝑙). We can

summarize this discussion by saying that

𝑆𝑛𝑓 𝑖𝑙 := SpecΔ
A1/G𝑚

(𝑁•,...,•(𝜙))

acquires the structure of an 𝐸𝑛+1-cogroupoid object in affine stacks over A1/G𝑚.

5.2. Filtered loop spaces

Let X be a derived scheme in characteristic zero. We describe the formation of higher filtered loop
spaces but focus in particular on the 𝑛 = 1 case.
Construction 5.15. Let X be a derived scheme. Letting 𝑋 |A1/G𝑚

:= 𝑋 × A1/G𝑚, we set

L(𝑛)𝑓 𝑖𝑙 (𝑋) = Map(𝑆𝑛𝐹𝑖𝑙 , 𝑋 |A1/G𝑚
)

and refer to this as the higher n-dimensional filtered loop space.
We would like to deduce the following:

Proposition 5.16. Let X be a derived affine scheme. Then the affinization morphism

Σ2Q•,• → 𝑆1,•,•
𝑓 𝑖𝑙

induces an (levelwise)-equivalence of bi-cosimplicial derived stacks

MapA1/G𝑚
(𝑆1,•,•

𝑓 𝑖𝑙 , 𝑋 |A1/G𝑚
) → MapA1/G𝑚

(Σ2Q•,•, 𝑋 |A1/G𝑚
).

This makes the bi-cosimplicial object L•,•𝑓 𝑖𝑙 (𝑋) into an 𝐸2-groupoid in derived stacks.

Proof. For an arbitrary bidegree (𝑚, 𝑛), we have a canonical map

MapA1/G𝑚
(𝑆1,𝑚,𝑛

𝑓 𝑖𝑙 , 𝑋 |A1/G𝑚
) → MapA1/G𝑚

(Σ2Q𝑚,𝑛, 𝑋 |A1/G𝑚
) (5.17)

induced by restriction along Σ2Q𝑚,𝑛 → 𝑆1,𝑚,𝑛
𝑓 𝑖𝑙 , the levelwise affinization morphism. We would like to

show that this is an equivalence. Granting this, we use the fact that Σ2Q𝑚,𝑛 is a 2-cogroupoid in derived
stacks, so that one gets a suitable product decomposition in (in each degree (𝑚, 𝑛) of the associated
mapping stacks) satisfying the Segal conditions for a groupoid object.
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In order to display the map (5.17) as an equivalence, it will be enough to do so upon pulling back
along 𝜂, 𝜄, respectively. We first treat the generic fiber case (i.e., the pullback along 𝜂). As we are in the
characteristic zero setting, where simplicial and cosimplicial algebras can be modeled by connective
and coconnective 𝐸∞ algebras respectively, we may appeal to [Lur11, Section 4], (see also [BZN12]). In
particular, the universal property in this setting states that the affinization functor is a monad in derived
stacks; in particular, any map to a derived affine scheme out of a derived stack will factor through its
affinization. In particular, this gives an equivalence at the level of derived mapping stacks.

For the same reason, one obtains an equivalence upon pulling back along 𝐵G𝑚
𝜄−→ A1/G𝑚. We

can now conclude that the original map (5.17) defined over A1/G𝑚 is a levelwise equivalence. Hence,
L•,•𝑓 𝑖𝑙 (𝑋) is an 𝐸2-cogroupoid in derived stacks. �

Remark 5.18. The argument above uses the fact that we are in characteristic zero and the resulting notion
of affinization in the derived setting. In positive or mixed characteristics, one can argue more generally
using the cohomological finite dimension of the stacks Σ2Q𝑚,𝑛 and 𝑆1,𝑚,𝑛

𝑓 𝑖𝑙 to obtain equivalence (5.17).

Remark 5.19. While we have focused on the 𝑛 = 1 case, the considerations here are valid for higher
loop spaces as well. Thus, one obtains a 𝐸𝑛+1 groupoid objects where the degree (1, ...1) object of
morphisms is the MapA1/G𝑚

(𝑆𝑛𝑓 𝑖𝑙 , 𝑋 |A1/G𝑚
).

6. Hodge degeneration and deformation to the normal bundle

In this section, we work over a characteristic zero base field k and study the well-known Hodge
degeneration in its geometric form studied by Simpson (cf. [Sim96, Sim90] One avatar of the Hodge
filtration on de Rham cohomology is given by the deformation to the normal cone construction. This
manifests itself as a derived stack over A1/G𝑚 which specializes upon taking generic and central fibers
to the de Rham stack and the Dolbeault stack, respectively.

6.1. The de Rham and Dolbeault spaces

We give a brief review here of the de Rham and Dolbeault space constructions in derived algebraic
geometry. The results in this section are quite classical and well known; we give them to motivate the
objects studied.

Definition 6.1. Let X be a scheme. Then the de Rham space of X is defined to be the moduli problem
𝑋𝑑𝑅 ∈ dStk𝑘 given by

𝑋𝑑𝑅 (𝐴) = 𝑋 (𝜋0 (𝐴)/𝐼),

where I denotes the nilradical of 𝜋0 (𝐴).

The de Rham space was originally defined by Simpson as the quotient stack of a certain groupoid
object in formal schemes. This goes back to the original construction of Simpson; see, for example,
[Sim96].

Construction 6.2. Let X be a smooth scheme and let 𝜋 : 𝑋 → 𝑋𝑑𝑅 denote the canonical map. One
sees that this is an effective epimorphism in the ∞-category of derived stacks, and so it is the effective
quotient of the its nerve groupoid. Thus, we can define the de Rham stack as the realization of the
following groupoid

𝑋 ⇔ (𝑋 × 𝑋)Δ̂ ,

where the object (𝑋 × 𝑋)Δ̂ denotes the formal completion of 𝑋 × 𝑋 along the diagonal morphism
Δ : 𝑋 → 𝑋 .
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A proof of the following statement, using ideas which go back to Grothendieck’s work in the setting
of infinitesimal cohomology, may be found in [Lur09b]:

Theorem 6.3. Let X be a smooth scheme over k. Then there is an equivalence of categories:

QCoh(𝑋dR) � D𝑋 −Mod.

Thus, the de Rham stack gives a conceptual way to understand D𝑋 -modules on X. More generally
(e.g., for a derived scheme), a Koszul dual variant of the left-hand side parametrizes the notion of
crystals on the infinitesimal site.

We now move on to the Dolbeault space. This construction is (again) originally due to Carlos Simpson
as a natural geometric parametrization for the notion of Higgs bundles. First we recall the notion of
tangent bundle in this setting:

Definition 6.4. Let X be a derived scheme. The tangent bundle of X is defined to be

T 𝑋 = Spec𝑋 Sym(L𝑋 );

thus, it is a relative derived scheme over X.

Remark 6.5. The tangent bundle admits the structure of an abelian group object over X, which we may
think of as a simplicial object

(T 𝑋)•

with

T 𝑋0 = 𝑋 T 𝑋2 = T 𝑋 ×𝑋 T 𝑋.

Construction 6.6. One can take the formal completion along the unit section

𝑢 : 𝑋 → T 𝑋.

Given the machinery established thus far, we define this to be the pullback

T̂ 𝑋 = 𝑋𝑑𝑅 ×T 𝑋𝑑𝑅 T 𝑋.

In fact, one may apply this to the map 𝑋 → T 𝑛𝑋 to obtain a simplicial object in formal moduli problems,
T̂ 𝑋•. We remark that this becomes a groupoid object in formal moduli problems, cf. [GR20].

Definition 6.7. We define, following Simpson, the Dolbeault stack to be the delooping

𝑋𝐷𝑜𝑙 := 𝐵𝑋 T̂ 𝑋•

of the formal group object T 𝑋•.

Proposition 6.8. There is an equivalence of stable∞-categories

QCoh(𝑋𝐷𝑜𝑙) � ModSym(T𝑋 ) ,

where T𝑋 denotes the O𝑋 -linear dual of the cotangent complex L𝑋 .

Proof. An application of the comonadic form of the Barr-Beck theorem shows that

QCoh(𝑋𝐷𝑜𝑙) � coMod �Sym(L𝑋 ) (QCoh(𝑋)).
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Alternatively, this can be extracted as the descent data defining 𝑋𝐷𝑜𝑙 as the realization of the groupoid
T 𝑋• corresponding to the formal group T̂ 𝑋 over X. We now take the O𝑋 -linear dual of the action map
for any fixed 𝑀 ∈ QCoh(𝑋𝐷𝑜𝑙)

𝑀 → 𝑀 ⊗O𝑋
�Sym(L𝑋 )

to obtain a map

( �Sym(L𝑋 ))∨ ⊗O𝑋 𝑀 → 𝑀,

giving M the structure of a �Sym(L𝑋 ))∨-module. It thus amounts to identify �Sym(L𝑋 ))∨ with Sym(T𝑋).
For this, note first that

�Sym(L𝑋 ) �
∏

Sym𝑛 (L𝑋 ),

so that

( �Sym(L𝑋 ))∨ �
⊕

Sym𝑛 (L𝑋 )∨.

To identify each summand, we use the fact that (L𝑋 )∨ � T𝑋and that we are in characteristic zero (so
that divided and symmetric powers coincide) to conclude that

Sym𝑛 (L𝑋 )∨ � Sym𝑛 (T𝑋 )

for every n. Thus, we deduce the equivalence

�Sym(L𝑋 ))∨ � Sym(T𝑋 ).

From this, we may conclude that M is naturally a Sym(T𝑋 )-module. �

As a consequence of the above, one may think of QCoh(𝑋𝐷𝑜𝑙) as a derived ∞-category of Higgs
sheaves, cf. [Sim90].

6.2. 𝜆-connections and the deformation to the normal cone

There is a natural 1-parameter deformation of the notion of a flat connection. This is the notion of a
𝜆-connection, going back to Deligne.

Definition 6.9. Let E be a vector bundle on a scheme X. A 𝜆-connection is an operator

∇𝜆 : 𝐸 → 𝐸 ⊗ Ω1
𝑋

for which

∇𝜆 (𝑎𝑒) = 𝜆𝑑 (𝑎)𝑒 + 𝑎∇(𝑒).

Remark 6.10. If 𝜆 ∈ 𝑅×, then a 𝜆 connection ∇𝜆 on a vector bundle E gives equivalent data to a
connection 𝜆−1∇𝜆 However, if 𝜆 = 0, this is precisely the data of a Higgs bundle.

Let us give another perspective for the notion of 𝜆-connection. Recall that the ring of differential
operators D𝑋 comes equipped with an filtration known as the order filtration. This has associated graded
OT∗ 𝑋 � Sym(T𝑋 ). Applying the Rees construction to this gives the following G𝑚-equivariant sheaf of
algebras over 𝑋 × A1.

https://doi.org/10.1017/fms.2023.122 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.122


18 T. Moulinos

Definition 6.11. Let D𝜆
𝑋 be the sheaf of algebras on 𝑋 × A1/G𝑚 defined by

D𝜆
𝑋 =

⊕
𝑘≥0

𝑡𝑘D≤𝑘 ⊂ D𝑋 ⊗ 𝑅[𝑡],

where the coordinate t acts as 𝜆. There is an evident G𝑚 action on this given by scaling the variable t.
Thus, it descends to a sheaf on 𝑋 × A1/G𝑚.

Remark 6.12. By the definition of the Rees construction, we see that fiber of this object over 𝐵G𝑚 is the
associated graded of the weight filtration – namely, Sym(T𝑋 ). Meanwhile, pullback along the generic
point recovers the ring of differential operators D𝑋 itself. Thus, we may conclude that the stucture of a
D𝜆
𝑋 -module is none other than that of a 𝜆-connection.

The following definition of the Hodge degeneration goes back to Simpson, following a suggestion of
Deligne. It gives rise to a natural geometric parametrization for the notion of 𝜆-connection.

Construction 6.13. Form the (levelwise) mapping stack over A1/G𝑚:

MapA1/G𝑚
(𝑆0,•, 𝑋 |A1/G𝑚

),

where 𝑆0,• is the cogroupoid object in derived stacks studied in Section 5. This will be a groupoid object
in derived stacks. Next, form the formal completion in each degree, along the map

𝑋 |A1/G𝑚
→ MapA1/G𝑚

(𝑆0,•, 𝑋 |A1/G𝑚
).

In more detail, we define this (in accordance with Section 2.3) by the following pullback square:

MapA1/G𝑚
(𝑆0,•, 𝑋 |A1/G𝑚

)∧
𝑋 |
A1/G𝑚

��

�� MapA1/G𝑚
(𝑆0,•, 𝑋 |A1/G𝑚

)

��
[𝑋 |A1/G𝑚

]𝑑𝑅 �� [MapA1/G𝑚
(𝑆0,•, 𝑋 |A1/G𝑚

)]𝑑𝑅 .

(6.14)

Notice that over the point Spec𝑅 1−→ A1/G𝑚, the map with respect to which we are taking the formal
completion is precisely the diagonal map Δ : 𝑋 → 𝑋 × 𝑋; over the point 0 : 𝐵G𝑚 → A1/G𝑚, this is
exactly the inclusion 𝑋 → T • of the units into the group(oid) object defining the Dolbeault space.

Definition 6.15. We denote the above simplicial stack by 𝑋•𝜆. We then define

𝑋𝐻𝑜𝑑 = | |𝑋•𝜆 | |

as its classifying stack.

By construction, the stack 𝑋𝐻𝑜𝑑 admits a map to A1/G𝑚. Pulling back along the generic fiber, one
recovers the de Rham space:

Proposition 6.16. There is an equivalence

𝑋𝐻𝑜𝑑 ×A1/G𝑚
Spec𝑅 � 𝑋𝑑𝑅 .

However, pulling back along the map 𝜄 : 𝐵G𝑚 → A1/G𝑚 recovers the Dolbeault space:

Proposition 6.17. There is an equivalence

𝑋𝐻𝑜𝑑 ×A1/G𝑚
𝐵G𝑚 � 𝑋𝐷𝑜𝑙 ,
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where the structure map 𝑋𝐷𝑜𝑙 → 𝐵G𝑚 arises from the canonical dilation G𝑚-action on the formal
group T̂𝑋 .

The following theorem morally goes back to Simpson and may be proven similarly to Theorem 6.3:

Theorem 6.18 (Simpson). Let X be a smooth scheme. Then there is an equivalence of∞-categories

QCoh(𝑋𝐻𝑜𝑑) � Mod(D𝜆
𝑋 ).

Here, the right-hand side denotes the∞-category of 𝜆-connections.

Remark 6.19. One may thus think of the ∞-category QCoh(𝑋𝐻𝑜𝑑) as giving a QCoh(A1/G𝑚)-linear
enhancement of the ∞-category of D𝑋 -modules. By the Rees correspondence, this is none other than
a filtration at the level of categories, which manifests itself as the well-known filtration on the ring of
differential operators D𝑋 . The interested reader may consult [TV20, Remark 3.2.3] for a generalization
of this story to the setting of derived foliations.

Construction 6.20. Let X be a derived scheme. Recall from [MRT22] that we may form the following
derived mapping space:

L 𝑓 𝑖𝑙𝑋 := MapdStk
A1/G𝑚

(𝑆1
𝑓 𝑖𝑙 , 𝑋 |A1/G𝑚

).

This is referred to in loc. cit. as the filtered loop space. By the work in Section 5, 𝑆1
𝑓 𝑖𝑙 fits as the degree

(1, 1) piece of the 2-cogroupoid object 𝑆1,•. We take this into account by defining

MapdStk
A1/G𝑚

(𝑆1,•,•
𝑓 𝑖𝑙 , 𝑋A1/G𝑚

),

which, in turn, is a 2-groupoid in dStk/A1/G𝑚
, over 𝑋 |A1/G𝑚

.

One has the following proposition:

Proposition 6.21. Let X be a derived scheme. Then for each (𝑚, 𝑛), the derived scheme L(𝑚,𝑛) (𝑋) is
formally complete along 𝑋 |A1/G𝑚

→ L(𝑚,𝑛) (𝑋).

Proof. In degree (1, 1), the cogroupoid object 𝑆1•,•
𝑓 𝑖𝑙 is precisely 𝐵H, where H is the filtered group

scheme from [MRT22]. After forming mapping spaces out of this, one obtains a derived scheme whose
truncation is the truncation of X itself. This uses the fact that X is a scheme and does not exhibit any
stacky behavior, and so there are no nonconstant maps 𝐵H → 𝑋 . Thus, the map 𝑆1

𝐹𝑖𝑙 → ∗ induces an
equivalence on truncations L 𝑓 𝑖𝑙𝑋 , which is, in particular, a nil-isomorphism. Now that we know that
the degree 1 piece is formally complete, we use the intrinsic symmetries along the diagonal that follow
from the 𝐸2-groupoid structure, which allow for us to conclude that it is formally complete in each
bidegree. Hence, we conclude that this is a formal groupoid, in the sense of [GR20]. �

Hence, L 𝑓 𝑖𝑙 (𝑋) is a 2-groupoid object in formal stacks. Moreover, as a bisimplicial object, this has
the constant simplicial diagram on 𝑋 |A1/G𝑚

on the zeroth row and column. Our next goal is to compute
the 2-fold delooping of this groupoid in the setting of formal moduli problems. Before passing to the
formal context, however, one can make the following observation:

Proposition 6.22. There is an equivalence

L•,•𝑓 𝑖𝑙 (𝑋) � 𝑁𝑒𝑟𝑣𝑒(𝑋 |A1/G𝑚
→ Map(𝑆0,•

𝑓 𝑖𝑙 , 𝑋 |A1/G𝑚
))

of 2-groupoid objects in dStkA1/G𝑚
.

Proof. This will follow by explicitly identifying the two objects in Grpd(2) . The argument ultimately
boils down to the fact that both simplicial objects depend on the 𝐸2-cogroupoid structure of 𝑆1

𝑓 𝑖𝑙 (more
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precisely, its structure as a cogroupoid object in the category of cogroupoid objects). At the level of
objects, we fix (𝑛, 𝑚) ∈ Δ𝑜𝑝 × Δ𝑜𝑝 . Then in bisimplicial degree (𝑛, 𝑚), the object L•,•𝑓 𝑖𝑙 (𝑋) is given by

MapA1/G𝑚
((𝑆1

𝑓 𝑖𝑙)
𝑛,𝑚, 𝑋 |A1/G𝑚

),

where

(𝑆1
𝑓 𝑖𝑙)

𝑛,𝑚 =

𝑚 times︷����������������������������������������������������������︸︸����������������������������������������������������������︷
∗

⊔
𝑆0
𝑓 𝑖𝑙 �∗ · · · �∗ 𝑆

0
𝑓 𝑖𝑙︸������������������︷︷������������������︸

𝑛 times

∗ · · · ∗
⊔

𝑆0
𝑓 𝑖𝑙 �∗ · · · �∗ 𝑆

0
𝑓 𝑖𝑙︸������������������︷︷������������������︸

𝑚 times

∗ . (6.23)

Note that ∗ = A1/G𝑚 in this case as all these constructions are being performed in StkA1/G𝑚
. Applying

the functor MapdStk/A1/G𝑚
(−, 𝑋 |A1/G𝑚

) out of the above object sends this pushout square to a fiber
product, by the argument in the proof of Proposition 5.16. A moment’s thought shows that this is
precisely the (𝑛, 𝑚)th degree of the bisimplicial object

Nerve(𝑋 |A1/G𝑚
→ Map(𝑆0

𝑓 𝑖𝑙 , 𝑋 |A1/G𝑚
)). �

Passing to the setting of formal moduli problems relative to 𝑋 |A1/G𝑚
now gives rise to the following

corollary:

Corollary 6.24. There exists an equivalence

𝐵 (1)L•,•𝑓 𝑖𝑙 (𝑋) � 𝑋•𝜆

of formal groupoid objects. Here, the left-hand side denotes the delooping of the groupoid objectL 𝑓 𝑖𝑙 (𝑋)
along the vertical or horizontal direction, and the right side is the formal groupoid whose classifying
stack is the Hodge degeneration.

Proof. We first remark that the delooping of the 𝐸2-groupoid will be a groupoid object in formal stacks,
by Theorem 2.14. Now, as we saw in Proposition 6.22, there is an identification of 2-groupoids

L•,•𝑓 𝑖𝑙 (𝑋) � 𝑁𝑒𝑟𝑣𝑒(𝑋 |A1/G𝑚
→ Map(𝑆0,•

𝑓 𝑖𝑙 , 𝑋 |A1/G𝑚
)).

By Proposition 6.21, the left-hand side is already formally complete in each simplicial degree; thus, we
may conclude that the right-hand side is a formal 2-groupoid as well.

Next, we apply the correspondence between formal groupoids and formal moduli problems under
X, cf. Theorem 2.14. This tells us that the 2-groupoid L•,•𝑓 𝑖𝑙 (𝑋) arises as the Čech nerve of some map
𝑋 |A1/G𝑚

→ Y•, which is a nil-isomorphism in the language of [GR20]. We may identify this morphism
of simplicial objects with the morphism which in simplicial degree n is given by the map

𝑋 |A1/G𝑚
→ Map(𝑆0,𝑛

𝑓 𝑖𝑙 , 𝑋 |A1/G𝑚
)
𝑋 |

A1/G𝑚
= 𝑋•𝜆

(i.e., the map of 𝑋 |A1/G𝑚
to its formal thickening in Map(𝑆0,𝑛

𝑓 𝑖𝑙 , 𝑋 |A1/G𝑚
)
𝑋 |

A1/G𝑚
). Thus, we have identified

the 1-groupoid object 𝐵L•,•𝑓 𝑖𝑙𝑋 with 𝑋•𝜆. Note that the structure maps agree by construction; indeed, 𝑋𝜆
was defined in Construction 6.13 precisely as the levelwise formal completion of the groupoid object
Map(𝑆0,•

𝑓 𝑖𝑙 , 𝑋 |A1/G𝑚
) along the map

𝑋 |A1/G𝑚
→ Map(𝑆0,•

𝑓 𝑖𝑙 , 𝑋 |A1/G𝑚
). �
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We may now put this all together and quickly prove the main theorem, which we restate for the
reader’s convenience.

Theorem 6.25. There exists an equivalence

𝐵2L 𝑓 𝑖𝑙 (𝑋) � 𝑋𝐻𝑜𝑑 .

Proof. We can compute 𝐵2L 𝑓 𝑖𝑙 (𝑋) by first delooping in the vertical direction and then in the horizontal
direction (or in reverse). As we saw in the previous proposition, the stage one delooping recovers the
formal groupoid 𝑋•𝜆. By Definition 6.15, the delooping of this is precisely the Hodge stack 𝑋𝐻𝑜𝑑 . �

7. Group structures on the loop space and the Todd class

Let 𝑓 : 𝑋 → 𝑌 be a proper morphism of schemes. A modern reinterpration of the Grothendieck
Riemann-Roch theorem encodes the compatibility between the Chern character and the proper pushfor-
ward on Hodge cohomology, which arises from the pushforward 𝑓∗ : Perf (𝑋) → Perf (𝑌 ). As described
in [HSSS21, Section 5.2], the HKR equivalence

𝑅Γ(OL𝑋 ) � Sym(Ω𝑋/𝑘 [1])

intertwines the ‘integration map’ O(L(𝑋)) → O(L(𝑌 ) with the pushforward map on Hodge cohomol-
ogy, twisted by the square root of the Todd class:

𝐾0(𝑋)

ch
��

𝑓∗ �� 𝐾0(𝑌 )

ch
��

⊕𝑖𝐻𝑖 (𝑋,Ω𝑖
𝑋 )

𝑓∗ (∪
√

td(T 𝑓 ) �� ⊕𝑖𝐻𝑖 (𝑌,Ω𝑖
𝑌 ).

In this section, we give a conceptual explanation for the Todd class in terms of the 2-cogroupoid
structure on 𝑆1

𝑓 𝑖𝑙 studied in this paper. In particular, we will see that it arises from the failure of 𝑆1
𝑓 𝑖𝑙 to

be a constant degeneration of cogroup(oid) objects.

Construction 7.1. Recall from above that 2-cogroupoid structure on 𝑆1
𝑓 𝑖𝑙 gives the filtered loop space

L 𝑓 𝑖𝑙 (𝑋)a 2-groupoid structure. In particular, it may be viewed as an 𝐸2-group object over the derived
scheme X as X will be the degree (0, 0) space of objects.

We would like to study the corresponding group stuctures on L 𝑓 𝑖𝑙 (𝑋) upon specializing along the
closed and generic points of A1/G𝑚. Recall from [MRT22] that over 𝜂 : Spec𝑘 → A1/G𝑚, there is an
equivalence

(𝑆1
𝑓 𝑖𝑙)

𝑢 := 𝜂∗(𝑆1
𝑓 𝑖𝑙) � 𝐵G𝑎

of group stacks. Similarly, one has an equivalence

𝑆1
𝑔𝑟 := 𝜄∗(𝑆1

𝑓 𝑖𝑙) � 𝐵G𝑎 .

We remind the reader that this is only true in characteristic zero. Thus, one has an HKR equivalence (cf.
[TV11, BZN12])

exp : T𝑋 [−1] � L𝑋.

We will see that there exist two group structures on T𝑋 [−1], one which is related to the cogroupoid
structure on 𝑆1

𝑔𝑟 and the other which is related to that on 𝑆1. The extent to which these are nonequivalent
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is detected by a distinguished class in

𝜋0Γ(T𝑋 [−1],OT𝑋 [−1] )× � ⊕𝑖𝐻𝑖 (𝑋,Ω𝑖
𝑋 ).

This is none other than the Todd class.

Remark 7.2. These group objects L(𝑋) and T𝑋 [−1] over X are, in fact, formally complete along X.
Thus, we may view them as group objects in formal moduli problems over X.

7.1. Formal groups and the Todd class

We now review how a group structure gives rise to an orientation of the canonical bundle on T𝑋 [−1].
Much of the following discussion is taken from [KP19].

Construction 7.3. We first review, following loc. cit. the canonical trivialization of the relative tangent
bundle of a formal group over X. Let Ĝ be the formal group in question. In this setting, one has the
following trivialization:

T
Ĝ/𝑋 � 𝜋∗T

𝑋/𝐵𝑋 Ĝ
� 𝜋∗𝑒∗𝜋∗T

𝑋/𝐵𝑋 Ĝ
� 𝜋∗𝑒∗T

Ĝ/𝑋 � 𝜋∗𝔤,

where 𝔤 := Lie𝑋 (Ĝ) is the corresponding Lie algebra of Ĝ. One uses here the key property of the
relative tangent sheaf being stable under pullbacks, cf. [KP19, Proposition 5.1.8].

Remark 7.4. Let Ĝ = L𝑋 . Using the above, one obtains an orientation

𝜔
Ĝ
� 𝜔

Ĝ/𝑋 ⊗ 𝜋∗(𝜔𝑋 ) � 𝜋∗(𝜔−1
𝑋 ) ⊗ 𝜋∗(𝜔𝑋 ) � O

Ĝ
.

Construction 7.5. Recall the construction of the determinant of a perfect complex from [STV15]. This
is defined as a morphism of stacks

det : Perf → Pic,

where the left-hand side is the derived stack classifying perfect complexes and the right-hand side
classifies invertible objects. Now we fix a formal derived stack Y over X whose relative tangent complex
is perfect, and on which one may equip two distinct formal group structures 𝑔1, 𝑔2. By composing the
trivialization of TY arising from 𝑔1 with the inverse of that arising from 𝑔2, we obtain an automorphism

𝛾 : TY/𝑋
𝜄𝑢−−→ 𝜋∗(𝔤)

𝜄𝑔𝑟−−→ TY/𝑋 .

This is an endomorphism of the relative tangent complex of Y over X. We now define

td𝑔𝑟 𝑝 (Y) := det(𝛾) ∈ 𝜋0Γ(Y,OY)×,

by way of the induced map detY : Perf (Y) → Pic(Y)

Remark 7.6. Let us remark for the sake of clarity that det(𝛾) is, in fact, an invertible element of
MapOY

(𝜋∗𝜔−1
𝑋 , 𝜋∗𝜔−1

𝑋 ). However, note that this canonically equivalent to MapOY
(OY,OY) � OY.

Thus, we obtain a well-defined invertible element of 𝜋0Γ(Y,OY)×

Remark 7.7. Let X be a derived scheme and fix Y = L𝑋 � T𝑋 [−1]. This obtains two group structures,
one arising from the cogroup structure on (𝑆1

𝑓 𝑖𝑙)
𝑢 and the other coming from the cogroup structure on

the 𝑆1
𝑔𝑟 = SpecΔ (𝑘 ⊕ 𝑘 [−1]). Then

td𝑔𝑟 𝑝 (T𝑋 [−1]) ∈ 𝜋0Γ(T𝑋 [−1],OT𝑋 [−1] )× � (
⊕
𝑖

𝐻𝑖 (𝑋,Ω𝑖
𝑋 ))
×.
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In [KP19], it is shown that this recovers the Todd class of a scheme. We briefly recall a broad
explanation for why this is true.

Proposition 7.8 [KP19]. Let X be a smooth and proper scheme. Then the group theoretic Todd class,
defined above, recovers the classical Todd class of the Lie algebroid T𝑋 .

Proof. The loop group structure on L(𝑋) makes it into a formal group over X. The result follows from a
general statement valid for arbitrary formal groups. For a general formal group Ĝ→ 𝑋 , let 𝔤 := Lie(Ĝ).
There exists a general equivalence of formal moduli problems over X:

exp : V(𝔤) → Ĝ,

where the right-hand side denotes the formal vector bundle stack associated to 𝔤. Via this equivalence,
V(𝔤) inherits 2 group structures (one being the abelian one, the other via transport of structure from
Ĝ). Via the discussion above, this gives rise to two trivializations of the relative tangent T

Ĝ/𝑋 which is
denoted suggestively in [KP19] as

𝑑 exp
Ĝ

: 𝜋∗𝔤→ 𝜋∗𝔤. (7.9)

The determinant (in the sense of [STV15]) of this automorphism then gives the group theoretic Todd
class.

Meanwhile, the Todd class as it appears in the statement of the GRR theorem is given as a multi-
plicative characteristic class; it is given by the formula

td𝑋 = det( 𝑓 (𝐴𝑡 (𝑋))),

where 𝑓 (𝑥) is the formal power series

𝑓 (𝑥) = 1 − 𝑒−𝑥

𝑥
.

The key result of [KP19] states that for an arbitrary formal group Ĝ, the automorphism (7.9) may be
expressed as

𝑑 exp
Ĝ
=

1 − 𝑒− ad𝔤

ad𝔤
,

where ad𝔤 denotes the adjoint representation of the Lie algebra 𝔤, given by the Atiyah class of 𝔤. �

7.2. Non-formality of the pinch map

We would like to relate the construction of the Todd class above to the cogroupoid structures on 𝑆1
𝑓 𝑖𝑙 .

We will see that the data of the Todd class is in a precise sense included in the data of the 𝐸2-cogroupoid
structure on 𝑆1

𝑓 𝑖𝑙 . In particular, the nontriviality of the Todd class will follow from the 𝐸1 cogroup
structure on the topological circle 𝑆1, in the∞-category of pointed spaces S∗ This cogroup structure is
often described by the well-known ‘pinch map’

𝑆1 → 𝑆1 ∨ 𝑆1

of pointed spaces. The goal of this section is to relate the existence of this Todd class with the failure of
the resulting cogroup(oid) structure on 𝑆1 to be formal. We first explain what we mean by this.
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Definition 7.10. Let X→ A1/G𝑚. Let X1 := 𝜂∗(X). We say that X is a constant degeneration (of X1)
if there exists an equivalence

X1 � X0,

where the right-hand side denotes the pullback of X along the composite map

Spec𝑘 𝜋−→ 𝐵G𝑚
𝜄−→ A1/G𝑚.

Similarly, let X•, · · · ,• be 𝐸𝑛 cogroupoid object in affine stacks. Then it is a constant degeneration of
cogroupoid objects if there is an equivalence

X•1 � X•0.

of cogroupoids.

Remark 7.11. By [Rak20, Proposition 4.5.8], the Postnikov filtration functor induces a fully faithful
embedding 𝜏≥∗ : coSCR𝑅 ↩→ Fil(coSCR𝑅). In particular, if X is a topological space, its cochain algebra
𝑅𝑋 = 𝐶∗(𝑋, 𝑅) can be promoted, by way of the Postnikov filtration, to a filtered commutative algebra.
This moreover degenerates to the cohomology ring 𝐻∗(𝑋, 𝑅) (viewed as a dga with zero differential) at
the level of associated graded.

Definition 7.12. Let A be a cosimplicial commutative algebra. By the above remark, it admits a canonical
lift to filtered cosimplicial commutative algebras. By the Rees construction, we may, in turn, view this
as a cosimplicial commutative algebra in QCoh(A1/G𝑚). We say that A is formal if the affine stack
SpecΔ (𝐴) is a constant degeneration over A1/G𝑚. Similarly, if 𝐴• is a groupoid object in coSCR𝑅, then
it is formal as a groupoid object if SpecΔ (𝐴)• → A1/G𝑚 is a constant degeneration of cogroupoids.

Remark 7.13. Let 𝑋•, · · · ,• be an 𝐸𝑛-cogroup(oid) object in spaces. Then, again using [Rak20, Propo-
sition 4.5.8], we obtain an 𝐸𝑛-cogroup(oid) object in affine stacks X•, · · · ,• over A1/G𝑚, such that in
degree (1, · · · , 1), there is an equivalence

X1 � SpecΔ (𝐶∗(𝑋, 𝑘)), X0 � SpecΔ (𝐻∗(𝑋, 𝑘)).

We remark that the 𝐸2-cogroupoid structure on 𝑆1 discussed thus far contains strictly more structure
than the cogroup object 𝑆1 in pointed spaces.

Proposition 7.14. The co-group structure on 𝑆1 viewed as a pointed space is determined by the 2-
cogroupoid structure on 𝑆1 in the ∞-category of (unpointed) spaces. In particular, the cosimplicial
object describing the cogroup 𝑆1 can be recovered as the projection to the 1st column of 𝑆1,•,•.

Proof. Recall that 2-cogroupoid object 𝑆1 is defined by as the iterated conerve of the map ∅ → pt. In
particular, this will be the conerve of the map of cosimplicial spaces

𝑆0,• → pt,

where pt is viewed as a constant cosimplicial space, and the left-hand side is given by 𝑆0 � · · · � 𝑆0

in each degree. This begets a bicosimplical object, which we see by Section 3 is an 𝐸2-cogroupoid.
Restricting to the first column (or the first row as this bicosimplicial object will be symmetric along the
diagonal) piece, one obtains the cosimplicial object given by the conerve of the map

𝑆0 → pt,

which in degree n is precisely given by 𝑆1 ∨ · · · ∨ 𝑆1. This exactly encodes the cogroup structure of 𝑆1

as an object in the∞-category of pointed spaces. �
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Corollary 7.15. The 2-cogroupoid structure on 𝑆1 determines the (formal) group structure on L𝑋
over X.

Now let us fix again a derived scheme X and turn our attention to the filtered loop space L 𝑓 𝑖𝑙𝑋 .
Note that this is a constant degeneration over A1/G𝑚, of the loop space L 𝑓 𝑖𝑙 to the vector bundle stack
corresponding to the (shifted) Lie algebra T𝑋 [−1]. The 2-cogroupoid structure on 𝑆1

𝑓 𝑖𝑙 gives this the
structure of an 𝐸2-groupoid object in formal moduli problems over 𝑋 |A1/G𝑚

. Over the generic point
𝜂 : Spec𝑘 → A1/G𝑚, this recovers the group structure on L𝑋 , and over 𝐵G𝑚, this recovers the abelian
group structure on T𝑋 [−1] arising from its structure as the (formal completion) of a linear stack.

Remark 7.16. Let 𝑋 = 𝑆1 equipped with its 𝐸1-cogroupoid structure. The formality as above is
equivalent to the question of whether or not 𝑆1

𝑓 𝑖𝑙 is a constant degeneration of 𝐸1-cogroupoid objects
over A1/G𝑚.

We already know that as an 𝐸2-cogroupoid, the degeneration is nonconstant:

Proposition 7.17. The 𝐸2-cogroupoid object 𝑆1,•,•
𝑓 𝑖𝑙 is not a constant degeneration over A1/G𝑚.

Proof. We apply mapping spaces into a derived scheme X. This gives rise to an 𝐸2-(formal)-groupoid
over 𝑋 |A1/G𝑚

. By the main theorem, 𝐵 (2)L 𝑓 𝑖𝑙 (𝑋) � 𝑋𝐻𝑜𝑑 . This obviously is not a constant degeneration
of formal moduli problems since

𝑋𝑑𝑅 � 𝑋𝐷𝑜𝑙 .

Hence, we may conclude that 𝑆1,•,•
𝑓 𝑖𝑙 is not formal as an 𝐸2-cogroupoid object. �

In fact, the failure of L 𝑓 𝑖𝑙 (𝑋) to be a constant degeneration of groups (i.e., the failure of the formality
of the pinch map 𝑆1 → 𝑆1 ∨ 𝑆1) gives rise functorially to the existence of nontrivial Todd classes for
smooth and proper schemes.

Theorem 7.18. The existence of nontrivial Todd classes implies that the cogroupoid (equivalently
pointed cogroup) structure on 𝑆1 corresponding to the pinch map is not formal.

Proof. The 𝐸1-cogroupoid 𝑆1,•
𝑓 𝑖𝑙 provides a degeneration of pointed 𝐸1-cogroup objects over A1/G𝑚;

this specializes to the cogroup (𝑆1
𝑓 𝑖𝑙)

𝑢 over the generic fiber and to 𝑆1
𝑔𝑟 over the special fiber. Note that

one recovers the filtered circle in the degree 1 stage. Recall that in characteristic zero at the level of
stacks, this is a constant degeneration, so we must verify that the cogroupoid structures are themselves
different.

Before doing so, we remark that the cogroup structure on (𝑆1
𝑓 𝑖𝑙)

𝑢 = 𝑆1
𝑓 𝑖𝑙 ×A1/G𝑚

Spec𝑘 is indeed
controlled by the cogroupoid (equivalently pointed cogroup) structure on the topological space 𝑆1. The
constant stack functor

S∗ → Stk𝑘

being a left adjoint, preserves colimits, and thus, the associated cosimplicial object in Stk𝑘 is also an 𝐸1-
cogroup. By applying affinization, we obtain a cogroup object in affine stacks; however, the affinization
morphism 𝑆1 → Aff (𝑆1) is easily seen to be a morphism of cogroups so the ‘unipotent’ loop space
Map((𝑆1

𝑓 𝑖𝑙)
𝑢 , 𝑋) (which recovers L(𝑋)) inherits the same 𝐸1 group structure over X as L(𝑋)

Let us fix X a derived scheme. The HKR theorem in characteristic zero gives rise to an equivalence

L(𝑋) � Map((𝑆1
𝑓 𝑖𝑙)

𝑢 , 𝑋) � Map((𝑆1
𝑔𝑟 )𝑢 , 𝑋) � T 𝑋 [−1]

of derived schemes over X. As we remarked earlier, these are, in fact, formally complete along X, so that
they may be viewed as formal moduli problems over X. These sit in the degree 1 piece of the simplicial
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object in formal moduli problems over X classifying the loop group and abelian group structures on
T 𝑋 [−1], respectively. These are given by L𝑔𝑟 (𝑋)•,• and L(𝑋)•,•.

The claim is that the Todd class measures the difference between these two group structures in a
functorial way. In particular, one may express the assignment

𝑋 → td(𝑋)

as the image of L•,•𝑓 𝑖𝑙 (𝑋), with its group structure induced by mapping objects from the cogroup structure
on 𝑆1,•

𝑓 𝑖𝑙 , under the following composition (of core∞-groupoids):

Grp(L 𝑓 𝑖𝑙 (𝑋)) → Grp(T𝑋 [−1]) × Grp(T𝑋 [−1])
→ IsoQCoh(T𝑋 [−1]) (TT𝑋 [−1]/𝑋 , 𝜋

∗(T𝑋 [−1])) × IsoQCoh(T𝑋 [−1]) (TT𝑋 [−1]/𝑋 , 𝜋
∗(T𝑋 [−1]))

→AutQCoh(T𝑋 [−1]) (TT𝑋 [−1]/𝑋 )
det−−→ O×T𝑋 [−1] .

Here, the first map is induced by simultaneously pulling back the group structure to the generic and
special fiber to get two different group stuctures on T𝑋 [−1] (since we are working in characteristic zero,
both the generic and special fibers are equivalent to T𝑋 [−1]). The second arrow is the assignment, to each
of these group structures, of a trivialization of the relative bundle. As described in [KP19, Construction
3.3.1], this assignment is canonical – hence the functoriality of the second arrow. The third arrow is just
the composition of the two equivalences which gives an automorphism of the relative tangent bundle.

Now let X be, in particular, smooth and proper. As we reviewed above in Section 7.1, the group
theoretical Todd class agrees with the classical Todd class. Thus, the 1-cogroupoid 𝑆1,•

𝑓 𝑖𝑙 gives rise to a
degeneration of groupoid objects, natural in X, with special fiber the abelian group structure and generic
fiber given by the loop group. The fact that there exists some smooth and proper scheme X for which
td(𝑋) ≠ 1 implies that this is not a constant degeneration. Thus, the cogroup structures on 𝑆1 and 𝑆1

𝑔𝑟

are themselves not equivalent. We may conclude from all this that the 𝐸1-cogroup in pointed spaces 𝑆1

is not formal. �

8. Consequences for Hochschild cohomology

We would like to end with a few further remarks on the 𝐸2-cogroupoid structure on 𝑆1
𝑓 𝑖𝑙 together with

consequences at the level of Hochschild cohomology.
This is presumably well known to experts, but we believe it is worthwhile explicitly relating the 𝐸2-

algebra structure on Hochschild cohomology along with its compatible HKR filtration to the cogroupoid
objects in stacks presented here.

Definition 8.1. Let X be a derived scheme. The Hochschild cohomology sheaf is defined to be

HH∗(𝑋) = 𝑝1∗𝐸𝑛𝑑O𝑋 ⊗O𝑋
(O𝑋 ).

This acquires an O𝑋 -linear 𝐸1-algebra structure. Furthermore, by, for example, [Mar09, Section 1.4],
there exists a perfect pairing

HH∗(𝑋) ⊗O𝑋 OL(𝑋 ) → O𝑋 ,

displaying HH∗(𝑋) as the O𝑋 -linear dual of OL(𝑋 ) .

Proposition 8.2. The 𝐸2-cogroupoid structure on 𝑆1 (resp. 𝑆1
𝑓 𝑖𝑙) endows HH∗(𝑋) with the structure of

an 𝐸2-algebra in Mod𝑘 , resp Fil(Mod𝑘 ).

Proof. We will prove this in the unfiltered case, but all the claims go through mutatis mutandis in the
filtered setting. Let us focus our attention of the structure sheaf ofL𝑋; the induced 𝐸2-groupoid structure
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over X will endow OL(𝑋 ) with an 𝐸2-coalgebroid structure over O𝑋 . If we take O𝑋 -linear duals, this
gives an 𝐸2-algebroid strucure on O∨L𝑋 . This bisimplicial object encodes a O𝑋 -linear multiplication
and a (O𝑋 ⊗𝑘 O𝑋 )-linear homotopy corresponding to the 𝐸2-commutativity. We may forget this to a
k-linear homotopy; this gives HH∗(𝑋) the structure of an 𝐸2-algebra in Mod𝑘 . �

As it turns out, the standard 𝐸2-algebra structure on (filtered) Hochschild cohomology may be
recovered from the 𝐸1 cogroupoid 𝑆0,•

𝑓 𝑖𝑙:

Remark 8.3. There exists an equivalence

QCoh(𝑋 × 𝑋) � Fun𝑘 (QCoh(𝑋), QCoh(𝑋)).

The left-hand side inherits a monoidal structure from the right, by composition. This is often referred
to as the convolution monoidal structure.

Proposition 8.4. The monoidal structure on QCoh(𝑋 × 𝑋) is induced by the 𝐸1-cogroupoid structure
on 𝑆0,•.

Proof. Following [GR19, Section 5.2] the assignment X ↦→ QCoh(X) can be expressed as a symmetric
monoidal functor from a certain (∞, 2)-category of correspondences (in stacks) to the (∞, 2)-category
of k-linear stable∞-categories. As a consequence, for any groupoid object M•, one obtains a monoidal
structure on QCoh(M1). This discussion now applies to the 𝐸1-groupoid Map(𝑆0,•, 𝑋), which inherits
the groupoid structure from the cogroupoid 𝑆0. The degree 1 piece is

Map(𝑆0, 𝑋) � 𝑋 × 𝑋,

so we conclude that QCoh(𝑋 × 𝑋) admits an 𝐸1-algebra structure. The equivalence

QCoh(𝑋 × 𝑋) � Fun𝑘 (QCoh(𝑋), QCoh(𝑋))

may now be upgraded to an equivalence of monoidal∞-categories by [BZFN10, Remark 4.11]. �

Remark 8.5. It is well known that one can now recover Hochschild cohomology of X, as the endomor-
phisms of the unit with respect to this monoidal structure:

HH∗(𝑋) := EndQCoh(𝑋×𝑋 )⊗ (1),

the unit here being the image of O𝑋 under pushforward along the diagonal Δ : 𝑋 × 𝑋 . In fact, as this
is endomorphisms of the unit in an 𝐸1-monoidal ∞-category, this is naturally an 𝐸2-algebra, thereby
recovering the well-known fact that HH∗(𝑋) admits an 𝐸2-algebra structure.

In fact, the above argument applies verbatim to give a monoidal structure on

QCoh(MapA1/G𝑚
(𝑆0

𝑓 𝑖𝑙 , 𝑋 |A1/G𝑚
)),

which specializes, upon pullback along Spec𝑘 → A1/G𝑚, to that of QCoh(𝑋 × 𝑋).

Corollary 8.6. There exists a filtration on Hochschild cohomology compatible with its 𝐸2-algebra
structure, with associated graded 𝐸∞-algebra Sym(T𝑋 [−1]).

Proof. By the discussion in the proof of Proposition 8.4, the ∞-category QCoh(Map(𝑆0
𝐹𝑖𝑙 , 𝑋 |A1/G𝑚

))
acquires a monoidal structure. Moreover, this monoidal structure is linear over the base in that it is
QCoh(A1/G𝑚)-linear. Thus, one may define the enriched (over QCoh(A1/G𝑚) � Fil(Mod𝑅)) endo-
morphism object

HH∗𝑓 𝑖𝑙 (𝑋) := EndQCoh(Map
A1/G𝑚 (𝑆

0
𝑓 𝑖𝑙

,𝑋 |
A1/G𝑚 ))

(1) ∈ QCoh(A1/G𝑚) � Fil(Mod𝑅).
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As endomorphisms of the unit in an 𝐸𝑛-monoidal category acquire an 𝐸𝑛+1 monoidal structure, this gives
rise to the 𝐸2-monoidal structure on HH∗𝑓 𝑖𝑙 (𝑋). This base changes to HH∗(𝑋) � EndQCoh(𝑋×𝑋 )⊗ (1)
upon passing to the generic fiber, thus recovering the 𝐸2-monoidal structure on Hochschild cohomology.

Let us now pass to the central fiber. By Koszul duality, together with the fact that

Map(Spec(𝑘 [𝜖]/(𝜖2), 𝑋) � Spec Sym(L𝑋 ) � T𝑋 ,

one obtains an equivalence

End(1) � Sym∗(T𝑋 [−1]).

�

Remark 8.7. We remark that we have now exhibited two 𝐸2-algebra structures on Hochschild cohomol-
ogy (and its filtered variant): one defined via the 𝐸2 cogroupoid 𝑆1,•,• and the standard one defined by
composition of natural transformations, now seen to be induced by the 𝐸1-cogroupoid 𝑆0,•. We claim
that they are equivalent, but we do not include an argument here.

Remark 8.8. The same argument as that of Corollary 8.6 goes through to show that 𝐸𝑛-Hochschild
cohomology,

HH∗𝐸𝑛
(𝑋) := EndQCoh(L(𝑛−1) (𝑋 )) (1),

obtains an 𝐸𝑛+1 algebra structure. For example, QCoh(L(𝑋)) will obtain an 𝐸2-monoidal structure,
with unit given by the pushforward 𝑒∗(O𝑋 ) along the constant morphism

𝑒 : 𝑋 → L(𝑋).

Hence, we recover an 𝐸3-algebra structure on HH∗𝐸2
(𝑋).

We remark that an alternative but closely related explanation for the 𝐸𝑛+1 structure on n-iterated
Hochschild cohomology may be found in [Toë13].
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