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ABSTRACT. Determining a calving law valid for all glaciological and environmental regimes has proven
to be a difficult problem in glaciology. For this reason, most models of the calving process are semi-
empirical, with little connection to the underlying fracture processes. In this study, I introduce methods
rooted in statistical physics to show how calving laws, valid for any glaciological domain, can emerge
naturally as a large-spatial-scale/long-temporal-scale limit of an underlying continuous or discrete
fracture process. An important element of the method developed here is that iceberg calving is treated
as a stochastic process and that the probability an iceberg will detach in a given interval of time can
be described by a probability distribution function. Using limiting assumptions about the underlying
probability distribution, the theory is shown to be able to simulate a range of calving styles, including
the sporadic detachment of large, tabular icebergs from ice tongues and ice shelves and the more
steady detachment of smaller-sized bergs from tidewater/outlet glaciers. The method developed has the
potential to provide a physical basis to include iceberg calving into numerical ice-sheet models that can
be used to produce more realistic estimates of the glaciological contribution to sea-level rise.

1. INTRODUCTION
Iceberg calving is one of the most prominent and least
understood of the ice-sheet processes, accounting for
between half and two-thirds of the mass lost from the
Greenland and Antarctic ice sheets (Biggs, 1999; Rignot
and others, 2008). Moreover, the highly nonlinear episodic
retreat of Greenland outlet glaciers may be analogous to
tidewater glacier behavior, where the sustained acceleration
and retreat of Columbia Glacier, Alaska, may provide
an apt analogy to the more recently observed retreat of
Greenland outlet glaciers (Howat and others, 2007; O’Neel
and others, 2007). The connection between iceberg calving
and dynamics over a wide variety of glaciological domains
is further illustrated by the acceleration of tributary glaciers
feeding the Larsen B ice shelf, Antarctica, following its
demise in 2002 (e.g. Scambos and others, 2004). Despite
the important role that iceberg calving plays in the mass
balance and dynamics of ice sheets and glaciers, we do not
yet have a satisfactory mathematical or physical model of
the calving process that can be implemented in numerical
ice-sheet models as a seaward boundary condition.
Since iceberg calving is ultimately tied to fracturing of

the ice, one approach to developing a mesoscopic (i.e.
fracture-level) model of calving is to attempt to simulate
the initiation, propagation and interaction of some or all
fractures within the ice using, for example, linear elastic
fracture mechanics or damage mechanics (Weertman, 1977;
Bahr, 1995; Rist and others, 2002; Pralong and Funk,
2005). However, due to the large uncertainty in how to
treat the fracture process and the enormous computational
complexity involved in its simulation, few studies have
pursued this approach. Most studies have focused instead on
parameterizing mass lost due to calving using calving laws,
in which a calving rate, Vc, defined as the length lost due to
calving divided by a finite time interval, is given as a function
of one or more internal or external variables (e.g. Brown
and others, 1982; Van der Veen, 2002; Alley and others,

2008). The calving law provides a working relationship
describing the rate of advance or retreat of the calving front
that can be easily incorporated into numerical models as a
boundary condition. The computational efficiency, however,
comes at a steep price: calving laws tend to be empirically
derived with little connection to the underlying physics of
fracture. Because of this disconnect, calving laws consist
of a patchwork of empirically based, often competing,
statistical relationships, each of which is derived for a specific
glaciological environment (Brown and others, 1982; Van
der Veen, 2002; Benn and others, 2007; Alley and others,
2008). Without a physical basis, these statistical relationships
may fail when extrapolated into the future. This risk is
highlighted by the behavior of Columbia Glacier, which,
contrary to the previously held belief that temperate ice
cannot support buoyancy stresses, has recently developed
a floating terminus (Walter and others, 2010).
Success in incorporating iceberg calving into continental-

scale ice-sheet models hinges on formulating (and testing)
macroscopic parameterizations of the calving process in
which time-averaged mass loss from calving glaciers is
related to internal dynamics, geometric variables and/or
external mechanical forcings. Some efforts have been made
to develop an all-encompassing unified calving law that is
valid for all glaciological regimes, including floating and
grounded termini and encompassing both tidewater and
lacustrine glaciers, in the hope that a general calving law will
be less likely to fail when glaciers are pushed into a different
climate and/or glaciological regime (Van der Veen, 2002;
Benn and others, 2007; Amundson and Truffer, 2010). These
efforts presuppose that a single calving law that describes
calving from all (or at least the most relevant) glaciological
regimes exists, an assumption of unknown validity.
If calving is related to fracture, calving laws also should

not be entirely independent of the fracture physics. Instead,
the calving law should emerge from the fracture physics
as a large-spatial-scale/long-temporal-scale limit of the
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Fig. 1. Illustration showing the discrete geometry used in the
asymmetric random walk. The length of the glacier is assumed to
be discrete and confined to equally spaced nodes, x = 0, Δx, 2Δx,
. . ., NΔx. Transitions are permitted only to adjacent nodes.

underlying fracture mechanics, akin to the emergence of
thermodynamic behavior in the macroscopic limit of many
interacting molecules. In this study, I introduce methods
rooted in statistical physics not only to verify this conjecture,
but also to show that macroscopic calving laws can be
derived systematically from the mesoscopic (i.e. fracture-
scale physics) as a mean field theory. Key to the methods de-
veloped here is that iceberg calving is treated as a stochastic
process and that the probability that an iceberg will detach in
a given interval of time can be described by a probability dis-
tribution. In this approach, it is necessary to specify the prob-
ability that an iceberg detaches along a given boundary as a
process that only depends on the current state (i.e. a Markov
process); fatigue failure is excluded from this approach
unless an auxiliary latency variable is introduced. Given that
iceberg calving is a sporadic process and the uncertainties in
initial conditions and external forcings (winds, ocean swell,
etc.) are large, this approach may be unavoidable.
Since I expect many glaciologists have not been exposed

to statistical mechanics and may be unfamiliar with much
of the terminology and techniques used here, I start by
considering a toy model of glacier advance and retreat based
on the simplest stochastic system, a discrete random walk.
The purpose of this example is to introduce readers to (1) key
definitions such as stochastic realizations and transition rates
and (2) the concept of ensemble averaging as a replacement
for time averaging and as a means of computing probability
distribution functions (PDFs) of terminus position. Once the
probability distribution of terminus position as a function of
time is known, it is possible to compute quantities such as
the expected value (and higher-order moments) of terminus
position, calving rate and terminus velocity.
The random walk is also used to introduce the reader

to the ‘master equation’, a first-order differential equation
that directly describes the time evolution of the probability
density distribution of terminus position (section 2.3). In
section 3, a more general master equation is derived that
permits both continuous glacier advance (based on terminus
velocity) and calving events of arbitrary size. The theory is
then applied, in section 4, to calving from flowline models
of (1) freely floating termini, such as ice tongues and ice
shelves (with simple geometries), and (2) grounded termini,
such as tidewater and lacustrine glaciers. In the first case,
the probability of detachment from any place along the ice
tongue length is assumed to be approximately equal, giving
rise to the sporadic detachment of large tabular icebergs. In
the second case, the probability of detachment is assumed
to be much greater within a region of approximately one
ice thickness from the terminus, giving rise to more frequent
smaller calving events and a calving rate that is, under

limiting circumstances, proportional to the ice thickness.
Finally, in section 5 a systematic expansion of the master
equation is shown to provide a more general, universally
valid macroscopic calving law. The calving law emerges
naturally from the underlying stochastic dynamics as an
expansion of the expected value of terminus position over
spatial scales that are large compared with the typical iceberg
size and for timescales that are long compared with the
recurrence interval between calving events. This proves that
calving laws, valid for any glaciological regime, can be
systematically computed, provided a mesoscopic model of
fracture is specified.

2. INTRODUCTION TO THE STOCHASTIC
MODELING APPROACH
2.1. Toy model of glacier calving: discrete
asymmetric random walk
In this model, the ‘state’ of the glacier is determined solely by
the position of the ice front/terminus, assumed to be confined
to discrete, equally spaced nodes (Fig. 1). The notation used
throughout is that Pi,j means the probability of transition
from the jth state to the ith state. The random walk proceeds
according to the following rules: (1) If the glacier terminus is
located at the ith node, the probability it will ‘hop’ forward or
transition to the (i + 1)th node during a (short) time interval,
Δt , is Pi+1,i = αiΔt . (2) The probability the terminus will
hop backwards (by calving) to the (i − 1)th node is Pi−1,i =
βiΔt . (3) The probability that the terminus position neither
transitions forward nor backward is Pi,i = 1 − (αi + βi )Δt ,
since probability mass distribution must sum to unity. The
parameters αi and βi are called transition rates and have
units of inverse time.
The probability of two hops in a single time-step will be

of order O(Δt2), three hops O(Δt3) and so on. Taking Δt
sufficiently small, these higher-order terms can be neglected.
A realization of the model corresponds to a set of N
steps, Δx, n = 1, . . . ,N, where Δxn takes on values of
+Δx, 0,−Δx, chosen at random, based on the transition
rates αi and βi . The αi and βi may be functions of position
that depend on, for example, ice thickness, stress or strain
rate or terminus velocity, but are assumed to be otherwise
independent of time.
The simplest case corresponds to constant αi and βi .

Figure 2 shows realizations of the random walk for three
different choices of α and β. Units are chosen such that
Δx = 1 and the time-step interval Δt = 0.1. In Figure 2a,
the probability of advance is equal to the probability of
retreat (α = β) and there is no preference for advance
or retreat. Nonetheless, it is evident that even though the
mean position of the terminus does not change, there are
fluctuations in the magnitude of displacement that increase
with time. In Figure 2b, α > β and, on average, the glacier
advances, although there are again fluctuations that cause
the occasional retreat. Similarly, Figure 2c shows that the
glacier tends to retreat when α < β, also with occasional
fluctuations superimposed on the mean trend.
For this simple example, the rate of terminus advance

(negative implies retreat) is undefined during each hop and
is zero between hops. This relationship does not particularly
illuminate the longer-timescale trends in terminus advance.
It is, however, emblematic of the observational problem
of determining a calving rate or rate of terminus advance
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Fig. 2. Three realizations of the random walk for different transition rates. (a) Equal probability of advance and retreat for each time-step.
Even though there is no preferred direction, the magnitudes of fluctuations away from x = 0 increase over time. (b) An example of glacier
advance where α > β. (c) An example of glacier retreat where α < β.

from a time series of individual calving events. Macroscopic
variables, such as the rate of terminus advance and calving
rate, are only meaningful when considering averages over
time, lest the discrete nature of calving events manifests itself
in the signal. Moreover, when observations are constrained to
a small interval of time it is difficult to distinguish trends from
fluctuations. For instance, Figure 2c shows that, although the
overall trend is decreasing terminus position, fluctuations
about this trend lead to periods of time with a net rate of
advance.

2.2. Ensemble averages
It is often useful to calculate the time-averaged rate of
terminus advance dL/dt :〈

dL
dt

〉
(τ ) =

1
N

N∑
i=1

Δxi , (1)

where τ is the averaging interval, N is the number of steps
and angle brackets are used to denote averages. Defined
this way, the average rate of terminus advance is implicitly
a function of the averaging interval, τ ; different averaging
intervals will yield different rates of terminus advance.
Although rarely explicitly stated, this definition is typically
implied whenever the terms ‘rate of terminus advance’ or
‘calving rate’ are used. Because of the dependence on
averaging interval, τ , Equation (1) is of limited utility, unless,
for sufficiently large τ , the average value becomes insensitive
to the precise value of τ .
Alternatively, instead of averaging over time, many

realizations (such as those in Fig. 2) can be computed and
the rate of terminus advance determined by the average of
these realizations:〈

dL
dt

〉
(t ) =

1
M

M∑
k=1

Δxk (t ), (2)

where Δxk are the individual realizations of terminus
position (as a function of time) and M is the number of
realizations. The system is said to be ergodic if time averaging
over a suitably long time is equivalent to ensemble averaging
over a large number of realizations. Although many systems
are assumed to be ergodic (and this is the fundamental
ansatz of statistical mechanics), there is no reason to suppose

that glacier retreat/advance is ergodic. Nonetheless, the
ensemble averages are often more convenient to perform
and it is this expectation value that is used throughout
the remainder of this paper, with the understanding that
this ensemble-averaged expectation value is only equivalent
to the time-averaged expectation value in the special
circumstance that the system is ergodic (which it is for the
random walk).
The advantage of the ensemble average is illustrated in

Figure 3, which shows the probability distribution computed
from a normalized histogram of 1000 realizations of the
random walk at three different points in time for the same
values of α and β as in Figure 2. In all three cases the
probability distribution broadens over time, implying a larger
probability that the glacier will be found a greater distance
from the mean position. Figure 3b and c show that the
centroid of the probability distribution drifts over time when
α �= β with drift velocity determined by α − β. In all
examples, fluctuations can constructively add up to drive
the glacier terminus away from the expected position. Even
when α = β and 〈dL/dt〉 = 0, the expected value of the total
change in length of the glacier increases with increasing time,
i.e. 〈L2〉 > 0. This hints that it may be important to determine
not only the peak of the distribution, but also its width.
The advantage of the ensemble method is that individual

trajectories can be tracked through time and compared with
observations. However, the brute force method of computing
the probability distribution by performing thousands of
iterations is neither feasible nor desirable for large-scale
ice-sheet models, where the computational cost of a single
model run may be prohibitive. If individual trajectories are
not needed, it is possible to formulate an equation – the so-
called master equation – that describes the time evolution of
probability density directly.

2.3. The master equation
The master equation (sometimes less prosaically referred to
as the M equation) is a differential equation describing the
rate of change of probability, obtained in the limit Δt → 0
(e.g. Van Kampen, 1992). In the discrete case, it is usually
written in the form:

dPn
dt

=
∑
n′
(Wnn′Pn′ −Wn′nPn ) , (3)

https://doi.org/10.3189/002214311795306745 Published online by Cambridge University Press

https://doi.org/10.3189/002214311795306745


6 Bassis: Statistical physics of iceberg calving

Fig. 3. Normalized probability distribution of terminus position at three points in time. The probability distribution is computed using two
different methods. The first method is an ensemble average of 1000 realizations (shaded regions). The second method obtains the PDFs
directly by solving the master equation (smooth black curves). The three panels correspond to the three different choices of transition
probabilities used in Figure 2.

where Pn is the probability that the terminus is located at the
nth node at time t and the elementsWnn′ are transition rates
from state n′ to state n (e.g. Van Kampen, 1992, p. 96–97).
Written this way, it is clear that the first term on the right-hand
side of the master equation is a source term, representing
the increased probability that the nth state is occupied by
transitions from other states into the nth state. The second
term on the right-hand side is a loss term, representing the
decrease in probability due to transitions out of the nth
state into other states. Note that in the master equation
formulation, it is not necessary to knowWnn since the change
in probability distribution is unaffected by self-transitions as
these are neither gains nor losses. Equation (3) represents a
linear system of first-order differential equations for the mass
probability distribution that the glacier occupies any of the
n sites.
For the discrete asymmetric random walk, excluding self-

transitions (which do not change the probability), the only
nonzero transition rates are:

Wn,n+1 =Wn−1,n = β, Wn,n−1 =Wn+1,n = α. (4)

Substituting these transition rates into Equation (3) provides
the master equation for the asymmetric random walk:

dPn
dt

= αPn−1 − (α+ β)Pn + βPn+1. (5)

The solution of Equation (5) for all n provides the evolution
of the probability of finding the terminus at any position as
a function of time.
The solid black curve in Figure 3 shows the evolution of the

probability distribution, computed by solving Equation (5)
numerically using a forward Euler time-step with a delta
function initial condition. The initially narrow probabil-
ity distribution broadens over time and drifts with rate
α−β, analogous to what was observed using the brute force
method of section 2.2. This time, the probability distribution
is a smooth Gaussian, lacking the spikiness of the ensemble
method. So long as individual realizations of the process are
not what is of interest, solving the master equation is much
more accurate and efficient than averaging over realizations.
However, even when the mean terminus position is zero
(α = β), the PDF does not have a steady-state solution.

Instead, it broadens over time, and uncertainty in the location
of the terminus position increases until all prognostic infor-
mation is lost. Crucially, without a steady-state probability
distribution, there is no macroscopic calving law that can be
extracted from this model. Although simplistic, this model
highlights the fundamental difference between the stochastic
approach advocated here and fully deterministic approaches.
In the absence of a sharply peaked probability distribution,
the mean of the distribution may be meaningless. To obtain
a useful mean rate of terminus advance, it is also necessary
to know something about the width of the distribution and
how this changes over time.
The utility of the master equation goes beyond merely

being an efficient means of computing the probability
distribution. If only the expected value of the probability
distribution is sought, it is possible to solve for this (and
higher-order moments) directly instead of solving for the
entire distribution. This provides the potential for further
gains in efficiency and foreshadows the techniques used to
obtain calving laws that will be developed later.
The expected value of terminus position can be computed

from Equation (5) by multiplying by terminus position, n, and
summing over all states:

d
dt

∑
n

nPn =
d
dt
〈L〉 = 〈α〉 − 〈β〉, (6)

where 〈L〉 denotes the expected value of the terminus
position and 〈α〉 and 〈β〉 denote the expected value of the
transition rates. (In this case the expected values of αi and
βi are trivial since both are constant.)
Equation (6) is valid for unit spacing between discrete

nodes. If the nodes are instead spaced a distance Δx apart,
the expected rate of change of terminus position is obtained
by multiplying Equation (5) by nΔx and summing over all
states to find

d
dt
〈L〉 = 〈αΔx〉 − 〈βΔx〉. (7)

Equation (7) is a macroscopic equation describing the
evolution of the terminus as a function of expected values
of forward and backward transition rates and node spacing.
Physically, the left-hand side of Equation (7) describes
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the expected rate of change of terminus position where,
unlike previous calving laws, the expected value is an
ensemble average instead of a time average. The term 〈αΔx〉
corresponds to the expected value of terminus velocity, u; the
term 〈βΔx〉 corresponds to the magnitude of the expected
calving rate, Vc. With these definitions, Equation (7) can be
rewritten in the more familiar form:

d
dt
〈L〉 = 〈u〉 − 〈Vc〉. (8)

The so-called calving law for the random walk is thus

〈Vc〉 = 〈βΔx〉. (9)

For the randomwalk, the calving rate has an obvious physical
interpretation: it is the expected value of the product of
iceberg size and iceberg detachment frequency. With this
in mind, the expected value of terminus advance is zero
when α = β, as previously demonstrated. When α �= β,
the expected rate of terminus advance (or retreat) is α− β.
The random walk model can be made more physically

relevant by, for example, choosing spatially variable αi
and βi that correspond to functions of glacier geom-
etry/dynamics. For instance, the αi must be related to the
terminus velocity, u(x), while the probability of calving,
βi , may be chosen to be suitable functions of terminus
ice thickness, water depth, etc. However, the model will
still suffer from the defect that all icebergs have the same
size and, in the absence of calving events, the terminus
position hops forward discretely rather than continuously
advancing. In section 3, a more realistic continuous model is
proposed, that permits calving events of arbitrary size while
allowing continuous advection of the terminus position (by
ice flow).

3. STOCHASTIC MODELS OF ICEBERG CALVING
3.1. Continuous advection of the terminus
In the discrete model, during each time-step there are three
options: the terminus position either remains fixed, or hops
forward a distance Δx or hops back a distance Δx. A more
realistic model may assume that while calving is a random
process, the terminus still advances every time-step based on
the terminus velocity (determined from an ice-sheet model).
Replacing the previously random transition rate, α, with a
deterministic forward transition rate, u/Δx, where u is the
velocity at the terminus, the master equation in the absence
of calving is

dP (xn)
dt

+
1
Δx

(
u(xn )P (xn )− u(xn−1)P (xn−1)

)
= 0,

where Pn = P (xn ), Pn−1 = P (xn − Δx) and so on. In
anticipation of taking the limit Δx → 0, the probabilities
have been written explicitly as functions of the positions
separated by a distance Δx. Writing them this way makes
clear the connection with the upwind finite-difference
version of the continuity equation.
Taking the limit Δx → 0, while keeping the product

u(x) = α(xn )Δx constant, yields an advection equation for
probability:

∂p(x, t )
∂t

+
∂(p(x, t )u)

∂x
= 0, (10)

where the lower-case symbol p has been substituted for
P to indicate that the discrete probability distribution is
now a probability density distribution (probability per unit

length). Equation (10) is a probability continuity statement
and shows that probability advects forward over time with
velocity u. If the initial condition is a very narrow delta-
like function, the delta function advects forward over time
and the deterministic relationship with ice-front advance in
the absence of calving is recovered. Numerical diffusion,
associated with discretization of Equation (10) will cause
an initially narrow distribution to broaden (or diffuse) over
time, in a manner that is analogous to the broadening
due to assuming a forward transition rate. Because of this,
in some applications it may be convenient to exploit the
equivalence of the discretized continuity equation with the
discrete stochastic process with transition rates determined
by the terminus velocity.

3.2. Icebergs of arbitrary size
To include calving of events of arbitrary size, the master
equation can be generalized from discrete to continuous
states by replacing the sum in Equation (3) by an integral
over all states:∑

n′
(Wnn′Pn′ −Wn′nPn )

→
∫(
W (x|x ′)p(x ′, t )−W (x ′|x)p(x, t ))dx ′,

(11)
where the notation W (x ′|x) indicates the transition rate
from state x to x ′ (i.e. from terminus position x to x ′). In
the continuous limit, the transition rates, W (x|x ′), have the
dimension of inverse time per unit length.
Combining Equations (10) and (11), the master equation

can be expressed as an integro-differential equation

∂p(x, t )
∂t

+
∂(p(x, t )u)

∂x
=
∫(
W(x|x ′)p(x ′, t )−W(x ′|x)p(x, t ))dx ′.

Because calving always decreases the length of the glacier,
transitions x ′ → x are prohibited if x > x ′, thusW (x|x ′) = 0
for x > x ′. Choosing a coordinate system where x measures
the length of the glacier so that x ≥ 0, the lower limit of
the integrals is zero and the master equation can be more
intuitively written

∂p(x, t )
∂t

+
∂(p(x, t )u)

∂x

=
∫ ∞

x
W (x|x ′)p(x ′) dx ′ − p(x, t )

∫ x

0
W (x ′|x) dx ′,

(12)

where the first term on the right-hand side represents the
probability that a glacier longer than x calves back to x and
the second term represents the probability that a glacier with
initial length x calves back to x ′, a length that is less than x.
It remains to specify the form for the calving transition

rates, W (x ′|x). Rather than attempting a complete specifi-
cation of transition rates here, the flexibility of the theory is
illustrated using two glaciologically relevant limiting cases
to show the theory is able to reproduce (qualitatively at
least) both the infrequent, sporadic detachment of large
tabular bergs from ice tongues and ice shelves and the
more frequent, smaller-sized calving events from tidewater
glaciers. These two limiting cases are used in section 4.3
to illustrate how approximate calving laws can be deduced
from the master equation, providing the motivation for
the more general, systematic expansion of the master
equation in section 5, from which universal calving laws
are determined.
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4. EXAMPLES
4.1. Example 1: calving from ice tongues and
ice shelves
In this first example, it is assumed that calving from anywhere
along the ice tongue length is permitted and is equally
likely everywhere. At first sight this appears to be a severe
and unrealistic assumption. However, for ice tongues and
ice shelves that protrude beyond their embayments/pinning
points it may be justified by noting that, away from the
grounding line, ice thickness, strain rate, stress, etc. have
small gradients and are nearly constant over length scales
that are large compared to the ice thickness. If the transition
rates are assumed to be functions of these large-scale internal
variables, it is reasonable to suppose that transition rates
are also nearly constant. This line of reasoning neglects the
small additional bending stresses that occur near the ice-
tongue/ice-shelf terminus that might favor the detachment of
ice-thickness-sized bergs (Reeh, 1968). However, since mass
lost by calving from ice shelves and ice tongues is dominated
by large tabular bergs, neglecting these stresses may be a
reasonable first approximation. In principle, it is possible to
include bending stresses along with structural features such
as pre-existing rifts, suture zones that might hinder or favor
detachment of icebergs from some places, by allowing for
spatially variable transition rates.
The assumption of constant transition rates also corres-

ponds to a modest generalization of a calving law proposed
by Benn and others (2007). They argued that an iceberg will
detach from a glacier anywhere the glaciological stress is
sufficient to cause a fracture to either propagate all the way
to the bed or, if the glacier terminates in a body of water, to
sea or lake level. The latter condition was invoked under the
assumption that a well-developed drainage network exists
and this causes crevasses that penetrate to water level to
immediately fill with water and hydraulically fracture to the
bed. This condition is also assumed to be true irrespective of
the type of glacier (e.g. freely floating, tidewater, confined or
unconfined) and irrespective of whether the body of water
is a lake or an ocean. Cold Antarctic ice shelves and ice
tongues are unlikely to have a well-developed drainage
system. However, one may argue that this condition may
be approximately satisfied if basal crevasses intersect with
surface crevasses.
In the absence of meltwater, the ratio of the depth to which

a surface crevasse will propagate, d , to the ice thickness, H,
can be calculated based on the depth when those forces
opening a crevasse are exactly balanced by the hydrostatic
weight of the ice closing the crevasse (Benn and others,
2007):

d
H
=

2
ρigH

(
ε̇

A

)1/n
, (13)

where ε̇ is the depth-averaged longitudinal strain rate, ρi
is the density of ice, g is the acceleration due to gravity,
A is the rheological rate parameter and n is the flow-
law exponent. A straightforward, heuristic generalization of
the crevasse penetration depth criterion supposes that an
iceberg detaches when the ratio of surface crevasse depth
to ice thickness exceeds a predefined threshold that is ≤1.
However, for a freely floating ice tongue, unencumbered by
lateral drag or ice rises, the predicted ratio, d/H, in the long-
wavelength shallow-shelf approximation is constant. This
model then leads to the unsatisfyingly unstable prediction

that ice tongues either advance to infinity or retreat to the
grounding line, depending on the value chosen for the
calving threshold.
In keeping with the spirit of the present work, one might

instead assume that the transition rates are functions of the
penetration ratio, i.e. λ = f (d/H) = constant. Conceptually,
the transition rates would govern the probability that a
surface crevasse intersects with a basal crevasse and this
probability is controlled by the penetration ratio, d/H.
Unlike in the purely deterministic viewpoint, random
perturbations to the stress field caused by ocean waves,
collisions with passing icebergs, large local variations in
basal melt/refreeze rates, etc., may result in basal or surface
crevasses that penetrate to a greater (or lesser) depth than
one would otherwise expect.
Adopting the hypothesis that transition rates are (nearly)

constant implies

W (x|x ′) =
{
λ x < x ′

0 otherwise,
(14)

where λ is a constant transition rate. The master equation is
then written

∂p(x, t )
∂t

+
∂(p(x, t )u)

∂x
= λ

∫ ∞

x
p(x ′, t ) dx ′−λxp(x, t ), (15)

where x = 0 represents the grounding line, a point beyond
which the tongue is (for illustrative purposes) prohibited from
retreating. For large x, the right-hand side of Equation (15)
is negative, implying very long ice tongues are more likely
to calve back than to advance. In contrast, for small x, the
second term on the right-hand side will be negligible and the
right-hand side will be positive. This means short ice tongues
will be more likely to advance than retreat. The probability
of calving increases (decreases) with increasing (decreasing)
ice tongue length. Because of this, a steady-state distribution
of ice tongue lengths is possible.
To provide a more concrete visualization of the calving

behavior of the ice tongue model, Figure 4a shows an
example of a realization of this model, computed using an
analytic solution for the ice tongue velocity (e.g. Van der
Veen, 1999, p. 163, equation (6.6.8)) with ice thickness and
ice flow velocity at the grounding line prescribed to be
1000m and 250ma−1, softness of the ice B = 108 Pa s1/3

and an initial condition of zero length. For this example, the
terminus exhibits a sawtooth pattern of advance and sporadic
retreat, reminiscent of the detachment of large, tabular bergs
from ice tongues and ice shelves. Although calving events
of all sizes are equally likely, large calving events remove
more of the ice tongue and dominate the calving portion of
the signal.
The recurrence interval between calving events is de-

termined by the magnitude of the transition rates. Larger
transition rates lead to more frequent calving events and
a shorter ice tongue. Conversely, a larger terminus velocity
will result in faster terminus advance between calving events
and hence a greater mean ice tongue length. However, since
calving is equally likely from anywhere within the ice tongue,
a longer ice tongue permits larger calving events. This
will result in a longer-tailed probability distribution. Hence,
longer ice tongues have a larger variance and skewness
in the probability distribution than smaller tongues. This
is illustrated in Figure 4b, which shows the probability
distribution computed by solving Equation (15) for two
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different inflow velocities. In this example, in direct contrast
with the random walk, a steady-state probability distribution
is reached after a few decades. Furthermore, the shape of the
probability density distribution is clearly non-Gaussian, with
a long tail that increases with increasing terminus velocity. To
reiterate, the prediction of sporadic calving of large tabular
bergs emerges in this example solely because transition rates
are nearly constant and is independent of any assumptions
about the actual physics that governs the transition rates.

4.2. Example 2: calving from tidewater and
lacustrine glaciers
In the previous example, stress, strain rate, ice thickness,
etc., were all assumed to have relatively small gradients
along the entire ice tongue length. In contrast, many calving
glaciers (defined here to be any glacier with a grounded
terminus, including tidewater and lacustrine) exhibit large
variability in strain rate, stress and ice thickness in the
near-terminus region, especially as the glacier terminus
approaches flotation (O’Neel and others, 2001). In keeping
with the previous discussion, it may still be appropriate to
assume that transition rates are a function of the penetration
ratio, λ = f (d/H). However, it is now assumed that f (d/H)
is strongly peaked in a near-terminus region of characteristic
size Δx. In this case onemight suppose that the characteristic
size of this region ought to be approximately proportional
to the ice thickness, H. This appears to be reasonable, in
that icebergs that calve from calving glaciers tend to be ice-
thickness and/or sub-ice-thickness sized rather than tabular.
Assuming the transition rates beyond a distance H are

negligibly small, the master equation for near-terminus
calving is:

∂p(x, t )
∂t

+
∂(p(x, t )u)

∂x

=
∫ x+H

x
W (x|x ′)p(x ′, t ) dx ′ − p(x, t )

∫ x

x−H
W (x ′|x) dx ′.

(16)

It is further assumed that the probability that an iceberg
detaches at point x depends only locally on properties at x
(and not the terminus position, x ′) and hence the transition
rates can be written more simply in the formW (x|x ′) = λ(x),
where λ(x) is a spatially variable transition rate. The integrals
on the right-hand side of Equation (16) can be approximated
using the midpoint rule[

λ(x)p
(
x +

H
2
, t
)
− p(x, t )λ

(
x − H

2

)]
H,

followed by a Taylor series expansion about x ±H/2,

λ(x)
(
p(x, t ) +

∂p(x, t )
∂x

H
2

)
H

−p(x, t )
(
λ(x) − ∂λ(x)

∂x
H
2

)
H +O(H3) ≈ ∂

∂x

(
λ(x)p(x, t )

)H2
2
,

to transform the master equation from an integro-differential
equation into a partial differential equation:

∂p
∂t
+

∂

∂x

(
p(x, t )u

)
=

∂

∂x

(
λ(x)p(x, t )

) H2
2

. (17)

The iceberg size vanishes as H → 0, as does the calving
rate. This shows that the calving rate is finite for finite
ice thickness, but decreases (increases) as the ice thickness
decreases (increases) and is analogous to the dependence of

Fig. 4. (a) The blue line shows a realization of the ice-tongue
calving model with terminus velocity computed using an analytic
solution for terminus velocity (e.g. Van der Veen, 1999, p. 163,
equation (6.6.8)). For this example, the thickness at the grounding
line is 1000m, the ice-flow velocity at the grounding line is
250ma−1, the rate factor is B = 108 Pa s1/3 and the (constant)
transition rate λ = 0.01 km−1 s−1. The red bars show the
size of icebergs that detached. The solid black curve shows the
terminus position computed using the macroscopic calving law
(Equation (30) with corrections due to fluctuations omitted). The
shaded gray area traces out the variance in terminus position,
computed using Equation (44). (b) The steady-state probability
density distribution, computed from the master equation using
the same parameters as in (a) (shaded blue region) and for an
increased ice-flow velocity at the grounding line of 800ma−1
(shaded red region). Here, unlike in the random walk, the PDF
shown corresponds to a steady-state solution of the master equation
that is reached after a few decades.

calving rate on node spacing, Δx, determined for the random
walk (section 2.3).
Finally, the transition rate per unit ice thickness is

approximately constant, so defining λ(x) = 2β(x)/H(x),
where the factor of two has been introduced for convenience,
and making use of the chain rule followed by the product
rule, the master equation now becomes

∂p
∂t
+

∂

∂x

(
p(x,t )u

)
=

∂

∂x

(
Hβ(x)p(x,t )

)−2β(x)p(x,t )∂H
∂x

. (18)

Note that β(x) has units of inverse time, consistent with
the discrete transition rates for the discrete random walk
discussed previously.
Taking the ice thickness to be approximately constant

in the near-terminus region (i.e. averaged over a one-ice-
thickness spatial scale), the last term on the right-hand side
of Equation (18) can be dropped and the master equation
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10 Bassis: Statistical physics of iceberg calving

Fig. 5. (a) A single realization of the calving model with constant
terminus velocity (u = 1 in dimensionless units) and transition rates
linearly increasing with distance, β = x/40. The solid black curve
shows the terminus position computed using the macroscopic law
(Equation (22)). The shaded gray area traces out the variance in the
terminus position, computed using Equation (46). (b) The probability
distribution computed from the master equation at three points in
time. The initial condition is a delta function centered at x = 0. As
in (a), the peak of the PDF advances and broadens over time until a
steady-state mean and width are reached. Unlike the ice-shelf/ice-
tongue example, the distribution appears nearly Gaussian at all but
the earliest stages of evolution.

further approximated as

∂p
∂t
+

∂

∂x

(
p(x, t )u

) ≈ ∂

∂x

(
Hβ(x)p(x, t )

)
. (19)

This last simplification corresponds to neglecting the variabil-
ity in the characteristic size of icebergs (and hence calving
rate) induced by gradients in the near-terminus ice thickness.
If the spatial derivatives are approximated using upwind

differences and defining the discrete transition rates

βi =
β(xi )H(xi )
Δx

, (20)

αi =
u(xi )
Δx

, (21)

the discretized version of Equation (19) has the same form as
the asymmetric randomwalk with spatially varying transition
probabilities:

dPn
dt

= αn−1Pn−1 − (βn + αn )Pn + βn+1Pn+1,

where Pn = pnΔx. Unlike the random walk, where the
terminus can advance, retreat or stay in the same position,

here the terminus continually advances, by a distance uΔt
each time-step (where u is the terminus velocity).
Figure 5a, shows one realization for this calving model,

computed with constant terminus velocity (u = 1 in
dimensionless units) and transition rates linearly increasing
with distance, α = x/40. This choice is arbitrary,
but if the transition rates increase with water depth
(increased probability that a surface crevasse intersects with
a basal crevasse or plumbing system), this example would
correspond to a calving glacier advancing into deeper
water. Inspection of Figure 5 shows that there is an initial
period of slow terminus advance with superimposed small
fluctuations until t ≈ 100, after which the terminus
position fluctuates about a steady position. The probability
distribution, determined by solving the master equation at
three points in time with a delta function initial condition
at x = 0, is shown in Figure 5b. The peak of the PDF
advances and broadens over time until a steady-state mean
and width are reached. Unlike the ice shelf/tongue, the
distribution quickly evolves to a (nearly) Gaussian shape with
little obvious asymmetry.

4.3. Approximate calving laws
The previous examples showed how the probability distri-
bution for terminus position could be computed directly
from themaster equation using different limiting assumptions
about the form of the underlying transition rates. In this
subsection, approximate macroscopic calving laws for both
glaciological regimes previously considered are deduced
by computing expected values of terminus position directly
from the master equations determined for each of the
regimes. Calving laws for the two limiting cases are
considered separately below. However, the reader should
keep in mind that, despite the more involved mathematical
manipulations, the procedure used is identical to that used
for the random walk discussed previously.

Calving laws for tidewater and lacustrine glaciers
Calving glaciers provide the simplest example, since the
discrete master equation is identical to the master equation
describing the asymmetric random walk (with spatially vari-
able transition rates). Away from the boundary, substituting
Equations (20) and (21) into Equation (7) the expected rate
of terminus advance is

d
dt
〈L〉 = 〈u〉 − 〈βH〉, (22)

where the angle brackets once again denote expected values.
As for the random walk model presented in section 2.3,
the term 〈u〉 corresponds to the expected value of terminus
velocity and 〈βH〉 corresponds to the expected value
of calving rate, Vc. The calving law consistent with the
transition rates assumed is then:

〈Vc〉 = 〈βH〉. (23)

Equation (23) is the macroscopic calving law for glaciers with
transition rates sharply peaked in the near-terminus region.
Remarkably, the calving rate predicted by Equation (23)

is proportional to ice thickness, as found by Brown and
others (1982). However, the ice-thickness dependence of
the calving rate is a consequence of the manner in which
transition rates were prescribed, and could disappear if β was
also allowed to vary. Notice also that since in this example
β, H and u are constant, the expected values of u and βH
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are constant and the expected value of terminus position
increases (or decreases) linearly with time until α = β. The
solid black curve in Figure 5a shows the expected terminus
position, computed from Equation (22) and it is evident that
the calving law deduced captures the large-scale trend in
terminus position. Furthermore, as for the random walk, the
actual terminus position at any point in time fluctuates about
the expected value.

Calving laws for ice tongues and ice shelves
This example is slightly more complicated than the previous
one, but hints at the difficulty in determining calving laws
in the presence of large fluctuations (or large icebergs). The
same procedure used to deduce expected values for the
random walk (and tidewater glaciers) can be used to find the
expected rate of change of terminus position. Multiplying the
master equation by terminus position, x, and integrating over
all states yields

d〈L〉
dt

= 〈u〉+
∫ ∞

0
x
(
λ

∫ ∞

x
p(x ′, t )dx ′ − λxp(x, t )

)
dx. (24)

Rather than working with Equation (24), it is convenient to
make use of the form (Van Kampen, 1992)∫ ∫

x
{
W (x|x ′)p(x ′, t ) −W(x ′|x)p(x, t )} dx dx ′

=
∫ ∫ {

(x ′ − x)W (x ′|x)p(x)
}
dx dx ′.

With this identity, after noticing that the quantity, r = x ′− x,
is just the iceberg size, Equation (24) becomes

d〈L〉
dt

= 〈u〉 −
∫ ∞

0
dx p(x)

∫ x

0
rλdr . (25)

Written in this form, it is clear that the second term on the
right-hand side of Equation (25) must be the expected value
of the calving rate

〈Vc〉 =
∫ ∞

0
dx p(x)

∫ x

0
rλ dr . (26)

The calving rate must then be

Vc =
∫ x

0
rλ dr = λ

x2

2
= λ

L2

2
, (27)

where, as before, L ≡ x denotes the instantaneous terminus
position and the quadrature is trivial to evaluate for constant
transition rates. The calving rate has a convenient physical
interpretation: it is the integral over all possible iceberg sizes,
r = x ′ − x, weighted by the rate (in this case constant) for
which icebergs of each size detach, as determined by the
transition rate, λ.
Evaluating the integral in Equation (26), the expected

calving rate can be expressed as a function of the expected
terminus position and the expected variance in terminus
position:

〈Vc〉 = λ

2
〈L2〉 = λ

2
〈L〉2 − λ

2
(L− 〈L〉)2. (28)

Substituting Equation (28) into Equation (25) provides a
macroscopic evolution equation for the terminus position:

d〈L〉
dt

= u(〈L〉)− λ

2
〈L〉2 + λ

2
〈L− 〈L〉〉2. (29)

The above relationship, however, is problematic. Equa-
tion (29) implies that the rate of change of the expected

terminus position depends not only on the expected terminus
position, but also on the magnitude of the fluctuations
(variance) in terminus position. Equation (29) is not a closed
system and requires an additional evolution equation for the
variance in terminus position. Moreover, since in general
〈u〉 �= u(〈L〉), fluctuations (i.e. a nonzero variance) also play
a role in determining the expected terminus velocity.
If fluctuations are arbitrarily assumed to be small so that

(L− 〈L〉)2 
 1 and 〈u〉 ≈ u(〈L〉), the macroscopic evolution
equation/calving law can be approximated as

d〈L〉
dt

≈ u(〈L〉)−λ
2
〈L〉2+ corrections due to fluctuations. (30)

The solid black curve in Figure 4a shows the expected
terminus position, computed using Equation (30), with
corrections due to fluctuations omitted. Despite arbitrarily
neglecting fluctuations, the main trend in terminus position
(with large fluctuations about the mean) is qualitatively
correct. This indicates that the macroscopic equation may
still be used cautiously in simulations. However, the limits
and approximate nature of the equation need to be
recognized when (if) predictions are to be compared with
observations.
A more systematic means of deducing the macroscopic

calving law, valid for any glaciological regime, is pursued in
section 5. The primary advantage of the more cumbersome
expansion method pursued next is that the expansion
provides a systematic basis for computing not only the
calving rate, but also the magnitude of the fluctuations about
the expected value. This provides the means of deciding
when fluctuations are small and can be neglected and when
they cannot. If fluctuations are not small, the expansion also
provides a means of maintaining higher-order corrections.

5. EMERGENCE OF THE CALVING LAW
5.1. Expansion of the master equation
The previous two examples illustrate that two seemingly
different calving laws can be derived from the same
underlying master equation, depending on the form of the
transition rates. Moreover, these examples hint at one of
the limitations of so-called calving laws; they appear to
be restricted to cases where fluctuations are small enough
that they can be neglected. This fact is exploited in this
subsection, where a systematic expansion of the master
equation, based on the size of the fluctuations measured
relative to the system size, is developed. This systematic
expansion reduces the effort of determining the calving
law to that of evaluating an integral by quadrature. An
additional benefit of the expansion is that it provides a
method of determining the magnitude of the fluctuations.
The magnitude of fluctuations can then be used to determine
when the expansion is expected to fail, indicating when the
expansion must either be abandoned or higher-order terms
in the expansion retained.
The expansion presented is formidable and readers may

wish to skip ahead to subsections 5.2 and 5.3, where
the calving law along with an evolution equation for the
variance are finally deduced. The expansion closely follows
the standard Ω expansion posed by Van Kampen (1992), and
readers are encouraged to consult this well-written textbook
for supplementary descriptions of the arcane sequence of
variable transformations and Taylor expansions that follow.
The reader should keep in mind that the overarching purpose
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of the expansion is to (1) formulate an expression for the
expected value of terminus position that is independent of
the variance or higher-order moments of the distribution and
(2) provide a separate evolution equation for the variance in
the system.
The expansion proceeds as follows. Let Ω denote the

characteristic size of the system. The size may be the
characteristic lateral extent of an ice tongue/shelf, glacier or
ice sheet or some subsection thereof. Since calving occurs
from the ice-sheet margin, the ratio of terminus position
(current glacier length) to system size (characteristic glacier
length) is a number of order one, irrespective of system size.
The size of icebergs (and hence fluctuations in terminus
position) will usually be much less than the system size.
The smallness of the ratio of fluctuations to system size
provides the basis of the expansion method. With this in
mind, a coordinate transformation is made to the intensive
variable X = x/Ω. Time is simultaneously rescaled by setting
τ = t/Ω. Making a transformation to the new variables,
the transition rates may be written as a function of starting
position and jump size (i.e. initial terminus position and
iceberg size)

WΩ

(
x
Ω

∣∣∣x ′
Ω

)
=WΩ

( x
Ω
; x ′ − x

)
= Φ(X ′; r ), (31)

where the dependence on system size has been explicitly
retained and r = x ′ − x represents the iceberg size.
The Ω subscript has been appended to W to emphasize
the dependence on system size, and Φ is used to denote
transition rates that depend on the intensive variable, X ′, and
iceberg size, r . Insisting that calving only results in transitions
that decrease glacier length implies Φ(X ′; r ) = 0 unless r > 0
(i.e. negative iceberg size is prohibited).
Noting that WΩ

(
X ′|X) = Φ(X ′;−r ), because iceberg size

in this case is x − x ′ = −r , and making use of the fact that
X ′ = X + r/Ω, the master equation can be written

∂P (X , τ )
∂τ

+ Ω
∂(P (X , τ )U(X ))

∂X

= Ω
∫ [

Φ
(
X +

r
Ω
; r
)
P
(
X +

r
Ω
, τ
)
− Φ(X ;−r )P (X , τ )

]
dr ,

(32)

where the symbols U and P are introduced to denote the
probability density, p(x, t ), and terminus velocity, u(x, t ), as
functions of the intensive variables, X and τ :

p(x, t )→ P (X , τ ),
u(x, t )→ U(X , τ ).

With this rescaling and change of variables, the master
equation is now dependent on the ratio of terminus position
to system size and on iceberg size. Furthermore, the
transition rates and probability densities now have arguments
shifted by r/Ω and it is this ratio of iceberg size to system
size that can serve as the small parameter in the expansion.
First, however, it is necessary to adopt the ansatz that the

non-dimensional terminus position,X , can be represented by

X = φ(τ ) + Ω−1/2ξ, (33)

where φ(τ ) will be chosen to follow the peak (or some
approximation thereof) of the probability density distribution
and ξ is a random variable that accounts for fluctuations
about the mean terminus position (see, e.g., Van Kampen,
1992, for a more detailed motivation of the ansatz). More

physically, the change of variables can be viewed as
introducing a variable, φ, that follows the ratio of terminus
position to system size and a variable, Ω−1/2ξ, that describes
how the width of the distribution fluctuates. These two
variables together provide something like a Lagrangian
description of the terminus position probability distribution.
Note that as Ω → ∞, the width of the distribution
(or size of the fluctuations) vanishes and the distribution
becomes sharply peaked. This limit, in which icebergs are
infinitesimally small compared to the size of the glacier,
corresponds to a deterministic calving process. The ansatz
is the key step in the expansion.
Denoting the new probability density distribution, Π,

P (X , τ ) = P
(
φ(τ ) + Ω−1/2ξ, τ

)
= Π(ξ, τ ),

now a function of ξ and τ , and substituting the ansatz into
Equation (32) shows that the first term in the integral on the
right-hand side can be written in the form∫

Φ
(
φ(τ ) + Ω−1/2(ξ +Ω−1/2r ); r

)
Π
(
ξ +Ω−1/2r , τ

)
dr ,

whereas the second term in the integral becomes∫
Φ
(
φ(τ ) + Ω−1/2ξ); r

)
Π(ξ, τ ) dr .

The argument in the first integral relative to the second is
shifted by Ω−1/2r . This shift can be accounted for with a
Taylor expansion, whence the right-hand side of the master
equation becomes

Ω1/2
∂

∂ξ

∫
rΦ

(
φ(τ ) + Ω−1/2ξ; r

)
Π(ξ, τ ) dr

+ Ω−1/2
∂2

∂ξ2

∫
1
2
r2Φ

(
φ(τ ) + Ω−1/2ξ; r

)
Π(ξ, τ ) dr

+ O(Ω−1)
where the first term in the expansion cancelled with

the second integral. The integrals can be expressed more
concisely by introducing the iceberg jump moments

aν =
∫
rνΦ

(
φ(τ ) + Ω−1/2ξ; r

)
dr , (34)

for ν = 1, 2, etc. The iceberg jump moments correspond to
integrals of iceberg size, raised to an integer power weighted
by the transition rates.
Armed with these simplifications and after making heavy

use of the chain rule, Equation (32) can be written in the form

∂Π
∂τ
−Ω1/2

(
dφ
dτ

∂Π
∂ξ
− ∂

∂ξ

[
u
(
φ +Ω−1/2ξ

)
Π
])

= Ω1/2
∂

∂ξ

[
a1

(
φ+ Ω−1/2ξ

)
Π)
]

+ Ω−1/2
∂2

∂ξ2

[
a2

(
φ+Ω−1/2ξ

)
Π
]
+O(Ω−1).

(35)

The dependence of ξ apparent in both jump moments and
terminus velocity can be removed by yet another Taylor
expansion

aν = aν (φ) + Ω
−1/2a′ν (φ)ξ +

1
2
Ω−1a′′ν (φ)ξ

2 + · · ·
U = U(φ) + Ω−1/2U′(φ)ξ +Ω−1U′′(φ)ξ2 + · · · ,
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where primes denote differentiation with respect to ξ.
Assembling all components, the expansion for the master
equation takes the final form

∂Π
∂τ

− Ω1/2 dφ
dτ

∂Π
∂ξ

=Ω1/2(a1(φ) −U(φ))∂Π
∂ξ

+
(
a′1(φ)−U′(φ)

) ∂ξΠ
∂ξ

+
1
2
a2(φ)

∂2Π
∂ξ2

+O(Ω−1/2). (36)

In this form of the master equation an infinite hierarchy of
closed equations can be constructed by equating terms of
equal size and the series can now be truncated whenever
additional terms become small.

5.2. The macroscopic calving law
Examining Equation (36) more closely shows that the
expansion will fail unless both of the terms of order Ω1/2

can be arranged so they exactly cancel for arbitrary Π. This
can only be arranged if φ is chosen to obey the ordinary
differential equation

dφ
dτ

= U(φ) − a1(φ), (37)

where the first jump moment (or calving rate) is an integral
over transition rates over all iceberg sizes

a1 =
∫
rΦ (L; r ) dr . (38)

This, however, is precisely the macroscopic calving law
sought in the first place. Recalling that φ is the ratio
of terminus position to characteristic system size and U
is terminus velocity scaled by characteristic system size,
the macroscopic equation can be re-expressed in terms
of extensive variables and rescaled back to the original
variables:

dL
dτ

= u(L)− Vc(L), (39)

where the connection between calving rate and the first jump
moment has been made explicit and the rescaled version of
Equation (38) provides the calving law:

Vc =
∫ L

0
rW (L; r ) dr =

∫ L

0
(x ′ − x)W (x ′|x) dx ′. (40)

This law, unlike previous laws, is valid for any glacier (float-
ing, grounded, temperate or cold), provided the transition
rates can be specified. Furthermore, since the calving rate
and terminus velocity now depend on the current terminus
position, L, and not at all on the variance of terminus
position, the macroscopic equation is an ordinary differential
equation that can easily be incorporated into numerical ice-
sheet models.
In the extreme case that transition rates are constant,

one must integrate over the entire length of the ice
shelf/tongue/glacier. Under this assumption, the integral in
Equation (38) reduces to the calving rate determined in
Equation (27):

Vc = λ
L2

2
.

In contrast, if the transition rates are strongly peaked near the
terminus, evaluating the quadrate under the assumption that

the transition rate per unit ice thickness is constant over the
ice thickness yields the tidewater calving rate:

Vc = β(x)H(x),

where β is defined as in section 4.2. Equation (40) provides a
universally valid calving law. However, the calving law may
take on widely disparate forms, including the two examples
considered in section 4, depending on the processes that
determine the transition rates. Given the wide variety
of glaciological conditions in which vigorous calving is
observed, it is no wonder that an all-encompassing calving
law has not previously been discovered empirically. Despite
the fact that Equation (38) provides a convenient recipe to
compute the calving law, the accuracy of the calving law
hinges on the supposition that the remaining terms in the
series are small. To determine if this is true one must proceed
to higher-order terms in the expansion.

5.3. Fluctuations and the white-noise approximation
Having determined the macroscopic behavior, it is now
possible to proceed to the next order in the expansion.
Equating terms of O(1) yields

∂Π
∂τ

= − (
U′(φ)− a′1(φ)

) ∂ξΠ
∂ξ

+
1
2
a2(φ)

∂2Π
∂ξ2

, (41)

where the reader is reminded that a2 is the second jump
moment of the distribution

a2 =
∫
r2Φ

(
φ(τ ) + Ω−1/2ξ; r

)
dr ,

and primes denote differentiation with respect to ξ. Equa-
tion (41) is a linear Fokker–Planck equation. The equilibrium
probability distribution can be shown to be Gaussian and
the first and second moments can be found by multiplying
Equation (41) by ξ and ξ2 and integrating over all states
(e.g. Van Kampen, 1992):

∂

∂τ
〈ξ〉 = (

U′(φ)− a′1(φ)
) 〈ξ〉, (42)

∂

∂τ
〈ξ2〉 = 2 (U′(φ)− a′1(φ)) 〈ξ2〉+ a2(φ). (43)

Although not necessary, it is convenient to choose ξ = 0,
such that it coincides with φ. With this choice, the first
equation can be ignored and the second equation provides
the evolution of the width (or variance) about φ. The
implication of these equations is most concretely illustrated
by returning to the two examples discussed previously.

Fluctuations in terminus position of ice shelves and
ice tongues
For the ice-tongue/ice-shelf example with constant transition
rates, the equation for the second moment, rescaled back to
the original extensive variables, becomes

∂

∂τ
〈ξ2〉 = 2 (ε̇(L)− λL) 〈ξ2〉 + λL3, (44)

where I have made use of the fact that u′ is the horizontal
strain rate, ε̇. The term λL increases with increasing ice
tongue length whereas the term ε̇(L) asymptotes to a constant
value. Because of this, for large ice tongue lengths, the first
term in the evolution equation becomes negative and the
variance/fluctuations are guaranteed not to increase without
bound. Hence, a stable steady-state solution is possible.
This is illustrated in Figure 4, where the shaded gray region
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shows the variance, computed using Equation (44). That the
width of the shaded area is comparable to the ice tongue
extent is a testament to the fact that higher-order terms in
the expansion that account for non-Gaussian behavior must
become important. Despite these misgivings, the shaded gray
region at least illustrates where the ice-shelf terminus is most
likely to be found, suggesting that the macroscopic calving
law can still provide some guidance, even when pushed to
the limit of its applicability.

Fluctuations in terminus position of tidewater and
lacustrine glaciers
For the calving glacier example, the evolution of ξ2 can be
similarly computed to find:

∂

∂τ
〈ξ2〉 = 2

[
ε̇− ∂(βH)

∂x

]
ξ2 +

2
3
βH2. (45)

As before, if terminus velocity and ice thickness, H,
are assumed constant and non-dimensionalized to unit
magnitude and the transition rate, β, is assumed to increase
linearly with constant slope, γ, the evolution equation for
variance reduces to

∂

∂τ
〈ξ2〉 = −2γξ2 + 2

3
γx. (46)

The uncertainty in terminus position, as computed from
Equation (46), is displayed in Figure 5a as the gray shaded
region. The variance provides a much more accurate
representation of variability in terminus position than in the
ice-shelf case, a consequence of the smaller fluctuations in
terminus position.

5.4. Fluctuations, the Langevin equation and
steady states
Combining the macroscopic equation with the white-noise
approximation provides an equation for the evolution of
terminus position:

dL
dτ

= u(L)− Vc(L) + η(L, t ), (47)

where η is a source of random, uncorrelated noise with
amplitude that varies with L and is determined by solving
for ξ2. If fluctuations are negligible, this equation is entirely
deterministic. However, in general, fluctuations do not
vanish. To illustrate the potential effect of fluctuations,
assume there are two ormore steady-state terminus positions,
denoted L0, L1 and so on. The multiple steady states might
be due to bedrock topography, but are otherwise unspecified.
The presence of fluctuations means that a glacier with steady-
state terminus position L1 can fluctuate out of state L1
into L0 and vice versa. This type of behavior may have
important consequences for the episodic retreat and stability
of tidewater and outlet glaciers.

6. DISCUSSION
Although the search for a unified calving law that exclusively
depends on internal parameters within a few ice thicknesses
of the terminus position is flawed, it is possible to find
a macroscopic equation that describes how the terminus
position varies over large spatial and long temporal scales.
This calving law can be determined from a systematic
expansion of the master equation, where the calving law
corresponds to an integral (first jump moment) of the

transition rates. The integral, and hence calving rate, may
depend on glacier parameters averaged over an extent that
is much larger than the ice thickness. For instance, one might
suppose that transition rates are highest in regions where the
ice is heavily fractured (or damaged) and integrate over this
region to find the calving rate.
Depending on the precise form of the transition rates for

each glaciological regime, the quadrature may result in a
seemingly endless variety of ‘calving laws’. Nevertheless,
according to the present theory, the problem of finding a
calving law is reduced to a quadrature of the transition rates
and this integration can be performed for any glaciological
regime. The calving law determined is universal. As
fluctuations (or icebergs) increase in size to become
comparable to the system size, the expansion of the master
equation from which the calving law was deduced becomes
increasingly invalid. Luckily, since it is possible to compute
the size of the fluctuations self-consistently, the theory
itself provides the information needed to determine its own
demise.
As formulated in this study, calving laws are based on a

mesoscopic theory of fracture and this must be determined
independently of the theory presented here. At first sight,
the theoretical approach just presented may seem hollow
since, after all, making any concrete predictions requires
that transition rates are somehow specified. This might,
instead, be one of the greatest strengths of this approach.
The advantage arises because the theory described is not tied
to any particular flavor of fracture mechanics or hypothesis
about the origin of icebergs. Because of this separation, one
may focus entirely on formulating a physical theory for the
transition rates. Once this is done, the machinery to turn
the fracture physics into a calving law has already been
determined. Furthermore, because the mesoscopic fracture
theory and large-scale calving laws are unified by the calving
law they are no longer independent and must be self-
consistent. This may be exploited to aid in constructing
a theory of mesoscopic fracture. For instance, transition
rates could be constructed and/or verified by comparison
with seismic, geodetic or imagery observations of calving
and fracture propagation (Neave and Savage, 1970; Bassis
and others, 2005, 2007, 2008). Calving laws, computed
directly from the transition rates, could then be compared
with mean calving rates, deduced from satellite imagery
or photogrammetry, as an additional test of the theory.
Further tests are available if predicted fluctuations about the
expected terminus position are compared with observations.
Alternatively, it may be possible to invert the process and
piece together a self-consistent formulation of transition
rates from the known patchwork of empirical calving laws.
This may then be compared with seismic and geodetic
observations of fracture as an independent prediction. Both
procedures have the potential to weed out theories with
low explanatory capabilities and focus attention on regions
where observations diverge from theoretical predictions.
Although this is promising, several formidable obstacles

remain. Foremost amongst these is that the theory currently
only applies to one-dimensional problems where the
terminus position can be represented by a single degree of
freedom. This may be appropriate for long, narrow glaciers
that are confined to narrow channels or embayments.
However, the large expansive ice shelves of Antarctica
have more complicated geometry, and generalizations of the
approach to the fully two-dimensional (2-D) problem are not
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trivial. In the 2-D (map view) generalization of the theory, the
terminus position must be represented by a curve, Γ(x, y ),
rather than a single point. This transforms the quadrature into
an integral over an infinitude of transition paths from curve
Γ′(x, y ) to Γ(x, y ). In this limit, the quadrature necessary
to find the calving law becomes ill defined. It may be
possible to express the quadrature in the form of a path
integral. However, given the mathematical complexity and
difficulty in evaluating the integrals, this may not be a
practical solution unless paths are discretized into a small
finite number of discrete states (i.e. terminus position curves)
to use in computations. Alternatively, one might seek to
discretize the glacier into a series of flowbands. The calving
rate could be computed for each flowband independently,
using the present theory, and these calculations stitched
together to find a 2-D calving rate. This would be easy to
implement, but may be too crude an approach. A more
satisfying approach may be provided by percolation theory,
an approach first advocated by Bahr (1995) as a means of
modeling iceberg calving. Percolation theory is concerned
with estimating the probability that a given group of lattice
nodes (or in this case gridpoints) form a cluster that crosses
the entire domain (or in this case isolates an iceberg). For
a given set of transition rates, this may provide the means
of estimating the probability that an iceberg of any given
size detaches.
Because the calving law is only valid in the limit of spatial

scales that are large compared to the fluctuations in terminus
position, the approach advocated here may be an ideal
fit for use as the boundary condition of continental-scale
‘shallow’ ice-sheet models with 1–10 km model resolution
(e.g. Bassis, 2010). However, because the calving law places
a much more stringent restriction on the accuracy of spatial
scales resolved by ice-sheet models, incorporating it into
higher-resolution and/or (non-shallow) full-Stokes models
may be problematic; according to the analysis presented
here, the concept of a calving law may be inappropriate
for a full-Stokes model that seeks to resolve spatial scales
much smaller than one ice thickness. Instead, attempts to
apply full-Stokes models to simulate the response of calving
environments will need to choose between computing
many realizations of the calving process (that can then
be averaged), or solving the master equation. Given the
computational cost of full-Stokes models, this may prove too
great a burden.

7. CONCLUSIONS
Determining a calving law that is valid for all glaciological
regimes has proven to be a vexing problem for glaciologists.
Although several unified laws have been proposed over
the past few decades, all have so far failed. This study
demonstrates, for the first time, that a calving law valid for
any glaciological regime can be derived, in a systematic
fashion, from an underlying mesoscopic theory of fracture.
The calving law constructed may reduce to a number
of different forms previously proposed for special cases.
Because of this, the approach has the potential to unify the
pre-existing patchwork of semi-empirical parameterizations
of calving developed for individual glacial regimes. To wit,
it has been shown that using different assumptions about the
form of the underlying transition rates, the theory is able to
reproduce disparate calving styles, including the infrequent
sporadic detachment of large tabular bergs from ice tongues

and ice shelves and the more continuous calving of small-
ice-thickness scaled bergs from tidewater and outlet glaciers.
The theory also has the appealing feature that it is able to
predict its own demise: once fluctuations increase to the
point where they are comparable to the system size, the
expansion ceases to be valid and the calving law must be
abandoned or higher-order corrections computed.
Developing the method advocated here to the point that it

can be used as an operational basis in ice-sheet models is not
without challenges. For instance, generalizing the theory to
two dimensions so it can be applied to the large, expansive
ice shelves of Antarctica remains problematic. Moreover,
little has been said about how to formulate the transition rates
needed to compute the calving law. This will be explored
in a separate paper, but a growing number of researchers
have postulated different relationships between calving and
internal and external variables that provide a foundation for
future studies (e.g. Benn and others, 2007; Amundson and
Truffer, 2010). Once a theory is provided that specifies the
transition rates, determining the calving law amounts to a nu-
merical integration to find a calving law which can be inte-
grated into regional- or continental-scale ice-sheet models.
Although this study has focused exclusively on iceberg
calving, the methods borrowed from statistical physics are re-
markably general and powerful and it is likely that similar
methods can be applied to additional glaciological processes,
such as sliding of glaciers and supra-/subglacial hydrology.
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