SOME RESULTS IN THE CONNECTIVE K-THEORY OF LIE GROUPS

BY L. MAGALHÃES

ABSTRACT. In this paper we give a description of: (1) the Hopf algebra structure of $k^*(G; L)$ when G is a compact, connected Lie group and L is a ring of type Q(P) so that $H^*(G; L)$ is torsion free; (2) the algebra structure of $k^*(G_2; L)$ for $L = \mathbb{Z}_2$ or \mathbb{Z} .

Introduction. In this paper we study the connective K-theory of compact connected Lie groups. We use mainly Borel's results in the ordinary cohomology of Lie groups, L. Hodgkin's paper [6] about their K-theory, the Atiyah-Hirzebruch spectral sequence [2] and L. Smith's exact sequence relating connective K-theory with integral cohomology [9].

In the first paragraph we give some results in the connective K-theory that will be used later. In paragraph 2 we work out the Atiyah-Hirzebruch spectral sequence converging to $k^*(X)$ (connective K-cohomology of a compact CW complex). In the other paragraphs, using the previous results, we obtain the Hopf algebra structure of $k^*(G; L)$, L a ring of type Q(P) (it will be defined in Section 2) so that $H^*(G; L)$ is torsion free, and the algebra structure of $k^*(G_2; L)$, $L = \mathbb{Z}_2$ or \mathbb{Z} .

We work in the homotopy category of (compact when stated) CW complexes.

I am grateful to Dr. Alan Robinson for his help and advice during the preparation of this work.

1. **Preliminaries.** Let $K = (K_n, \sigma_n)_{n \in \mathbb{Z}}$ be the spectrum for K-theory. We recall that K is a periodic, ring Ω -spectrum and $K^*(pt) = \mathbb{Z}[t, t^{-1}]$, the Laurent polynomial ring generated by the class of the reduced Hopf bundle $t^{-1} \in K^{-2}(pt)$ and its inverse [10].

The spectrum $k = (k_n, \overline{\sigma}_n)_{n \in \mathbb{Z}}$ for connective K-theory is obtained from the spectrum K by making it connective. Let $j:k \to K$ be the associated map of spectra. We note that k is a commutative, associative, ring Ω -spectrum, j is a

Received by the editors September 16, 1986, and, in revised form, May 25, 1987.

During part of this work the author was supported by I.N.I.C. Portugal.

AMS Subject Classification (1980): 55N15, 55N20.

[©] Canadian Mathematical Society 1986.

map of ring spectra and $k^*(pt) = \mathbb{Z}[t^{-1}]$. Also there is a map of ring spectra $\eta:k \to H\mathbb{Z}$ (HZ denotes the Eilenberg-Maclane spectrum with integer coefficients) so that it induces the homomorphism $\eta^*:k^*(pt) \to H^*(pt; \mathbb{Z})$ given by $\eta^i = 0$ if i > 0 and identity if i = 0 ([8] pp. 35-37).

We can consider \mathbb{Z}_p coefficients, p prime. We define $\tilde{k}^i(X; \mathbb{Z}_p) = \tilde{k}^{i+2}(X \wedge M_p)$, where M_p is the space obtained by attaching a 2-cell e^2 to S^1 by a map of degree p. There is a universal coefficient formula $-\tilde{k}^i(X; \mathbb{Z}_p) = \tilde{k}^i(X) \otimes \mathbb{Z}_p \oplus \operatorname{Tor}(\tilde{k}^{i+1}(X); \mathbb{Z}_p)$ – and an associative multiplication on $\tilde{k}^*(X; \mathbb{Z}_p)$ since \tilde{k}^* satisfies the sufficient conditions for their existence [1]. If L is a free abelian group we define $k^*(X; L) = k^*(X) \otimes L$.

We note that if X is a CW-complex and L is a free abelian group or \mathbb{Z}_p then $k^*(X; L)$ is a $L[t^{-1}]$ algebra.

We will use the following generalization of L. Smith's theorem [9]:

1.1 THEOREM. Let X be a CW complex. Then there is an exact sequence $0 \to L \otimes k^*(X; L) \xrightarrow{\eta_L^*} H^*(X; L) \to \operatorname{Tor}_{1,*}^{L[t^{-1}]}(L; k^*(X; L)) \to 0,$

where η_L^* is induced by $1 \otimes \eta^* : L \otimes k^*(X) \to L \otimes H^*(X; \mathbb{Z})$ if L is a free abelian group or η_L^* is $1 \otimes \eta^* : \mathbb{Z} \otimes k^*(X) \to \mathbb{Z} \otimes H^*(X; \mathbb{Z})$ "reduced mod p" (p > 1) if $L = \mathbb{Z}_p$, the tensor products being taken over $L[t^{-1}]$.

PROOF. We consider the cofibration of spectra

$$k \xrightarrow{m} k \xrightarrow{\eta} H\mathbf{Z},$$

where *m* is the morphism of spectra corresponding to multiplication by t^{-1} in *k*-cohomology. It induces for every *CW*-complex *X* the long exact sequence

$$\ldots \to k^{i}(X) \xrightarrow{m^{*}} k^{i-2}(X) \xrightarrow{\eta^{*}} H^{i-2}(X; \mathbb{Z}) \xrightarrow{\delta^{*}} k^{i+1}(X) \to \ldots (i \ge 2),$$

that splits into short exact sequences:

$$0 \to \operatorname{coker} m^{i} \xrightarrow{\eta^{*}} H^{i-2}(X; Z) \xrightarrow{\delta^{*}} \ker m^{i+1} \to 0$$

It is clear that tensoring by L or taking $X \wedge M_p$ instead of X does not affect exactness. Then the result follows as in [9].

To simplify the notation we shall write η^* instead of η_I^* .

2. Spectral sequences. From now on we deal with compact spaces. Let X be a compact CW-complex. We are going to consider the following Atiyah-Hirzebruch spectral sequences: $(E_r^{**}(X), d_r)_{r\geq 2}$ converging to $K^*(X)$, $(E_r^{**}(X), d_r)_{r\geq 2}$ converging to $k^*(X)$. Let $F_p^m(X) = \ker[K^m(X) \to K^m(X^{p-1})]$ and $F_p^m(X) = \ker[k^m(X) \to k^m(X^{p-1})]$ be the filtrations. The first spectral sequence is compatible with the Bott isomorphism. L. MAGALHÃES

To simplify the notation we omit X when there will be no confusion about the space concerned.

We note that, since $K^q(pt) = 0 = k^q(pt)$ if q is odd and $k^q(pt) = 0$ if q > 0, then $E_r^{p,q} = 0 = E_r^{p,q}$ for all $p \in \mathbb{Z}$, $r \ge 2$, q an odd integer, $E_r^{p,q} = 0$ if q > 0 and all the differentials of even degree are zero. Moreover, we have for all i, $n \in \mathbb{Z}$: $F_{n-1}^i = F_n^i$ and $F_{n-1}^i = F_n^i$ if n - i is even; $F_n^i = F_{n+1}^i$ and $F_n^i = F_{n+1}^i$ if n - i is odd; $m^*(F_n^i) = F_n^{i-2}$; $F_n^n(X) = k^n(X)$.

2.1 PROPOSITION. Let X be a compact CW-complex. Then:

(i) $j_s^{**}: E_s^{p,q} \to E_s^{p,q}$ is an isomorphism for $q \leq -\dim X + 1$;

(ii) if $d_r = 0$ for r > s then $j^*|_{F_n^m}$ is an isomorphism onto F_n^m for all $m \in \mathbb{Z}$, $n \ge m + s - 1$.

Proof.

(i) One can easily show by induction on $r \ge 2$ a more general result: $j_r^{**}: E_r^{p,q} \to E_r^{p,q}$ is surjective if $-r + 3 \le q \le 0$ and an isomorphism if $q \le -r + 2$.

This proof can be done by diagram chasing:

(ii) Now we consider the commutative diagram:

Using (i), the 5-lemma and decreasing induction on p, supposing $m + s - 1 \le p \le \dim X$, we get the result.

We need to consider Q(P) coefficients, where P is a set of prime numbers and Q(P) the quotient ring of Z with respect to the multiplicative subset generated by P. The spectral sequence for $k^*(-; Q(P)) = k^*(-) \otimes Q(P)$ is obtained from that one for $k^*(-)$ by tensoring by Q(P). The idea of taking Q(P) is "to kill" the p-torsion when suitable.

2.2 PROPOSITION. Let X be a compact CW-complex, L a ring of type Q(P) or \mathbb{Z}_p . Then $x \in H^p(X; L)$ lies in the image of $\eta^*: k^*(X; L) \to H^*(X; L)$ if and only if x, considered as an element of $E_2^{p,0}$, is an infinite cycle in the spectral sequence E_r^{**} converging to $k^*(X; L)$.

CONNECTIVE K-THEORY

PROOF. It follows immediately from the morphism of spectral sequences for the cohomology theories $k^*(-; L)$ and $H^*(-; L)$ induced by the natural transformation $\eta^*:k^*(-; L) \to H^*(-; L)$.

3. $k^*(G; L)$. Let G be a compact connected Lie group of rank r, dimension n. Borel proved [3] that $H^*(G; \mathbf{Q})$ is an exterior algebra over \mathbf{Q} generated by elements of odd degree, $H^*(G; \mathbf{Q}) = \Lambda_{\mathbf{Q}}(x_1, \ldots, x_r)$, $\sum_{j=1}^r \text{degree}(x_j) = n$. Furthermore those elements are primitive, universally transgressive.

Hodgkin [6] proved that:

If $\pi_1(G)$ is torsion free, $K^*(G)$, graded by \mathbb{Z}_2 , is (1) the exterior algebra over \mathbb{Z} on the module of primitive elements of degree 1; (2) if G is semi-simple $K^*(G) = \Lambda_{\mathbb{Z}}(\beta(\rho_1), \ldots, \beta(\rho_r))$ where ρ_1, \ldots, ρ_r are the "basic representations", $\beta:R(G) \to K^1(G)$ the homomorphism that takes a representation $\rho: G \to U(n)$ into the class $[i_n \rho]$ $(i_n: U(n) \to U$ is the standard inclusion), and those generators $\beta(\rho_1), \ldots, \beta(\rho_r)$ are primitive.

Using the above results we obtain the following theorem:

3.1 THEOREM. Let L be a ring of type Q(P) (P any set of prime numbers) such that $H^*(G; L)$ is torsion free. Then:

(i) $k^*(G; L) \approx \Lambda_{L[t^{-1}]}(y_1, \ldots, y_r)$ where y_j has odd degree i_j for all $1 \leq j \leq r$, $n = \sum_{j=1}^r i_j;$

(ii) the y_j can be chosen so that they are primitive in the Hopf algebra $k^*(G; L)$.

Proof.

(i) The spectral sequence converging to $k^*(G; L)$ is trivial and as $L[t^{-1}]$ modules $k^*(G; L) \approx H^*(G; L) \otimes L[t^{-1}]$. By 2.2 we can take generators y_1, \ldots, y_r of the $L[t^{-1}]$ algebra $k^*(G; L)$ so that $\eta^*(y_j) = x_j$, $1 \leq j \leq r$, where x_1, \ldots, x_r are the primitive, universally transgressive generators of $H^*(G; L)$. They are unique modulo Im m^* . Since every element in $K^1(G; L)$ has zero square and j^* is an injective ring homomorphism, $y_j^2 = 0$ if $1 \leq j \leq r$.

(ii) Now we take the universal G-bundle

$$G \to EG \to BG$$

 p

and the induced exact sequences

$$\widetilde{E}^{m}(G, L) \xrightarrow{\approx}_{\delta^{*}} E^{m+1}(EG, G; L) \xleftarrow{}_{p^{*}} \widetilde{E}^{m+1}(BG; L),$$

where E^* is one of the cohomology theories k^* , K^* or H^* .

Since the generators x_j are universally transgressive, the y_j in (i) can be taken in $\delta^{*-1}(p^*(k^*(BG; L)))$. But $\delta^{*-1}(p^*(\tilde{K}^0(BG; L)))$ is the module of primitive

1988]

L. MAGALHÃES

elements in the \mathbb{Z}_2 graded K-cohomology [6] and j^* is injective. Hence the y_j are primitive.

3.2 REMARK. Let G be a simple connected Lie group such that $H^*(G, \mathbb{Z})$ is torsion free and suppose that ρ_1, \ldots, ρ_r are the basic representations of G. If p is odd and greater than 3, the primitive generators $\beta(\rho_i) \in K^1(G)$ do not lie in $j^*(k^p(G))$, since on the one hand $x \in K^1(G)$ lies in $F_p(K^1(G))$ if and only if $ch_j(x) = 0$ for j < p [4] (ch_j denotes the j-component of the Chern character) and on the other hand $ch_3(\beta(\rho_i)) = n_i x_3$, where $n_i \ge 1$ and x_3 is a generator of $H^3(G; \mathbb{Z})$ [5].

4. Calculation of $k^*(G_2; \mathbb{Z}_2)$ and $k^*(G_2)$. We now prove two theorems about the exceptional Lie group G_2 .

4.1 THEOREM. The $\mathbb{Z}_2[t^{-1}]$ algebra $k^*(G_2; \mathbb{Z}_2)$ is generated by $y_i \in k^i(G_2; \mathbb{Z}_2)$ i = 5, 6, 9 with $t^{-1}y_6 = 0, y_6y_9 = 0, y_i^2 = 0$.

PROOF. $H^*(G_2; \mathbb{Z}_2)$ is a \mathbb{Z}_2 -algebra with a simple system of generators x_3 , x_5 , x_6 , degree $x_i = i$ [3]. Let $\{E_r^{**}, d_r\}$ be the spectral sequence converging to $K^*(G_2; \mathbb{Z}_2)$. The only non-zero differential is $d_3 = Sq^1Sq^2 + Sq^2Sq^1$ ([6], III, Proposition 1.2). Therefore, $d_3x_3 = x_6$, $d_3(x_3x_5) = x_5x_6$ and d_3 is zero otherwise. By 2.1 this result holds for the spectral sequence converging to $k^*(G_2; \mathbb{Z}_2)$. Also all the extension exact sequence split. Thus $k^i(G_2; \mathbb{Z}_2)$ is equal to: 0, if i > 14 or i = 13; \mathbb{Z}_2 , if i = 14, 12, 11, 10, 9, 8, 7, 4, 2; and $\mathbb{Z}_2 \oplus \mathbb{Z}_2$, otherwise.

The $\mathbf{Z}_{2}[t^{-1}]$ module structure can be obtained by using:

(i) The short exact sequences

$$0 \to \operatorname{coker} m^{i+2} \xrightarrow{\eta^*} H^i(X; Z_2) \to \ker m^{i+3} \to 0$$

(ii) If $a \in k^*(X; L)$ projects to $\overline{a} \in E_{\infty}^{**}$ and $t^{-1}\overline{a} \neq 0$ then $t^{-1}a \neq 0$.

By 1.1 we can take elements $\overline{y}_j \in k^*(G_2; \mathbb{Z}_2)/\text{Im } m^*$, degree $\overline{y}_j = j$, $j \in \{5, 6, 9, 11, 14\}$, such that $\eta^*(\overline{y}_j) = x_j$ for $j = 5, 6, \eta^*(\overline{y}_9) = x_3x_6$, $\eta^*(\overline{y}_{11}) = x_5x_6$ and $\eta^*(\overline{y}_{14}) = x_3x_5x_6$. Furthermore those elements are unique. We take a representative y_j of each class \overline{y}_j , choosing y_6 so that $t^{-1}y_6 = 0$.

Let y_0 denote the algebra unit of $k^0(G_2; \mathbb{Z}_2)$. Then: $y_j, t^{-i}y_k$ form a \mathbb{Z}_2 basis of $k^j(G_2; \mathbb{Z}_2)$ for $j \in \{14, 11, 9, 6, 5, 0\}$, where $i \ge 1, -2i + k = j$ and $k \in \{0, 5, 9, 14\}$. Moreover, $t^{-1}y_6 = 0 = t^{-1}y_{11}$.

Now the algebra structure can be easily obtained. We just observe that η^* is a ring homomorphism, η^i is injective for i = 14, 11, all the elements of $K^1(G_2; \mathbb{Z}_2)$ have zero squares and $j^*:k^{10} \to K^{10}$ is injective.

4.2 THEOREM. The $\mathbb{Z}[t^{-1}]$ algebra $k^*(G_2)$ is generated by $z_i \in k^i(G_2)$, $i \in \{3, 6, 9, 11, 14\}$ so that

$$2z_6 = t^{-1}z_6 = z_3z_6 = 0, t^{-1}z_{11} = 2z_9, z_3z_9 = t^{-1}z_{14}, 2z_{14} = z_3z_{11}, z_i^2 = 0$$

for all i and $z_i z_j = 0$ for i + j > 14.

PROOF. $H^*(G_2; \mathbb{Z})$ is an algebra generated by h_3 , h_{11} of degree 3, 11 respectively, subjected to the relations: $2h_3^2 = h_3^4 = h_{11}^2 = h_3^2h_{11} = 0$ [3]. Using 4.1 and the universal coefficient theorem we get the Z-module structure of $k^*(G_2)$.

The same technique as in 4.1 applies here to obtain the $\mathbb{Z}[t^{-1}]$ module and algebra structure.

REFERENCES

1. S. Araki and H. Toda, Multiplicative structures in mod q cohomology theories, I, II, Osaka. J. Math. 2 (1965), pp. 71-115, 3 (1966), pp. 81-120.

2. M. F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math. A.M.S. 3 (1961), pp. 7-38.

3. A. Borel, Topology of Lie groups and characteristic classes, Bull. Am. Math. Soc. 6 (1955), pp. 397-432.

4. E. Dyer, Cohomology theories, M.L.N.S., Benjamin, Inc., 1969.

5. B. Harris, Torsion in Lie groups and related spaces, Topology 5 (1966), pp. 347-354.

6. L. Hodgkin, On the K-theory of Lie groups, Topology 6 (1967), pp. 1-36.

7. L. Magalhães, Some results in the connective K-theory of Lie groups, thesis, Warwick, 1978.

8. J. P. May, E_{∞} ring spaces and E_{∞} ring spectra, L.N.M. 577, Springer, 1977.

9. L. Smith, On the relation of the connective K-theory to homology, Proc. Camb. Phil. Soc. 68 (1970), pp. 637-639.

10. Switzer, Algebraic topology, homotopy and homology, Springer, Berlin, 1975.

Centro de Matemática Universidade do Porto

PORTUGAL

1988]