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Infinitesimal Rigidity of Convex Polyhedra
through the Second Derivative of the
Hilbert–Einstein Functional
Ivan Izmestiev

Abstract. The paper presents a new proof of the infinitesimal rigidity of convex polyhedra. The proof
is based on studying derivatives of the discrete Hilbert–Einstein functional on the space of “warped
polyhedra” with a fixed metric on the boundary.

The situation is in a sense dual to using derivatives of the volume in order to prove the Gauss
infinitesimal rigidity of convex polyhedra. This latter kind of rigidity is related to the Minkowski
theorem on the existence and uniqueness of a polyhedron with prescribed face normals and face areas.

In the spherical space and in the hyperbolic-de Sitter space, there is a perfect duality between the
Hilbert–Einstein functional and the volume, as well as between both kinds of rigidity.

We review some of the related work and discuss directions for future research.

1 Introduction

1.1 Infinitesimal Rigidity of Convex Polyhedra

Let P ⊂ R3 be a compact convex polyhedron; assume for simplicity that all faces of
P are triangles. Then an infinitesimal deformation of P is an assignment of a vector
qi to each vertex pi . Let P(t) be a family of polyhedra with the same combinatorics
as P and vertices pi(t) = pi + tqi . An infinitesimal deformation is called isometric if
the edge lengths of P(t) remain constant in the first order of t at t = 0. There always
exist trivial isometric infinitesimal deformations that are restrictions of infinitesimal
isometries of R3.

Every convex polyhedron P is infinitesimally rigid; that is, every isometric in-
finitesimal deformation of P is trivial.

This theorem was first stated by Dehn in [15]. Legendre–Cauchy’s argument from
[10] easily carries over to the infinitesimal setting. Other proofs are given in [3, 19,
37, 46, 52, 59].

Yet another proof is presented in this paper. In some aspects it is similar to
Schlenker’s proof [46] and to the Pogorelov–Volkov proof of global rigidity [38, 53].
The actual goal of this paper is to describe the general framework into which this
argument fits and to indicate possible further developments.
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784 I. Izmestiev

1.2 The Approach

Instead of deforming the embedding P ⊂ R3 by moving the vertices, we deform
the metric in the interior of P. We choose a point p0 ∈ int P and subdivide P into
pyramids with p0 as the apex and faces of P as bases. By denoting ri = ‖p0 − pi‖,
we start to vary lengths ri , while leaving the lengths of boundary edges constant. As a
result, the total dihedral angles ωi around interior edges p0 pi may become different
from 2π, so that the polyhedron P becomes what we call a warped polyhedron.

Can one vary the lengths ri so that the angles ωi remain constant in the first order?
One can always do this by moving the point r0 inside P. It turns out that if these
are the only possibilities, then the polyhedron P is infinitesimally rigid. Infinitesimal
rigidity of P is equivalent to

(1.1) dim ker

(
∂κi

∂r j

)
= 3,

where κi = 2π − ωi is the curvature of the edge p0 pi . Our proof of the infinitesimal
rigidity of convex polyhedra goes by determining the rank of the above Jacobian.

An immediate generalization of this approach is to consider an arbitrary trian-

gulation of the polyhedron P and the Jacobi matrix
(∂κi j

∂rkl

)
, where ri j and κi j are the

length, respectively, curvature of the edge pi p j , and among the points pi some are
vertices of P, some lie on its edges or faces, and some in the interior. (As before,
lengths of boundary edges are assumed constant.) Then infinitesimal rigidity of P is
equivalent to

dim ker
( ∂κi j

∂rkl

)
= 3m + n,

where m is the number of interior vertices, and n is the number of vertices interior
to faces of P. In our joint paper with J.-M. Schlenker [28], we completely determined
the signature of the above Jacobian at a critical point by showing that it has exactly
m positive eigenvalues. In particular, the matrix has negative spectrum if all points
pi lie at vertices or on the edges of P. Note, however, that [28] uses the infinitesimal
rigidity of convex polyhedra.

1.3 Hyperbolic Manifolds with Boundary and Hyperbolic Cone-manifolds

Similar to the previous subsection, consider a triangulation of a compact closed hy-

perbolic 3-manifold and the Jacobi matrix
(∂κi j

∂rkl

)
of edge curvatures with respect to

edge lengths.

Conjecture 1 The matrix
(∂κi j

∂rkl

)
has corank 3n and exactly n positive eigenvalues,

where n is the number of vertices in the triangulation.

The first part, corank equals 3n, is known. It follows from the infinitesimal rigidity
of compact closed hyperbolic manifolds in dimension greater than 2, the so-called
Calabi-Weil rigidity [8, 57]. Therefore, if the arguments used in this paper could
be extended to prove Conjecture 1, this would yield an elementary proof of Calabi–
Weil rigidity. Such extension should also lead to a proof of the following conjecture,
communicated to me by Schlenker, who proved a smooth analog in [45].
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Conjecture 2 Compact hyperbolic manifolds with convex polyhedral boundary are
infinitesimally rigid.

More generally, consider a compact closed manifold glued from hyperbolic sim-
plices so that the total dihedral angles around the edges may be different from 2π. It
is called a (triangulated) hyperbolic cone-manifold. From the works of C. D. Hodgson
and S. P. Kerckhoff [23], R. Mazzeo and G. Montcouquiol [32], and H. Weiss [58],
it is known that compact closed hyperbolic manifolds with cone angles less than 2π
are infinitesimally rigid, that is, cannot be deformed so that their cone angles remain
constant in the first order. Again, this can be reformulated in terms of the rank of
the Jacobian of the map r 7→ κ, and a generalization of our method would yield an
alternative, elementary proof.

Note that the condition on cone angles is similar to the convexity condition for
polyhedra. There exist infinitesimally flexible non-convex polyhedra as well as in-
finitesimally flexible cone-manifolds with some cone angles greater than 2π; see
[9, 26].

A study of deformations of Euclidean cone-manifolds from a similar point of view
is undertaken in [21].

1.4 The Discrete Hilbert–Einstein Functional

Here we sketch our proof of (1.1) for a star-like triangulation of a convex polyhedron
P. Consider the function

HE(r) =
∑

i

riκi +
∑
{i, j}

`i jλi j ,

where `i j is the length of, and λi j is the exterior dihedral angle at the edge pi p j of P.
We call it the discrete Hilbert–Einstein functional, as it is the discrete analog of twice
the total scalar curvature of P plus half of the total mean curvature of ∂P. The Schläfli
formula implies that ∂ HE

∂ri
= κi , therefore

(1.2)
∂κi

∂r j
=
∂2 HE

∂ri∂r j
.

In particular the left-hand side, is symmetric in i and j. This allows us to reformulate
the infinitesimal rigidity in the following way:

(1.3) if HE·· = 0, then ṙ is a trivial variation.

Here HE·· =
∑

i, j
∂2 HE
∂ri∂r j

ṙi ṙ j =
∑

i κ̇i ṙi is the second derivative of HE in the direction

ṙ, and a trivial variation can be defined as the one that preserves boundary dihedral
angles: λ̇i j = 0.

In order to prove (1.3), we rewrite HE·· in a different form (equation (3.11)).
Then Lemma 2.13 implies that HE·· is non-positive, and vanishes only if ṙ is trivial.
But as HE·· vanishes by assumption, the variation ṙ must be trivial.
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786 I. Izmestiev

This argument is reminiscent of Koiso’s proof [29] of the infinitesimal rigidity of
Einstein manifolds under certain assumptions on the curvature operator. Koiso uses
integration by parts to obtain two formulas for the second derivative of the Hilbert–
Einstein functional. This yields an equation with zero on one side, while on the other
side one has a non-positive quantity that vanishes only if the deformation is trivial.
Note that our formula (3.11) is obtained from HE·· =

∑
i κ̇i ṙi by a kind of discrete

integration by parts.
Koiso’s proof is an example of application of Bochner’s technique: a second order

differential operator is expressed as the sum of Laplacian and of a non-negative 0-th
order operator. Thus our proof should be a particular manifestation of a discrete
Bochner technique.

1.5 The Discrete Bochner Technique

Einstein manifolds in dimension 3 are manifolds of constant sectional curvature;
therefore, Koiso’s theorem contains Calabi–Weil rigidity of hyperbolic 3-manifolds
as a special case. Weil also uses Bochner’s technique; his approach is related to that
of Koiso in the same way as moving vertices of a polyhedron P is related to deform-
ing the metric inside P. The infinitesimal rigidity of hyperbolic cone-manifolds with
cone angles less than 2π (see Subsection 1.3) is proved by extending Weil’s arguments
with the help of Cheeger’s Hodge theory for singular spaces.

It would be natural if the infinitesimal rigidity of cone-manifolds could be re-
proved by developing a discrete Bochner technique for this situation. Such a proof
would not only be elementary, it would also provide a discrete-geometric counterpart
to the original argument of Hodgson, Kerckhoff, and others.

Another theorem where the need for a discrete Bochner technique is felt is
Cheeger’s discrete analog [11] of the Bochner–Gallot–Meyer’s vanishing theorem:

If in a Euclidean cone-manifold of dimension d all cone angles are less than 2π,
then it is a real homology d-sphere.

Again, the known proof uses Hodge theory for singular spaces.
It should be mentioned that R. Forman developed a combinatorial Bochner tech-

nique [20] that takes into account the combinatorics of a simplicial complex (or, more
generally, cell complex), but not its geometry.

One of the components for a discrete Bochner technique should be the discrete
Hodge theory based on Whitney forms; see, e.g., [16]. The other component pre-
sumes some sort of discrete Riemannian geometry, still to be found.

1.6 Volume Derivatives and the Alexandrov–Fenchel Inequality

The proof of (1.1) sketched in Subsection 1.4 very much resembles a known proof of

(1.4) dim ker
( ∂Ai

∂h j

)
= 3,
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where hi are lengths of perpendiculars dropped to the faces of a convex polyhedron
Q from the origin, Ai are face areas, and the polyhedron is deformed by varying hi

while keeping the directions of face normals fixed.
In fact, equation (1.4), with d on the right-hand side, also holds for convex d-di-

mensional polyhedra. This is a key lemma in the proof of the Alexandrov–Fenchel
inequalities.

It is geometrically clear that Ai = ∂ Vol
∂hi

, where Vol(h) is the volume of a polyhedron
with given face normals and support numbers hi . Thus we have

∂Ai

∂h j
=

∂2 Vol

∂hi∂h j
,

which looks similar to (1.2).

1.7 Duality between the Volume and Hilbert–Einstein Functional

The above analogy culminates in a striking identity,

∂2 HE

∂ri∂r j
=

∂2 Vol

∂hi∂h j
,

where the polyhedron Q on the right-hand side is polar dual to the polyhedron P on
the left-hand side. We were able to prove this identity only by a direct computation.
Note that functions HE(r) and Vol(h) have different natures: the former uses inverse
trigonometric functions, while the latter is polynomial.

The situation is nicer in spherical and hyperbolic geometry. For a spherical convex
polyhedron P and its polar dual P∗ we have by [33]

Vol(P) +
1

2

∑
{i, j}

`i jλi j + Vol(P∗) = π2.

This implies that S(P) + S∗(P∗) = 2π2, where S and S∗ are functionals on the space
of warped spherical polyhedra. Functionals S and S∗ are the true analogs of HE
and Vol, respectively. In particular, their variational properties are similar to those
of their Euclidean counterparts. For more details, see Subsections 4.2 and 4.3. The
hyperbolic case is similar, but the polar dual P∗ of a hyperbolic polyhedron P lives in
the de Sitter space; see Subsection 4.4.

1.8 Gauss Infinitesimal Rigidity and the Minkowski Theorem

Equation (1.4) expresses what we call Gauss infinitesimal rigidity:

If the support numbers hi of a convex polyhedron vary in such a way that the
face areas remain constant in the first order, then the polyhedron undergoes a
parallel translation.
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788 I. Izmestiev

This theorem was stated and proved by Alexandrov [3, Chapter XI]. Minkowski
proved what we would call the global Gauss rigidity: if two convex polyhedra have
the same face normals and face areas, then they differ only by a translation. This is
the uniqueness part of the Minkowski theorem:

Given unit vectors νi that span R3 and positive numbers Ci such that
∑

i Ciνi =
0, there exists a convex polyhedron, unique up to translation, with face areas
Ci and outward face normals νi .

More generally, Minkowski’s existence and uniqueness theorem holds in Rd.

1.9 Alexandrov Theorem on Existence of a Convex Polyhedron with a Given
Metric on the Boundary

A counterpart to the Minkowski theorem in dimension 3 is the Alexandrov theorem
[2]:

Given a Euclidean cone-metric g on the 2-sphere S2 with all cone angles less
than 2π, there exists a convex polyhedron in R3 with g as the intrinsic metric
on the boundary.

In a joint paper [6] with A. Bobenko, we gave a new proof of the Alexandrov theorem.
The polyhedron P is obtained by constructing a family of warped polyhedra Pt , 0 ≤
t ≤ 1 where the curvatures κi tend to 0 as t tends to 1. The local existence of such a
family is based on the following property of the Jacobian of the map r 7→ κ:

dim ker
( ∂κi

∂r j

)
= 0, if 0 < κi < δi for all i.

Here δi is the angular defect of the i-th cone point on (S2, g). For the global existence
one has to make sure that polyhedra do not degenerate in the process of deforma-
tion. Note that the triangulation of the boundary of P may change in the process of
deformation. See Subsection 5.3 for more details.

2 Gauss Rigidity of Convex Polyhedra

2.1 The Theorem

A set (Qt )0≤t<ε of compact convex polyhedra is called a linear family if each Qt is
obtained from Q = Q0 by translating the planes of the faces, with the translation
vector of each face depending linearly on t .

In this section, a proof of the following theorem is presented.

Theorem 2.1 Assume that the area of each face in the linear family (Qt ) is constant
in the first order of t. Then all Qt are translates of Q.

This theorem is proved by Alexandrov [3] using two different methods. The proof
given here is essentially the one from [3, Chapter XI, § 3], but presented in a self-
consistent way. Our purpose is to reveal that the argument is based on certain varia-
tional properties of the volume in order to make the relationship with Section 3 more
straightforward.
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Let us introduce some notation. Let F1, F2, . . . , Fn be the faces of Q, and let νi be
the outer unit normal to the face Fi . Then the equation of the plane of the face Fi is

span(Fi) = {x ∈ R3 | 〈x, νi〉 = h0
i },

where h0
i is the signed distance from the coordinate origin 0 ∈ R3 to the plane

spanned by Fi . The numbers (h0
i ) are called support parameters of the polyhedron

Q. We have

(2.1) Q = {x ∈ R3 | 〈x, νi〉 ≤ h0
i , i = 1, . . . , n} =: Q(h0).

A linear family of polyhedra is obtained when νi are fixed and the support param-
eters change linearly:

Qt := Q(h0 + tu),

where u ∈ Rn is some fixed vector, and t ∈ [0, ε) for a sufficiently small ε.
Let Ai be the area of the face Fi . Denote by DAi(u) the derivative of Ai in the

direction u:

DAi(u) :=
d

dt

∣∣∣
t=0

Ai(h + tu) =
∑

i

∂Ai

∂hi
ui .

Usually we denote u by ḣ and use the notation Ȧi := DAi(ḣ).

Lemma 2.2 Theorem 2.1 is equivalent to each of the following two statements:

(i) If Ȧi = 0 for all i ∈ {1, . . . , n}, then there exists a vector a ∈ Rn such that
ḣi = 〈νi , a〉 for all i.

(ii) The Jacobian of the map (hi) 7→ (Ai) has corank 3:

dim ker
( ∂Ai

∂h j

)∣∣∣
h=h0

= 3.

Proof Take any a ∈ Rn and consider the translate Q(h0) + ta of the polyhedron
(2.1). Then Q(h0) + ta has the same face normals. It is easy to see that its support
parameters are equal to h0

i + t〈νi , a〉, so that we have

Q(h0) + ta = Q(h0 + tḣ), where ḣi = 〈νi , a〉

Thus Lemma 2.2(i) is equivalent to Theorem 2.1. The assumption Ȧi = 0 means
that the face areas are constant in the first order, and the conclusion means that all
members of the family are translates of Q.

Consider the linear subspace

L = {u ∈ Rn | ∃a ∈ R3 such that ui = 〈νi , a〉 for all i}

Since the vectors (νi)n
i=1 span R3, we have dim L = 3. Also we have

L ⊂ ker
( ∂Ai

∂h j

)
,
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because, by the previous paragraph, changing h0 by an element of L corresponds to
translation of the polyhedron and thus preserves Ai . Thus the second statement of
the lemma is equivalent to ker( ∂Ai

∂h j
) = L. On the other hand, by definition of the

directional derivative we have

Ȧi = 0 ∀i ⇒ ḣ ∈ ker
( ∂Ai

∂h j

)
.

Thus (ii) is also equivalent to Ȧi = 0 for all i ⇒ ḣ ∈ L, which is the first statement.
The lemma is proved.

2.2 The Approach

Recall that we put

Q(h) := {x ∈ R3 | 〈x, νi〉 ≤ hi , i = 1, . . . , n}.

The set Q(h) is a convex polyhedron for all h ∈ Rn, but it may have fewer than n faces
or even be empty. Let U ⊂ Rn be a neighborhood of h0 such that Q(h) has n faces
for all h ∈ U . Consider the function Vol : U → R, where Vol(h) is the volume of the
polyhedron Q(h).

Lemma 2.3 The function Vol is continuously differentiable on U with

(2.2)
∂ Vol

∂hi
= Ai ,

where Ai(h) is the area of the i-th face of the polyhedron Q(h).

Proof Equation (2.2) is geometrically obvious; as we shift the plane of the i-th face
by ε, we glue to (or cut from) Q a convex slice of thickness ε. One side of the slice has
area Ai , the other side has area Ai + O(ε). Hence the volume of the slice is εAi + o(ε),
and (2.2) follows.

Since its partial derivatives Ai are continuous, the function Vol is continuously
differentiable.

Equation (2.2) implies that the Jacobian of the map (hi) 7→ (Ai) equals the matrix
of the second differential of the function Vol. Here by the second differential we mean
a symmetric bilinear form

D2 Vol(u, v) :=
d

dt

∣∣∣
t=0

Dh+tv Vol(u) =
∑

i, j

∂2 Vol

∂hi∂h j
uiv j .

This yields the following reformulation of Theorem 2.1.

The second differential of the volume at h = h0has corank 3:

dim ker(D2
h0 Vol) = 3.
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In order to prove Theorem 2.1, we will compute the second variation of the vol-
ume in two different ways and compare the formulas obtained. Here the second vari-
ation Vol·· is the quadratic form associated with D2 Vol:

Vol·· := D2 Vol(ḣ, ḣ).

Equivalently,

Vol·· =
d2

dt2

∣∣∣
t=0

Vol(h + tḣ).

2.3 Orthoscheme Decomposition

Recall that Fi is the face of Q(h) with outer normal νi . If Fi and F j share an edge,
denote this edge by Fi j .

Let qi be the foot of the perpendicular dropped from 0 ∈ R3 to the plane spanned
by Fi . For every pair of adjacent faces, drop perpendiculars from the points qi and q j

to the line spanned by Fi j . Their common foot will be denoted by qi j = q ji . Finally,
denote by qi jk the vertex of Q(h) where faces Fi , F j , and Fk meet.

Denote by hi j the signed length of the segment qiqi j , the sign being positive if qi

lies on the same side from the edge Fi j as the polygon Fi . Similarly, let hi jk be the
signed length of the segment qi jqi jk. See Figure 1.

hi

qiFi hi j

qi jk

hi jk

qi j

F j0

Figure 1: Definition of hi j and hi jk.

From now on, we assume that the polyhedron Q(h0) is simple, i.e., that exactly
three faces meet at each of its vertices. Then, by choosing a neighborhood U of h0

appropriately small, we can ensure that all polyhedra Q(h) with h ∈ U are combina-
torially isomorphic (under identification of faces with equal outward normals). The
case of a non-simple Q(h0) is a bit subtle, and we explain in Subsection 2.6 how it
can be treated.

Under this assumption, the functions

hi j : U → R, hi jk : U → R,
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are linear; see equation (2.9). If Fi ∩ F j = ∅ or Fi ∩ F j ∩ Fk = ∅, then the corre-
sponding functions hi j and hi jk are not defined or can be put identically zero.

Lemma 2.4 For all h ∈ U , we have

(2.3) Vol(h) =
1

6

∑
i, j,k

hihi jhi jk.

Proof Denote by `i j the length of the edge Fi j . Then we have

(2.4) `i j = hi jk + hi jl,

where qi jk and qi jl are the endpoints of Fi j . By substituting this into

(2.5) Ai =
1

2

∑
j

hi j`i j

and substituting the result into

(2.6) Vol(h) =
1

3

∑
i

hiAi ,

we obtain (2.3).
Alternatively, the right-hand side of (2.3) can be seen as the sum of signed volumes

of the orthoschemes 0qiqi jqi jk.

Remark 2.5 Equations (2.5) and (2.6) hold also in the case when some of the
hi j or hi are negative (that is when qi lies outside Fi or 0 lies outside Q), see [48,
Lemma 5.1.1].

Note that since hi j and hi jk are linear functions of h, formula (2.3) expresses
Vol : U → R as a third degree homogeneous polynomial in (hi)n

i=1.

2.4 First and Second Variations of the Volume and of the Face Areas

We start with an auxiliary lemma.

Lemma 2.6 For an arbitrary variation ḣ ∈ Rn we have

ḣihi j + ḣ jh ji = hi ḣi j + h j ḣ ji ,(2.7)

ḣi jhi jk + ḣikhik j = hi j ḣi jk + hikḣik j .(2.8)

Here ḣi j and ḣi jk denote derivatives in the direction of ḣ.
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Proof By [48, Equation 5.1.3], we have

(2.9) hi j = h j cosecϕi j − hi cotϕi j , h ji = hi cosecϕi j − h j cotϕi j ,

these formulas holding independently of the signs of hi , h j , hi j , h ji . Note that the
angle ϕi j is constant. By differentiation we obtain (2.7).

Equation (2.8) is proved in the same way, by expressing hi jk and hik j through hi j

and hik.

Alternatively, equation (2.7) can be proved by differentiating the equation

ϕi j = arctan
hi j

hi
+ arctan

h ji

h j

(valid if hi , h j 6= 0) and using h2
i + h2

i j = h2
j + h2

ji .

Lemma 2.7 The first variations of the face areas are given by

(2.10) Ȧi =
∑

j,k

ḣi jhi jk =
∑

j,k

hi j ḣi jk.

Proof Equations (2.5) and (2.4) imply

Ȧi =
1

2

∑
j,k

(ḣi jhi jk + hi j ḣi jk)

=
1

2

∑
{ j,k}

(ḣi jhi jk + ḣikhik j) +
1

2

∑
{ j,k}

(hi j ḣi jk + hikḣik j),

where
∑
{ j,k} denotes the sum over unordered pairs of j and k. By using (2.8) and

converting back to the sum over ordered pairs, we obtain (2.10).

Lemma 2.8 The first variation of the volume is given by either of the following formu-
las:

Vol· =
∑

i

ḣiAi ,(2.11)

Vol· =
1

2

∑
i

hiȦi .(2.12)

Proof From (2.6) we have

(2.13) Vol· =
1

3

∑
i

ḣiAi +
1

3

∑
i

hiȦi .
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By using (2.5), regrouping, then using (2.7), regrouping back, and finally applying
Lemma 2.7, we obtain

2
∑

i

ḣiAi =
∑

i

ḣi

∑
j

hi j`i j =
∑
i, j,k

ḣihi jhi jk =
∑
{i, j},k

(ḣihi j + ḣ jh ji)hi jk

=
∑
{i, j},k

(hi ḣi j + h j ḣ ji)hi jk =
∑
i, j,k

hi ḣi jhi jk =
∑

i

hi

∑
j,k

ḣi jhi jk

=
∑

i

hiȦi .

Substituting this in (2.13) yields (2.11) and (2.12).

Remark 2.9 Note that (2.11) is equivalent to (2.2). Similarly, the first equation in
Lemma 2.7 says that ∂Ai

∂hi j
= `i j , which is geometrically obvious. This provides an

alternative, more geometric approach to Lemmas 2.8 and 2.7.

Lemma 2.10 The second variations of the face areas are given by

Äi =
∑

j,k

ḣi j ḣi jk.

Proof This follows from Lemma 2.7, since ḧi j = ḧi jk = 0 because of their linearity
in h.

Lemma 2.11 The second variation of the volume is given by either of the following
two formulas:

Vol·· =
∑

i

ḣiȦi ,(2.14)

Vol·· =
∑

i

hiÄi .(2.15)

Proof By differentiating (2.11) and taking into account ḧi = 0, we obtain (2.14).
Differentiating (2.12) yields

Vol·· =
1

2

∑
i

ḣiȦi +
1

2

∑
i

hiÄi .

Combining this with (2.14) yields (2.15).

Remark 2.12 Another way to write the first and the second variations of Vol is

Vol· =
1

2

∑
i, j,k

ḣihi jhi jk =
1

2

∑
i, j,k

hi ḣi jhi jk =
1

2

∑
i, j,k

hihi j ḣi jk,

Vol·· =
∑
i, j,k

ḣi ḣi jhi jk =
∑
i, j,k

hi ḣi j ḣi jk =
∑
i, j,k

ḣihi j ḣi jk.
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2.5 Proof of Theorem 2.1

The proof of Theorem 2.1 is based on the following key lemma.

Lemma 2.13 Let ḣ be such that Ȧi = 0 for some i. Then we have

(2.16) Äi ≤ 0.

Furthermore, equality in (2.16) holds only if ˙̀
i j = 0 for all edges bounding the face Fi .

This lemma will be proved later in this subsection.

Proof of Theorem 2.1 We will prove Theorem 2.1 using the reformulation given in
Lemma 2.2. if ḣ is such that Ȧi = 0 for all i, then ḣi = 〈a, νi〉 for some a ∈ R3.

If Ȧi = 0 for all i, then (2.14) implies that

(2.17) Vol·· =
∑

i

ḣiȦi = 0.

On the other hand, by Lemma 2.13 we have Äi ≤ 0. Furthermore, without loss of
generality we can assume that hi > 0 for all i (just choose the origin 0 ∈ R3 inside
Q). Hence (2.15) implies

Vol·· =
∑

i

hiÄi ≤ 0.

By comparing this with (2.17), we deduce that Äi = 0 for all i. Then by the second
part of Lemma 2.13, we have ˙̀

i j = 0 for all edges of Q. It follows easily that ḣ trans-
lates the polyhedron as a rigid body, thus ḣi = 〈a, νi〉 for some a ∈ Rn. Theorem 2.1
is proved.

Fix an index i and consider the function Ai : U → R. It can be written as a
function of (hi j). Here j varies over all faces of Q adjacent to the i-th face. Without
loss of generality assume that j = 1, . . . ,m and introduce new variables

g j = hi j , j = 1, . . . ,m.

Formally speaking, we consider a linear map

Φ : Rn → Rm, (hi) 7→ (g j) = (hi j).

The map Ai factors through Φ and induces a map A : V → R, where V = Φ(U ) ⊂
Rm is a neighborhood of g0 = Φ(h0). We have

A =
1

2

m∑
j=1

g j` j ,

where ` j = `i j are linear functions of g.
By our construction, g j = hi j are the support parameters of the face Fi with re-

spect to the projection of 0 to span(Fi). We have

(2.18)
∂A

∂g j
= ` j , hence

∂2A

∂g j∂gk
=
∂` j

∂gk
.
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Lemma 2.14 The second differential D2A of the area function on the space of convex
m-gons with fixed edge directions has signature (+1, 02,−m−3). Furthermore, D2A at a
point g takes a positive value on the vector g.

Proof First, let us show that

(2.19) dim ker D2A = 2.

By (2.18), D2A coincides with the Jacobian of the map g 7→ `. Thus

(2.20) ġ ∈ ker D2A ⇐⇒ ˙̀ = 0.

But ˙̀ = 0 implies that ġ is induced by a parallel translation of the polygon. Such
deformations form a 2-dimensional space, and (2.19) follows.

Consider the space Qm of all convex m-gons. A convex polygon is determined by
its edge normals (µ j) and support parameters (g j). The numbers (g j) must satisfy
a system of linear inequalities (with coefficients depending on (µ j)) expressing the
fact that all edge lengths are non-negative. For every collection (µ j) of m different
unit vectors positively spanning R2, the collection (g j = 1) satisfies this system, as
(µ, g) corresponds to a circumscribed polygon. Thus Qm retracts to the space of
configurations (µ j) of m unit vectors positively spanning R2. It follows that Qm is
connected.

Because of (2.19), the rank of D2A is constant over the space Qm. As Qm is con-
nected, it follows that the signature of D2A is also constant. Thus in order to de-
termine the signature at the point we need, it suffices to compute it at a point we
like.

Let us compute the matrix of D2A. Let α j, j+1, j = 1, . . . ,m, be the exterior angle
between j-th and ( j + 1)-st side ( j + 1 taken modulo m). Similarly to (2.9), we have

` j = g j, j−1 + g j, j+1

= (g j−1 cosecα j−1, j − g j cotα j−1, j) + (g j+1 cosecα j, j+1 − g j cotα j, j+1),

which implies that

∂` j

∂g j
= −(cotα j−1, j + cotα j, j+1),

∂` j

∂g j+1
=
∂` j+1

∂g j
=

1

sinα j, j+1
.

Note that the matrix of D2A does not depend on g. This is because A is a homoge-
neous polynomial of second degree in (g j). By the same reason we have

D2A(g, g) = 2A > 0,

which proves the second statement in the lemma.
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To determine the signature of D2A, put α j, j+1 = 2π
m . Then we have

D2A =
1

sin 2π
m


−2 cos 2π

m 1 0 · · · 1
1 −2 cos 2π

m 1 · · · 0
0 1 −2 cos 2π

m · · · 0
...

...
...

. . .
...

1 0 0 · · · −2 cos 2π
m

 .

The spectrum of this matrix is{ 2(cos 2πk
m − cos 2π

m )

sin 2π
m

, k = 1, . . . ,m
}
,

which contains exactly one positive (for k = m) and two zero (k = 1 and k = m− 1)
eigenvalues. The lemma is proved.

Proof of Lemma 2.13 Change the variables for the function Ai with the help of the
map (2.5). Let ġ = dΦ(ḣ) be the variation of g induced by ḣ. By assumption, we have∑

j

ġ j` j = Ȧ = 0.

On the other hand, since (` j) are linear functions of g, we have

` j =
∑

k

∂` j

∂gk
gk,

which results in

D2A(ġ, g) =
∑

j,k

∂` j

∂gk
ġ jgk =

∑
j

ġ j` j = 0.

That is, the vectors ġ, g ∈ Rm are mutually orthogonal with respect to the symmetric
bilinear form D2A. By Lemma 2.14, g is a positive vector for D2A, and D2A is negative
semidefinite on the orthogonal complement to g. Thus we have

Ä = D2A(ġ, ġ) ≤ 0.

If Ä = 0, then ġ ∈ ker D2A, which by (2.20) implies that ˙̀
j = 0 for all j. The lemma

is proved.

Remark 2.15 In general, the second differential does not behave well under change
of variables. However, it does in our case, because the map (2.5) is linear. Therefore
the second variation Äi in Lemma 2.13 is associated with the second differential D2A
from Lemma 2.14:

Äi = D2A(dΦ(ḣ), dΦ(ḣ)) = D2A(ġ, ġ),

which was implicitly used in the above proof.
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2.6 The Case of a Non-simple Polyhedron Q

In the course of our proof we assumed that the polyhedron Q is simple; that is, each
of its vertices belongs to exactly three faces. This assumption implies that the combi-
natorics of Q is preserved when its support parameters vary slightly.

If the polyhedron Q = Q(h0) is non-simple, then Q(h) may be combinatorially
different from Q even for h close to h0. A neighborhood U of h0 ∈ Rn is subdivided
into cells (U ∆) with ∆ indexing simple combinatorial types of perturbed polyhedra.
On each cell, the function Vol is a third degree homogeneous polynomial in (hi),

Vol(h) = V ∆(h) for h ∈ U ∆,

so that function Vol is piecewise polynomial in a neighborhood of h0. It can be shown
that

Vol ∈ C2(U ), Ai ∈ C1(U ).

But Ai may fail to be C2, which is bad because second differentials of face areas play a
key role in Subsection 2.5.

This problem can be resolved as follows. Choose any simple combinatorics ∆
from a neighborhood of h0, and work with V ∆ and A∆

i instead of Vol and Ai . Geo-
metrically this means that we view our non-simple polyhedron Q(h0) as a member
of a family of simple polyhedra, with some edge lengths vanishing; by varying h0 in
U , we allow negative edge lengths to appear. One can check that all arguments in
Subsection 2.5 go through.

This modification proves Theorem 2.1 for non-simple polyhedra.

3 Metric Rigidity of Convex Polyhedra

3.1 The Theorem

Let P ⊂ R3 be a convex polyhedron with vertices p1, . . . , pn. Assume that P is simpli-
cial; that is, all of its faces are triangles. Subsection 3.8 explains how our arguments
change in the non-simplicial case.

Definition 3.1 An infinitesimal deformation of P is a collection of vectors qi ∈ R3,
i = 1, . . . , n. Each qi is thought of as a vector applied at the point pi .

An infinitesimal deformation (qi) of a polyhedron P is called isometric if

(3.1)
d

dt

∣∣∣
t=0
‖(pi + tqi)− (p j + tq j)‖ = 0,

for all edges pi p j of P. In other words lengths of all edges do not change in the first
order as vertices (pi) move linearly with velocities (qi).

A simple computation shows that condition (3.1) is equivalent to

〈pi − p j , qi − q j〉 = 0.
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Definition 3.2 An infinitesimal deformation (qi) of P is called trivial, if the map
pi 7→ qi is the restriction of an infinitesimal isometry of R3:

qi = Api + b, A ∈ so(3), b ∈ R3.

An infinitesimal isometry of R3 preserves in the first order distances between all
pairs of points; therefore, every trivial infinitesimal deformation of P is isometric.

Definition 3.3 A polyhedron P is called infinitesimally rigid if every isometric in-
finitesimal deformation of P is trivial.

Theorem 3.4 (Legendre–Cauchy–Dehn) Every convex polyhedron in R3 is infinites-
imally rigid.

This is usually referred to as Dehn’s theorem. Let us explain why we prefer a dif-
ferent attribution. Cauchy [10] proved a global rigidity statement: two convex poly-
hedra with the same combinatorics and pairwise isometric faces are congruent. His
proof was based on ideas presented by Legendre in [31, note XII, pp. 321–334]. Dehn
was the first to state and prove the infinitesimal rigidity theorem in [15]. However, in
the footnote on the first page of [59], Weyl remarks that the argument in [10] carries
over word for word to yield a proof of Theorem 3.4 and reproaches Dehn for not
citing Cauchy. Note also that the Cauchy’s “arm lemma” is more immediate in the
infinitesimal context.

3.2 A Reformulation

Without loss of generality we may assume that the coordinate origin 0 ∈ R3 lies in the
interior of P. For every vertex pi of P, put r0

i = ‖pi‖. The length of an edge pi p j will
be denoted by `i j = ‖pi− p j‖. Triangles 0pi p j , where pi p j ranges over all edges of P,
cut the polyhedron P into triangular pyramids. These pyramids have a common apex
at 0, their bases are faces of P. Let r ∈ Rn be a point close to r0 = (r0

i )n
i=1. Change

lateral edge lengths of the pyramids from r0
i to ri while keeping base edge lengths `i j

fixed. A metric space glued from the new collection of pyramids (by the old gluing
rules) is called a warped polyhedron. A warped polyhedron is not embeddable in R3

in general, because the sum ωi of all dihedral angles at an edge 0pi may be different
from 2π, for some i. Denote by κi = 2π−ωi the curvature of the warped polyhedron
at the edge 0pi . This yields a C∞-map

U → Rn, r 7→ κ,

where U ⊂ Rn is a sufficiently small neighborhood of r0.

Lemma 3.5 A convex polyhedron P is infinitesimally rigid if and only if

dim ker
( ∂κi

∂r j

)∣∣∣
r=r0

= 3.
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Proof We will establish a correspondence between isometric infinitesimal deforma-
tions of P and elements of the kernel of Jκr =

(
∂κi
∂r j

)
.

Let q be an infinitesimal isometric deformation of P and let pt
i = pi + tqi be the

corresponding linear motions of the vertices. Put

(3.2) rt
i = ‖pt

i‖, `t
i j = ‖pt

i − pt
j‖.

This defines a family of warped polyhedra, this time with non-constant metric on the
boundary. By Definition 3.1 and since the polyhedron remains embedded in R3, we
have

˙̀
i j :=

d

dt

∣∣∣
t=0
`t

i j = 0, κt
i = 0

for all i, j. Modify the deformation (3.2) by putting `t
i j = `i j . Although the functions

κt
i might not be identically zero anymore, their time derivatives at t = 0 will not

change:
`t

i j = `i j ⇒ κ̇i = 0.

It follows that ṙ ∈ ker Jκr .
In particular, if q is an infinitesimal rotation around an axis through the origin,

then we have rt
i = ri , and thus ṙ = 0. If q is a parallel translation, then ṙ 6= 0 is

a non-trivial element in ker Jκr . One can show that translations in linearly indepen-
dent directions in R3 produce linearly independent vectors ṙ ∈ Rn. Hence trivial
infinitesimal deformations of P give rise to a 3-dimensional subspace of ker Jκr .

In the opposite direction, let us associate with ṙ ∈ ker Jκr an isometric infinitesi-
mal deformation of P. Let p1 p2 p3 be a face of P. Choose a vector q1 collinear with
0p1 such that when p1 moves with the velocity q1, its distance from 0 changes with
speed ṙ1:

q1 = ṙ1
p1

‖p1‖
.

Choose q2 collinear with the plane 0p1 p2 so as to satisfy the conditions on variations
of r2 and `12: 〈

q2,
p2

‖p2‖

〉
= ṙ2, 〈p1 − p2, q1 − q2〉 = 0.

And choose q3 so as to satisfy the conditions on variations of r3, `13, and `23:

(3.3)
〈

q3,
p3

‖p3‖

〉
= ṙ3, 〈p1 − p3, q1 − q3〉 = 0, 〈p2 − p3, q2 − q3〉 = 0.

Now proceed to an adjacent face p1 p3 p4 and determine q4 by conditions similar to
(3.3). Continue the face path (p1 pi pi+1) around the vertex p1 until it closes at p1 pk p2.
On the vector qk there will be four conditions, the fourth being the stability of `k2. It
is easy to see that this condition follows from the first three due to

κ̇1 :=
∑

i

∂κ1

∂ri
ṙi = 0.
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so that qk is well defined. In a similar way we can find qi for all i, all closing conditions
being satisfied due to κ̇ = 0.

Note that we made some voluntary choices at the beginning, with q1 and q2, but
starting from q3 everything was forced. It follows that the infinitesimal deformation
q is determined by ṙ uniquely up to an infinitesimal rotation.

As we observed, trivial infinitesimal deformations of P generate a 3-dimensional
subspace of ker Jκr . If there is a non-trivial isometric infinitesimal deformation, then
the corresponding ṙ ∈ ker Jκr lies outside this subspace, as the map q 7→ ṙ identifies
only deformations that differ by an infinitesimal rotation. Thus dim ker Jκr = 3 im-
plies infinitesimal rigidity. Vice versa, if dim ker Jκr > 3, then there is an ṙ ∈ ker Jκr
not coming from a trivial infinitesimal deformation. Thus it determines a non-
trivial isometric infinitesimal deformation q. That is, infinitesimal rigidity implies
dim ker Jκr = 3.

3.3 The Discrete Hilbert–Einstein Functional

In Section 3.2 we introduced warped polyhedra that have curvatures (κi) along their
radial edges 0pi . Recall that the boundary edge lengths (`i j) are kept constant, while
the radial edge lengths r = (ri)n

i=1 are allowed to vary in a neighborhood U of a point
r0 ∈ Rn. Denote by P(r) the warped polyhedron with radial edge lengths r. Let λi j

be the exterior dihedral angle at the boundary edge pi p j . Note that (λi j), as well as
(κi) are functions of r.

Definition 3.6 The discrete Hilbert–Einstein functional of a warped polyhedron P(r)
is

HE(r) =
∑

i

riκi +
∑
{i, j}

`i jλi j .

By
∑
{i, j} we denote the sum over all unordered pairs of i and j, so that every

boundary edge is taken once.

Lemma 3.7 We have

(3.4)
∂ HE

∂ri
= κi .

Lemma 3.7 can be derived from (and is equivalent to) the Schläfli formula for
Euclidean polyhedra. We will prove it by a different method in Subsection 3.5.

Corollary 3.8 A convex polyhedron P is infinitesimally rigid if and only if the second
differential of the Hilbert–Einstein functional has corank 3 at the point r0:

dim ker(D2 HE)|r=r0 = 3.

Proof In view of Lemma 3.7, the matrix of the second differential of HE is the Jacobi
matrix of the map r 7→ κ. Thus Corollary 3.8 is simply a reformulation of Lemma 3.5.

https://doi.org/10.4153/CJM-2013-031-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2013-031-9


802 I. Izmestiev

3.4 The Total Curvature of a Warped Spherical Polygon

In a warped polyhedron P(r), consider the spherical link Si of the vertex pi . By def-
inition, Si is a complex of spherical triangles obtained from trihedral angles at pi by
intersecting them with a unit sphere centered at pi . In our case, these triangles are
glued cyclically around a common vertex, forming a total angle of 2π − κi . The an-
gles at the boundary vertices of Si are equal to the dihedral angles of P(r), that is, to
π− λi j . The lengths of radial edges in Si are equal to ρi j , where ρi j is the angle at the
vertex pi in the triangle 0pi p j ; see Figure 2. Denote

si j = cos ρi j .

`i j

ρi j
ρ ji

ri
r j

pi p j

si j := cos ρi j

ρi j

π − λi j

2π − κi

0

Figure 2: The triangle 0pi p j and the spherical link Si of the vertex pi .

A complex of spherical triangles similar to Si (a set of triangles glued cyclically
around a common vertex) will be called a warped spherical polygon. Note that Si is in
addition convex, that is, the angles at its boundary vertices are less than or equal to π.

Definition 3.9 The total curvature Ki of the warped spherical polygon Si in Figure
2, right, is defined as

Ki = κi +
∑

j

si jλi j .

Lemma 3.10 We have

(3.5) HE =
∑

i

riKi .

Proof The orthogonal projection of 0 to the line pi p j splits the edge pi p j into two
segments of lengths ri cos ρi j and r j cos ρ ji . Thus we have

(3.6) `i j = risi j + r js ji .
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(If the projection of 0 lies outside the edge, the formula remains valid.) By substitut-
ing (3.6) in the definition of HE, we obtain

HE =
∑

i

riκi +
∑
{i, j}

(risi j + r js ji)λi j =
∑

i

riκi +
∑

i, j

risi jλi j

=
∑

i

ri

(
κi +

∑
j

si jλi j

)
=
∑

i

riKi ,

and the lemma is proved.

3.5 Variations of HE and Ki

Let r ∈ U and let ṙ ∈ Rn be an arbitrary variation of r. Denote by

HE· =
d

dt

∣∣∣
t=0

HE(r + t ṙ)

the derivative of the function HE in the direction ṙ. Similar notations K̇i , ṡi j , λ̇i j are
used for the directional derivatives of other functions of r.

Lemma 3.11 The first variation of the total curvature of the spherical link Si of the
vertex pi in P(r) is given by

K̇i =
∑

j

ṡi jλi j .

Proof The warped polygon Si is made of spherical triangles, see Figure 2. Consider a
triangle with edge lengths ρi j , ρik. Its third side has a constant length, as it is equal to
the angle p j pi pk on the boundary of the polyhedron P(r). By applying Lemma A.2,
we obtain

(3.7) α̇i jk + β̇i jsi j + γ̇iksik = 0,

where αi jk is the angle between the ρi j and ρik sides and βi j , γik are the two other
angles. As we have ∑

jk

αi jk = 2π − κi , βi j + γi j = π − λi j ,

summing (3.7) over all triangles yields

(3.8) κ̇i +
∑

j

si j λ̇i j = 0.

It follows that
K̇i = κ̇i +

∑
j

(ṡi jλi j + si j λ̇i j) =
∑

j

ṡi jλi j ,

and the lemma is proved.
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Lemma 3.12 For every edge pi p j , we have

ṙisi j + ṙ js ji + ri ṡi j + r j ṡ ji = 0.

Proof This follows from (3.6) and ˙̀
i j = 0.

Lemma 3.13 The first variation of the Hilbert–Einstein functional of a warped poly-
hedron P(r) is given by

(3.9) HE· =
∑

i

ṙiκi .

Proof The proof follows by differentiating (3.5) and applying Lemmas 3.11 and 3.12:

HE· =
∑

i

ṙiKi +
∑

i

riK̇i =
∑

i

ṙi(κi +
∑

j

si jλi j) +
∑

i

ri

∑
j

ṡi jλi j

=
∑

i

ṙiκi +
∑

i, j

(ṙisi j + ri ṡi j)λi j

=
∑

i

ṙiκi +
∑
{i, j}

(ṙisi j + ṙ js ji + ri ṡi j + r j ṡ ji)λi j =
∑

i

ṙiκi .

Lemma 3.7 follows from Lemma 3.13, as (3.4) is just a reformulation of (3.9).
Recall that the second variation of HE is the quadratic form in (ṙi) associated to

the second differential of HE:

HE·· = D2 HE(ṙ, ṙ) =
∑

i, j

∂2 HE

∂ri∂r j
ṙi ṙ j =

d2

dt2

∣∣∣
t=0

HE(r + t ṙ).

Lemma 3.14 The second variation of HE is given by either of the following two for-
mulas:

HE·· =
∑

i

ṙiκ̇i ,(3.10)

HE·· =
∑

i

ri

∑
j

ṡi j λ̇i j .(3.11)

Proof Equation (3.10) is a direct consequence of (3.9). In order to prove (3.11),
transform (3.10) by using (3.8) and Lemma 3.12:

HE·· =
∑

i

ṙiκ̇i = −
∑

i

ṙi

∑
j

si j λ̇i j = −
∑
{i, j}

(ṙisi j + ṙ js ji)λ̇i j

=
∑
{i, j}

(ri ṡi j + r j ṡ ji)λ̇i j =
∑

i

ri

∑
j

ṡi j λ̇i j .
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3.6 Proof of Theorem 3.4

The proof is based on the following lemma.

Lemma 3.15 Let ṙ be such that κ̇i = 0 for some i. Then we have

(3.12)
∑

j

ṡi j λ̇i j ≤ 0.

Equality in (3.12) holds only if λ̇i j = 0 for all j.

The proof of this lemma requires a detailed study of the second variation of Ki with
respect to the variables (si j). This is done in Subsection 3.7, which ends with the proof
of Lemma 3.15. Now we prove Theorem 3.4 assuming the validity of Lemma 3.15.

Proof of Theorem 3.4 We prove Theorem 3.4 in the reformulation obtained in Lem-
ma 3.5. It suffices to show that if ṙ is such that κ̇i = 0 for all i, then ṙ is induced by a
trivial isometric deformation of P.

If κ̇i = 0 for all i, then (3.10) implies

HE·· =
∑

i

ṙiκ̇i = 0.

On the other hand, equation (3.11) and Lemma 3.15 imply

HE·· =
∑

i

ri

∑
j

ṡi j λ̇i j ≤ 0,

because ri > 0 for all i. Thus we must have∑
j

ṡi j λ̇i j = 0

for all i. By Lemma 3.15, this happens only if λ̇i j = 0 for all edges pi p j . This
means that the isometric infinitesimal deformation that corresponds to ṙ does not
change the dihedral angles of the polyhedron P in the first order. It follows that this
infinitesimal deformation is trivial.

3.7 The Second Variation of the Total Curvature of a Warped Spherical Polygon

In Subsection 3.4, we defined warped spherical polygons and their total curvature.
Warped spherical polygons appeared as spherical links Si of vertices of a warped
polyhedron P(r); see Figure 2. Consequently, the total curvature of Si was viewed
as a function of r ∈ Rn.

In this subsection, we study warped spherical polygons on their own. We preserve
the notations on the right of Figure 2, but suppress the index i. Without loss of
generality, assume that the index j numbering the radial edges varies from 1 to m. As
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before, lengths of boundary edges are assumed constant, so that a warped spherical
polygon is determined by m parameters

s j = cos ρ j , j = 1, . . . ,m,

with s varying in a neighborhood V of s0 ∈ Rm. The point s0 has the property
κ(s0) = 0, where κ (a former κi) is the angular defect of the interior vertex of the
warped polygon.

Consider the total curvature of a warped spherical polygon as a function of s:

(3.13) K : V → R, K(s) = κ +
∑

j

s jλ j .

Lemma 3.16 The first and second variations of K as a function of s are given by

K̇ =
∑

j

ṡ jλ j ,(3.14)

K̈ =
∑

j

ṡ j λ̇ j .(3.15)

Proof Equation (3.14) follows from Lemma 3.11, as the form of the first variation
does not depend on the choice of variables. (Actually, in the proof of Lemma 3.11 we
deal with coordinates (si j), so we implicitly use the invariance of the first variation.)

Equation (3.15) is a direct consequence of (3.14). Compare this with (3.10).

We have abused notation here. In (3.15), double dots denote the second variation
in the variables (s j), while before we used them to denote the second variation in
variables (ri). Do not ever try to substitute (3.15) into (3.11)!

Lemma 3.17 The second differential D2
s0 K of the function (3.13) at the point s0 has

signature (+1, 02,−m−3). Besides, the associated quadratic form is positive on the vec-
tor s0:

D2
s0 K(s0, s0) > 0.

Proof First let us show that

dim ker D2
s(0)K = 2.

Lemma 3.16 implies that

∂K

∂s j
= λ j , hence

∂2K

∂s j∂sk
=
∂λ j

∂sk
,

so that the matrix of D2K coincides with the Jacobi matrix of the map s 7→ λ. Thus

ṡ ∈ ker D2K ⇐⇒ λ̇ = 0;
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that is, if and only if the variation ṡ of radial edge lengths induces a zero variation of
angles between boundary edges. It is not hard to show that at s = s0 such variations
form a 2-dimensional space, namely they come from moving the interior vertex while
the boundary of the polygon remains fixed.

Let Pm be the space of all convex spherical m-gons with a marked interior point
(i.e., convex warped spherical m-gons with κ = 0). It is easy to see that Pm is con-
nected. Every element of Pm can be viewed as a point s0 in a space of warped polygons
with a fixed boundary metric, thus has a matrix D2

s0 K associated with it. By the pre-
vious paragraph, the rank of D2

s0 K is constant over Pm. Since Pm is connected, and
D2

s0 K depends continuously on an element of Pm, the signature is constant as well.
Thus in order to compute the signature of D2

s0 K for all warped spherical m-gons with
κ = 0, it suffices to do this for one such m-gon.

Let us compute the matrix of D2
s0 K. Let α j, j+1 be the angle between two consecu-

tive radial edges. Then we have by Lemma A.1

∂λ j

∂s j
= −

cotα j−1, j + cotα j, j+1

sin2 ρ j
,

∂λ j

∂s j+1
=
∂λ j+1

∂s j
=

1

sinα j, j+1 sin ρ j sin ρ j+1
.

We compute the signature of D2
s0 K for α j, j+1 = 2π

m and ρ j = ρ ∈ (0, π2 ). In this
case

D2
s0 K =

1

sin 2π
m sin2 ρ


−2 cos 2π

m 1 0 · · · 1
1 −2 cos 2π

m 1 · · · 0
0 1 −2 cos 2π

m · · · 0
...

...
...

. . .
...

1 0 0 · · · −2 cos 2π
m

 .

This matrix has spectrum

{
2(cos 2πk

m − cos 2π
m )

sin 2π
m sin2 ρ

, k = 1, . . . ,m

}
,

which contains exactly one positive eigenvalue (for k = m). The first part of
Lemma 3.17, concerning the signature, is proved.

The positivity of the form D2
s0 K on the vector s0 follows from Lemma 3.18.

Let S ⊂ S2 be a convex spherical polygon with a distinguished point p0 in its
interior. The polar dual S∗ of S is the intersection of all hemispheres centered at
vertices of S. We define the Euclidean polar dual S∗E of S as the projection of S∗ from
the center of S2 to the plane tangent to S2 at p0; see Figure 3. Note that if some of
the distances ρ j are bigger than π

2 , then the point p0 lies outside the spherical and
Euclidean polar duals.
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ρ j π
2 − ρ j

cot ρ jρ j+1
π
2 − ρ j+1 cot ρ j+1

α j, j+1α j, j+1
α j, j+1

p0p0 p0

Figure 3: Fragments of S, S∗, and S∗
E .

Lemma 3.18 Let S be a convex spherical polygon with a marked interior point p0.
Let (s0

j ) be distances from p0 to the vertices of S. Consider the space of warped spherical
polygons obtained from S by varying (s j) while keeping the boundary edge lengths fixed.
Then we have

D2
s0 K(s0, s0) = 2 Area(S∗E),

where S∗E is the Euclidean polar dual to S; see the definition before the lemma.

Proof Draw the perpendiculars from p0 to the sides of S∗. They cut the spherical
polygon S∗ into quadrilaterals, each with a pair of opposite right angles (quadri-
laterals may be self-intersecting). The signed lengths of the perpendiculars equal
π
2 − ρ j , with angles α j, j+1 between them. The Euclidean polygon S∗E has a simi-
lar decomposition, with the same angles α j, j+1 but with perpendiculars of lengths
cot ρ j ; see Figure 3. Equation (2.9) gives us the lengths of the other two sides of a
( j, j + 1)-quadrilateral, so that we can compute its area:

1

2

(
cot ρ j

cot ρ j+1 − cot ρ j cosα j, j+1

sinα j, j+1
+ cot ρ j+1

cot ρ j − cot ρ j+1 cosα j, j+1

sinα j, j+1

)
.

By summing over j and performing simple transformations, we obtain

Area(S∗E) =
1

2

∑
j,k

∂λ j

∂sk
s0

j s
0
k =

1

2
D2

s0 K(s0, s0),

and the lemma is proved.

Proof of Lemma 3.15 Suppress the index i and consider κ = κi and λ j = λi j as
functions of (s j) = (si j). Due to invariance of the first differential, upper dots on the
left hand side of (3.12) can be viewed as variations with respect to the variables (s j),
and we find ourselves in the setting of the present subsection.

By assumption, we have κ̇ = 0 for the variation ṡ at the point s0. Together with
equation (3.8) (or (3.14)) this implies that∑

j

s0
j λ̇ j = −κ̇ = 0.
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On the other hand,

∑
j

s0
j λ̇ j =

∑
j,k

s0
j

∂λ j

∂sk
ṡk =

∑
j,k

s0
j
∂2K

∂s j∂sk
ṡk = D2

s0 K(s0, ṡ).

Thus we have

D2
s0 K(s0, ṡ) = 0,

which means that the vectors s0 and ṡ are mutually orthogonal with respect to the
symmetric bilinear form D2

s0 K. By Lemma 3.17, s0 is a positive vector for D2
s0 K, and

D2
s0 K is negative semidefinite on the orthogonal complement to s0. It follows that

D2
s0 K(ṡ, ṡ) ≤ 0.

Since, by (3.15), ∑
j

ṡ j λ̇ j = K̈ = D2
s0 K(ṡ, ṡ),

the inequality (3.12) in Lemma 3.15 follows. Equality
∑

j ṡ j λ̇ j = 0 means that ṡ ∈
ker D2

s0 K. This implies λ̇ j = 0 for all j, as established in the first lines of the proof of
Lemma 3.17.

3.8 The Case of a Non-simplicial Polyhedron P

First of all, if P has some non-triangular faces, our definition of an isometric in-
finitesimal deformation (the second half of Definition 3.1) has to be modified. If we
only require stability of lengths of edges, then, say, the cube would be considered as
infinitesimally flexible. There are two possibilities. Either one requires that each face
of P is moved by (qi) as a rigid plate. Or, one subdivides each face into triangles by
non-crossing diagonals and requires stability of lengths also for the diagonals. The
latter class of infinitesimal deformations is a priori larger than the former and can be
shown to be independent of the choice of subdividing diagonals.

We choose the second possibility. Thus, P = P(r0) can be viewed as a simplicial
polyhedron with some dihedral angles equal to π. As we vary r in a neighborhood
U of r0, these dihedral angles can become less than π. Undaunted by this, we carry
out our arguments for non-convex warped polyhedra as well. As we come to warped
spherical polygons, we also consider non-strictly convex and “slightly non-convex”
ones. Everything goes through, including Lemma 3.17. For the positivity of the
form D2

s0 K on the vector s0 we need only positivity of the area of the corresponding
Euclidean polar dual. This is fulfilled, as the polygon S is a convex (albeit non-strictly)
spherical polygon.

Thus a simple modification of the definitions allows us to extend the argument to
non-simplicial polyhedra.
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4 Duality

4.1 Duality Between Second Derivatives of Vol and HE

There is an apparent duality between constructions and arguments in Sections 2
and 3. This is the same kind of duality as between Cauchy’s proof of Theorem 3.4
in [10] and Alexandrov’s proof of Theorem 2.1 in [3, Chapter XI]. Cauchy studies a
deformation of the spherical link Si of a vertex pi , marks with + or− the j-th vertex
of Si if the angle (λi j) increases or decreases during the deformation, and shows that
either at least four sign changes occur as one goes along the boundary of Si , or no
vertex of Si is marked, i.e., the dihedral angles at pi are stable. Then a combinatorial
argument involving the Euler characteristic of a polyhedron shows that there are no
markings at all. Alexandrov considers variations of edge lengths along the boundary
of a face Fi , marks lengthening and shortening edges, and follows Cauchy’s argument.

In this paper, new similarities show up. Deformations of Q in Section 2 are gov-
erned by support parameters (hi), while deformations of P in Section 3 are governed
by radii (ri). There are functions Vol(h) and HE(r) with similar variational proper-
ties, and infinitesimal rigidity is proved by showing that

dim ker(D2 Vol) = 3 and dim ker(D2 HE) = 3.

The following lemma strengthens this analogy by making it quantitative rather than
qualitative.

Lemma 4.1 Let P ⊂ R3 be a convex polyhedron with vertices p1, . . . , pn and such
that 0 lies in the interior of P. Let Q = P∗ be the polar dual of P, that is

Q = {x ∈ R3 | 〈x, νi〉 ≤ h0
i , i = 1, . . . , n},

where

νi =
pi

‖pi‖
=

pi

r0
i

, h0
i =

1

r0
i

.

Then we have

(4.1) D2
h0 Vol = D2

r0 HE .

Proof A direct computation [6, Section 3] shows that

∂2 HE

∂ri∂r j
=

cotβi j + cot γi j

`i j sin ρi j sin ρ ji
=

∂2 Vol

∂hi∂h j
,

∂2 HE

∂r2
i

= −
∑

j

cosϕi j
cotβi j + cot γi j

`i j sin ρi j sin ρ ji
=
∂2 Vol

∂h2
i

.

Here, angles βi j and γi j were defined in the proof of Lemma 3.11, ϕi j is the angle at
0 in the triangle 0pi p j , and `i j and ρi j are as in Figure 2. The lemma is proved.
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An immediate consequence of Lemma 4.1 is that each of Theorems 2.1 and 3.4
implies the other one (e.g., one can replace Subsections 3.3 to 3.7 by Lemma 4.1). On
the other hand, a proof of identity (4.1) by a direct computation is more a question
than an answer. There is no obvious reason why (4.1) should hold; for example, the
functions HE(r0 + x) and Vol(h0 + x) are by no means equal.

The next subsection partially “demystifies ” identity (4.1) by pointing out a close
relationship between HE and Vol in the context of polar duality in the 3-sphere.

4.2 Duality in Spherical Geometry

Let P ⊂ S3 be a convex spherical polyhedron (i.e., the intersection of a finite number
of hemispheres that contains no pair of antipodal points). Define the polar dual of P
as

P∗ = {x ∈ S3 | 〈x, y〉 ≤ 0 for all y ∈ P}.

(We put S3 = {x ∈ R4 | ‖x‖ = 1}, and let 〈 · , · 〉 be the scalar product in R4.) Then
P∗ is also a finite intersection of hemispheres (take one hemisphere for every vertex of
P). We assume that dim P = 3; then P∗ contains no pair of antipodal points. Let pi p j

be an edge of P. In P∗ there is a dual edge lying in the intersection of hyperspheres
polar to pi and p j . Denote by `i j the length of the edge pi p j , and by `∗i j the length of
the dual edge.

Theorem 4.2 (McMullen [33]) For every 3-dimensional spherical polyhedron P and
its polar dual P∗ the following identity holds:

(4.2) Vol(P) +
1

2

∑
{i, j}

`i j`
∗
i j + Vol(P∗) = π2.

The proof is based on Lemma 4.3.
We have `i j = λ∗i j and `∗i j = λi j , where λi j is the exterior dihedral angle of P

at the edge pi p j , and λ∗i j is the exterior dihedral angle of P∗ at the dual edge. The
first equation holds because the distance between pi and p j is equal to the exterior
dihedral angle between the hyperspheres polar to pi and p j . The second holds, since
(P∗)∗ = P and pi p j is dual of its dual. It follows that the summand in the middle of
(4.2) is the discrete total mean curvature of ∂P and at the same time the discrete total
mean curvature of ∂P∗.

More generally, let P be a convex polyhedron in the d-sphere Sd for arbitrary
d ≥ 1, and let F be a face of P. We define the dual face of P∗ as

F⊥ = {x ∈ P∗ | 〈x, y〉 = 0 for all y ∈ F}.

We have dim F⊥ + dim F = d− 1. Every polyhedron is considered to be its own face
and also to have ∅ as a (−1)-dimensional face. Then clearly

∅⊥ = P∗, P⊥ = ∅.

https://doi.org/10.4153/CJM-2013-031-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2013-031-9


812 I. Izmestiev

Define the norm of a k-dimensional face as its k-volume divided by the k-volume of
the k-dimensional sphere:

‖F‖ =
Volk(F)

Volk(Sk)
.

As Vol0(S0) = 2, the norm of a vertex equals 1
2 ; we also put ‖∅‖ = 1.

Lemma 4.3 For every convex d-dimensional polyhedron P ⊂ Sd the following identi-
ties hold: ∑

F

‖F‖ · ‖F⊥‖ = 1,(4.3)

∑
F

(−1)dim F‖F‖ · ‖F⊥‖ = 0.(4.4)

Here, the summation extends over all faces of P, including ∅ and P itself.

Proof Denote by F × F⊥ the convex hull of F ∪ F⊥ in Sd. For every F, this is a
d-dimensional spherical polyhedron, and we have

‖F × F⊥‖ = ‖F‖ · ‖F⊥‖,

since span(F) and span(F⊥) are mutually orthogonal subspaces of Rd+1. It is not hard
to see that the sphere decomposes as a union of polyhedra with disjoint interiors:

Sd =
⋃
F

(F × F⊥).

Thus we have
Vold(Sd) =

∑
F

Vold(F × F⊥),

which implies equation (4.3).
Equation (4.4) is proved in a similar way, by replacing P∗ with−P∗. The family of

polyhedra F×−F⊥, each counted with multiplicity (−1)dim F , forms a covering with
total multiplicity 0 over every point of Sd. Therefore∑

F

(−1)dim F Vold(F × F⊥) = 0,

and equation (4.4) follows. Figure 4 illustrates the case d = 1.

Proof of Theorem 4.2 Since Vol3(S3) = 2π2 and Vol1(S1) = 2π, for d = 3 formulas
(4.3) and (4.4) yield

Vol(P) +
π

4
Area(∂P) +

1

2

∑
{i, j}

`i j`
∗
i j +

π

4
Area(∂P∗) + Vol(P∗) = 2π2,

Vol(P)− π

4
Area(∂P) +

1

2

∑
{i, j}

`i j`
∗
i j −

π

4
Area(∂P∗) + Vol(P∗) = 0.
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P

P∗

Figure 4: To the proof of Lemma 4.3.

By adding and subtracting these two formulas, we obtain

Vol(P) +
1

2

∑
{i, j}

`i j`
∗
i j + Vol(P∗) = π2,(4.5)

Area(∂P) + Area(∂P∗) = 4π

Theorem 4.2 is proved.

Remark 4.4 Equation (4.5) is the discrete Gauss–Bonnet theorem for surfaces in
S3. Equation (4.3) is the Steiner formula for the volume of the π

2 -neighborhood of P.
Equation (4.2) is an analog of the Weyl tube formula.

Lemma 4.3 was proved by McMullen in [33]. Section 4 of [33] contains also refer-
ences to smooth analogs of formulas (4.2) and (4.5). The main reference is Herglotz
[22] (see also [27, Subsection 6.4]), who mentions that Fenchel has proved formulas
(4.2) and (4.5) by induction on dimension. There seems to be no written account of
Fenchel’s proof.

Remark 4.5 Points of P∗ are poles of great spheres disjoint from the interior of P.
This gives Theorem 4.2 an integral-geometric interpretation: a random great sphere
intersects P with the probability

1

π2

(
Vol(P) +

1

2

∑
{i, j}

`i jλi j

)
.

See also [43, Chapter 17, §5, Note 1].

Remark 4.6 Milnor on the last page of [35] suggests another way of proving equa-
tion (4.2), by deforming P to a point and integrating the Schläfli formula. It would
be interesting to see whether the Schläfli formula can be derived from (4.2).
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4.3 Gauss and Metric Rigidity for Convex Spherical Polyhedra

The following are the spherical analogs of Theorems 2.1 and 3.4.

Theorem 4.7 Let Q ⊂ S3 be a simple convex polyhedron, and let (Qt ) be a deforma-
tion of Q that keeps all dihedral angles constant in the first order. Then Qt is congruent
to Q in the first order.

This theorem extends to non-simple convex spherical polyhedra, if one requires
stability of dihedral angles between the planes of any two faces having a vertex in
common. A less restrictive generalization allows change of combinatorics and ap-
pearance of negative edge lengths; see Subsection 2.6.

To substantiate the analogy between Theorems 2.1 and 4.7, note that directions
of face normals of a Euclidean polyhedron determine its dihedral angles, and that
dihedral angles of a simple polyhedron determine angles of its faces and thus, for a
spherical polyhedron, face areas.

Theorem 4.8 Let P ⊂ S3 be a simplicial convex spherical polyhedron, and let (Pt )
be a deformation of P that keeps all edge lengths constant in the first order. Then Pt is
congruent to P in the first order.

A generalization can be stated for non-simplicial polyhedra by subdividing non-
triangular faces; see Subsection 3.8.

Note that Theorems 4.7 and 4.8 are equivalent: just put Qt = P∗t .
One can prove Theorem 4.8 following the arguments used in Section 3 to prove

its Euclidean analog. Warped spherical polyhedra are defined in an obvious way. In
place of the Hilbert–Einstein functional consider the functional

S(P) := 2 Vol(P) +
∑

i

riκi +
∑
{i, j}

`i jλi j ,

where P = P(r) is a warped polyhedron with radii (ri). Schläfli’s formula implies that

∂S

∂ri
= κi .

The functional S can be described as a discrete gravity action with non-zero cosmo-
logical constant, cf. [27, Subsection 6.5].

When we want to copy the approach of Section 2 to prove Theorem 4.7, it un-
dergoes more substantial changes and becomes closer to the approach to the dual
theorem. Let q0 be an interior point of Q. By dropping perpendiculars q0qi to the
faces and then perpendiculars qiqi j to the edges of Q, we cut Q into “bricks”. A brick
is a polyhedron combinatorially equivalent to the cube and with six right angles at
the edges not incident to the vertices q0 and qi jk. A brick is uniquely determined by
lengths hi , h j , hk of edges adjacent to q0 and by dihedral angles at the edges adjacent
to qi jk (just choose q0 as a unique point at distances hi , h j , hk from the planes of a
given trihedral angle). We vary “support parameters” (hi) of a brick decomposition
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of Q while leaving dihedral angles of Q constant. As a result, singularities around the
edges q0qi appear. Denote by κi the curvatures at q0qi and put

S∗(Q) := 2 Vol(Q) +
∑

i

hiκi .

Then Schläfli’s formula again implies that ∂S∗

∂hi
= κi . As deformations of Q that keep

dihedral angles constant can be identified with vectors ḣ such that κ̇ = 0, Theorem
4.7 reduces to a statement about the kernel of D2S∗.

Lemma 4.9 Let P be a warped spherical polyhedron, and P∗ be its polar dual. Then
we have

S(P) + S∗(P∗) = 2π2.

Proof Let S3
κ be a spherical cone manifold obtained by taking a warped product of

[0, π] with the spherical link S0 of the warped polyhedron P. (The manifold S3
κ is a

3-sphere with n singular meridians of curvatures (κi); meridians are arranged as the
cone singularities in the link of the point p0 ∈ P.) Both warped polyhedra P and P∗

can be embedded in S3
κ.

Similarly to Lemma 4.3 and Theorem 4.2, we can show that

Vol(P) +
1

2

∑
{i, j}

`i j`
∗
i j + Vol(P∗) =

π

2

(
2π −

∑
i

κi

)
,

the right-hand side being half the volume of S3
κ. On the other hand, radii of P and

heights of P∗ are related by hi = π − ri . Therefore,

S(P) + S∗(P∗) = 2 Vol(P) +
∑
{i, j}

`i j`
∗
i j + 2 Vol(P∗) +

∑
i

(ri + hi)κi

= π(2π −
∑

i

κi) + π
∑

i

κi = 2π2,

and the lemma is proved.

Thus, in the spherical case the duality between Gauss and metric rigidity of convex
polyhedra is perfect, and their proofs that use the second derivatives of S∗ and S are
simply the same.

4.4 Duality in the Hyperbolic-de Sitter Geometry

Consider the hyperboloid model of the hyperbolic space

H3 = {x ∈ R4 | ‖x‖3,1 = −1, x0 > 0},

where ‖x‖3,1 = −x2
0 + x2

1 + x2
2 + x2

3 is the Minkowski scalar product. The orthog-
onal complement x⊥ ⊂ R4 does not intersect H3, but it intersects the one-sheeted
hyperboloid

dS3 = {x ∈ R4 | ‖x‖3,1 = 1}
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that is a model of the de Sitter space. For every convex polyhedron P ⊂ H3, define its
polar dual as

P∗ = {x ∈ dS3 ∪H3
− | 〈x, y〉3,1 ≤ 0},

where H3
− is the antipodal copy of H3. In particular, ∂P∗ is a convex polyhedral

surface in dS3. Hyperbolic-de Sitter duality was used by Rivin [41] to study geometry
of hyperbolic polyhedra.

The Minkowski scalar product induces a semi-Riemannian metric on dS3, and the
boundary of P∗ is space-like with respect to this metric. Between lengths and angles
in polar objects in H3 and dS3 there is a correspondence similar to that in S3; see
Subsection 4.2. As a consequence, Gauss (respectively, metric) rigidity of a convex
polyhedron in H3 is equivalent to metric (respectively, Gauss) rigidity of its polar
dual in dS3.

A variational approach to the metric rigidity of convex hyperbolic polyhedra is
based on the discrete gravity action

S(P) := −2 Vol(P) +
∑

i

riκi +
∑
{i, j}

`i jλi j ,

where P is a warped hyperbolic polyhedron. Similarly to the previous subsection, we
have

S(P) + S∗(P∗) = 0,

where S∗ is the gravity action without the boundary term. This is implied by the
following analog of Theorem 4.2.

Theorem 4.10 For every convex polyhedron P ⊂ H3 and its polar dual P∗ ⊂ dS3∪H3
−

the following identity holds:

(4.6) Vol(P)− 1

2

∑
{i, j}

`i j`
∗
i j + Vol(P∗) = 0.

Note that P∗ is the union of a whole hyperbolic space H3
− and an infinite end of

dS3. However, there is a consistent way to define a finite measure Vol(P∗) [7, 13].
Similarly to Milnor’s approach in the spherical case, Theorem 4.10 is proved in

[50] by integrating the Schläfli formula.

Remark 4.11 Formula (4.6) has the following integral-geometric interpretation:
the (motion-invariant and appropriately normalized) measure of the set of all planes
that intersect a convex body P ⊂ H3 equals

1

2

∑
{i, j}

`i jλi j − Vol(P).

In particular, this quantity is monotone under inclusion and always positive.
Integral non-euclidean geometry is dealt with in [43, Chapter 17]. A proof of

Theorems 4.2 and 4.10 indicated in [43, Chapter 17, §5, Note 1] is by first obtaining
a similar formula in the smooth case and then going to the limit ε → 0 for the
boundary of ε-neighborhood of P.
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4.5 Shearing vs. Bending

There is another kind of duality between Theorems 2.1 and 3.4, relating metric rigid-
ity of P with Gauss rigidity of P, rather than with that of P∗.

An infinitesimal isometric deformation of P can be described by assigning to each
face of P an infinitesimal isometry of R3, so that these isometries agree on the edges.
(Faces move as rigid plates joined by hinges.) An infinitesimal isometry of R3 is an
infinitesimal screw motion, that is, a vector field

ξ(x) = η × x + τ , η, τ ∈ R3.

Let ξi = (ηi , τi) be the infinitesimal isometry associated with a face Fi . Let Fi j =
Fi ∩ F j be an edge of P. The condition ξi |Fi j = ξ j |Fi j is equivalent to

(ηi − η j)× x = τ j − τi for all x ∈ Fi j ,

which implies that the vector ηi − η j is parallel to Fi j :

(4.7) ηi − η j ‖ Fi j for all edges Fi j .

Now, instead of rotating each face Fi according to the vector ηi , let us translate
the plane of Fi by ηi (consider a plane as a set of points rather than as a geometric
figure, so that the horizontal component of ηi cannot be neglected). By (4.7), the
two translations of span(Fi j) differ by a vector parallel to Fi j . This implies that the
boundary of Fi is translated together with Fi , except that some new edges may appear.
Namely, if Fi and Fk had only a vertex in common, the translations can split this vertex
and create an edge between Fi and Fk. If there is no vertex splitting at all, then the
polyhedron P is translated as a rigid body.

Even if vertex splitting happens, the area of each face changes by o(t), if we do
translations by tηi . It follows that putting ḣi = 〈ηi , νi〉 we obtain Ȧi = 0 for all i, in
the notation of Subsection 2.1.

Thus, to every isometric infinitesimal deformation of P there corresponds an in-
finitesimal Gauss image preserving deformation of P. The correspondence can be
inverted by solving the above equations for (ti).

This observation was made by Weyl in [59], inspired by a work of Blaschke [5]
where a similar correspondence for smooth surfaces was indicated. See also [3, Chap-
ter XI, §3]. A similar correspondence is known for ideal hyperbolic polyhedra, where
it is sometimes described as the duality between shearing and bending. Indeed, with
(di) viewed as rotations, the difference di − d j represents the change of the dihedral
angle between Fi and F j , whereas if (di) are viewed as translations, then di − d j is the
shift of Fi along Fi j relative to F j .

4.6 Statics and Polarity

Infinitesimal rigidity of a polyhedron is equivalent to static rigidity of its 1-skeleton
(with diagonals of non-triangular faces added); see [25, 42]. Basically, statics deals

https://doi.org/10.4153/CJM-2013-031-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2013-031-9


818 I. Izmestiev

with duals of vector spaces of isometric, respectively trivial, infinitesimal deforma-
tions.

In [60, Theorems 3.1 and 3.2], Whiteley establishes a correspondence between
statics of a 3-dimensional polyhedron and its polar dual. The polarity can be taken
with respect to any quadric. This reflects the projective nature of static (and hence
infinitesimal) rigidity; see the next subsection.

4.7 Projective Invariance and Infinitesimal Pogorelov Maps

Infinitesimal rigidity of a bar-and-joint framework in Rd is invariant under projective
transformations. This fact follows from a projective formulation of statics, see [14,
25].

Projective invariance provides a link between infinitesimal rigidity in Rd, Sd, and
Hd: an infinitesimally rigid framework in Rd remains infinitesimally rigid when
viewed as a framework in a projective model of Sd or Hd. The correspondences aris-
ing between infinitesimal isometric deformations are called infinitesimal Pogorelov
maps; see [25, 39].

5 Miscellaneous Remarks

5.1 The Regge Action and the Steiner Formula

The sum
∑

i riκi appearing in the definition of the discrete Hilbert–Einstein func-
tional for warped polyhedra makes sense for an arbitrary compact closed manifold
glued from Euclidean simplices. It was introduced in [40] and is sometimes called
the Regge action. It was shown in [12] that

∑
i riκi converges to a constant times

the total scalar curvature if a sequence of piecewise Euclidean manifolds converges in
some good sense to a smooth manifold.

The sum 1
2

∑
{i, j} `i jλi j is a discrete analog of the total mean curvature. It ap-

pears as a coefficient at ε2 in the formula for the volume of an ε-neighborhood of a
convex polyhedron (as the total mean curvature does for convex bodies with smooth
boundary). This was noticed by Jakob Steiner [49]. The convergence of

∑
{i, j} `i jλi j

to a constant times the total mean curvature follows from the continuity of mixed
volumes with respect to the Hausdorff distance; see [48].

5.2 Mixed Volumes and the Alexandrov–Fenchel Inequality

Our constructions in Section 2 are closely related to the theory of mixed volumes; see
e.g., [48]. In particular, the proof of Theorem 2.1 is copied from (a part of) the proof
of Alexandrov–Fenchel inequalities [1, 4, 48]. The relation between mixed volumes
and derivatives of the volume is apparent from the formula

Vol(h + tk) = Vol(h) + 3t Vol(h, h, k) + 3t2 Vol(h, k, k) + t3 Vol(k),

which can serve as the definition of mixed volumes Vol(h, h, k) and Vol(h, k, k). (One
has to assume that polyhedra Q(h) and Q(k) are combinatorially isomorphic in or-
der that addition of support parameters h and k correspond to Minkowski addition
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of polyhedra.) Right-hand sides of the formulas in Remark 2.12 give alternative ex-
pressions for mixed volumes.

To prove Theorem 2.1, it is sufficient to show that the symmetric bilinear form
D2 Vol has corank 3. The proof of the Alexandrov–Fenchel inequalities goes further.
It establishes that D2 Vol has signature (+1, 03,−n−4), and in general shows by in-
duction that the signature is (+1, 0d,−n−d−1) for d-dimensional polyhedra with n
facets.

5.3 Existence Theorems

Infinitesimal rigidity can sometimes be used to prove existence theorems. Assume
that an object is infinitesimally rigid with respect to some parameters. If the space
of objects and the space of parameters have equal dimension, then the inverse func-
tion theorem provides us with local existence and uniqueness of an object with given
parameters. In other words, the map {object} 7→ {parameters} is a local home-
omorphism. A local homeomorphism with good topological properties is a global
homeomorphism, which implies that any given set of parameters defines a unique
object.

This method is used in [3] to prove the following two theorems.

Theorem 5.1 (Minkowski) Let ν1, ν2, . . . , νn ∈ R3 be unit vectors spanning R3, and
let C1,C2, . . . ,Cn be positive numbers such that∑

i

Ciνi = 0.

Then there is a unique convex polyhedron in R3 with outer face normals (νi) and respec-
tive face areas (Ci).

Theorem 5.2 (Alexandrov) Let g be a Euclidean cone-metric on S2 (every such metric
can be obtained by gluing a set of Euclidean triangles). Assume that the angles at all cone
points are less than 2π. Then there is a unique convex polyhedron in R3 such that g is
an intrinsic metric of its boundary.

Note that in both theorems the combinatorial structure (which pairs of faces are
adjacent, which pairs of cone points are joined by edges) is not given in advance and
is practically impossible to determine without finding the polyhedron in question.

Properties of the functionals Vol and HE suggest a variational approach to both
theorems. Indeed,

∂

∂hi

(
Vol(h)−

∑
i

hiCi

)
= Ai(h)−Ci

implies that the polyhedron in the Minkowski theorem is a critical point of the func-
tion Vol(h)−

∑
i hiCi on the set of polyhedra with outer face normals (νi). Similarly,

∂ HE

∂ri
= κi
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implies that the polyhedron in the Alexandrov theorem is a critical point of HE on the
set of warped polyhedra. As stated in Subsection 5.2, the second differential D2 Vol
has only one positive eigenvalue. By a happy coincidence, Vol is concave on the hy-
perplane {

∑
i hiCi = 1}. At the maximum point (whose existence can be shown by

a simple trick) face areas Ai are proportional to Ci , so that a scaling yields the desired
polyhedron. This proof is due to Minkowski himself, [36], see also [3, Chapter VII,
§2].

The situation is more complicated with HE and the Alexandrov theorem. The dis-
crete Hilbert–Einstein functional on warped polyhedra is neither concave nor convex,
moreover the signature of its second differential is non-constant. Nevertheless, sim-
ilarly to Subsection 3.7 one can show that ker D2 HE = {0}, provided that κi > 0
and the areas of Euclidean polar duals of the vertex links are positive. This allows
us to apply the inverse function theorem to the map r 7→ κ and to find the desired
polyhedron by constructing a family of warped polyhedra with κ→ 0. This proof is
given in [6].

Y. Volkov, a student of Alexandrov, studied the discrete Hilbert–Einstein func-
tional with the aim of finding a variational proof of Alexandrov’s theorem similar to
that of Minkowski’s theorem. His proof in [53, 56]) does not use the function HE,
but is similar in spirit. The polyhedron is found by minimizing the sum of radii (ri)
over all warped polyhedra (this time with apex at a boundary vertex) with negative
(κi). See also [55], which is reprinted in the Appendix to [3], where Volkov studies
HE in order to give some a priori bounds for the embedding problem.

In some theorems of Alexandrov or Minkowski type, the functional HE, respec-
tively Vol, happens to be concave. This is the case with the Alexandrov convex cap
theorem [24] and with the Alexandrov and Minkowski-type theorems for convex hy-
perbolic cusps [17,18]. However, in all these cases proofs of existence of a maximum
point are quite difficult.

5.4 Related Work

Our proof of infinitesimal rigidity of convex polyhedra in Section 3 is related to works
of Pogorelov and Volkov [38, 54] and of Schlenker [46]. In [46, Section 3] an alter-
native proof of Lemma 3.17 can be found.

Duality between metric rigidity of P and Gauss rigidity of P∗ involving theory of
mixed volumes appears in P. Filliman’s work [19]. Lee generalized this duality [30] to
higher dimensions, relating it with McMullen’s theory of weights on polytopes [34].
See also the work of Tay, White, and Whiteley [51].

The approach of Section 3 was extended by Schlenker to star-shaped polyhedra
with vertices in convex position [47]. A further development of this technique is
given in [28]. There the signature of D2 HE for an arbitrary triangulation of a convex
polyhedron is determined.

5.5 Directions for Future Research

Problem 1 Can equation (4.1) be obtained as a limiting case of Theorem 4.2?
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Problem 2 Give a proof of Theorem 4.10 similar to McMullen’s proof of Theo-
rem 4.2. All prerequisites are probably contained in [13]. See also [22].

Lemma 4.1 relates metric rigidity of P and Gauss rigidity of P∗; Subsection 4.6 re-
lates metric rigidity of P and P∗, and Subsection 4.5 relates Gauss and metric rigidity
of P∗. In the smooth case, this forms a part of Darboux’s wreath [27, Subsection 5.3].
Sauer [44] found a discrete analog of Darboux’s wreath for polyhedral surfaces with
quadrilateral faces and four-valent vertices.

Problem 3 Is there a Darboux’s wreath for polyhedral surfaces of arbitrary combi-
natorics?

Problems 4–7 are discussed in more detail in Subsections 1.3–1.5.

Problem 4 Reprove the Calabi–Weil rigidity of compact closed hyperbolic 3-man-
ifolds by showing

dim ker
( ∂κi j

∂rkl

)
= 3n,

where n is the number of vertices of a triangulation of a hyperbolic manifold.

Problem 5 In a similar way, prove the infinitesimal rigidity of compact hyperbolic
3-manifolds with convex polyhedral boundary.

Problem 6 In a similar way, reprove the infinitesimal rigidity of compact hyper-
bolic cone-manifold with all cone angles less than 2π.

Problem 7 Reprove Cheeger’s vanishing theorem with a discrete Bochner tech-
nique.

The next problem generalizes Problems 4 and 6 to higher dimensions.

Problem 8 Define discrete Einstein manifolds in dimensions greater than 3 and
prove their infinitesimal rigidity under suitable assumptions.

To approach this problem, one can start from the following consideration. Gauss
infinitesimal rigidity holds for convex polyhedra in all dimensions. Convex polyhe-
dra of higher dimensions are also infinitesimally rigid, in fact they are “too rigid”. An
alternative extension of the infinitesimal rigidity theorem to higher dimensions could
be infinitesimal rigidity in the class of discrete Einstein metrics with a given restric-
tion to the boundary. To define discrete Einstein metrics for a star-like triangulation
of P, consider infinitesimal deformations ḣ = u of P∗ that preserve volumes of facets
in the first order. Putting ṙ = u should define an infinitesimal Einstein deformation
of P.

Problem 9 Define infinitesimal Einstein deformations of warped convex polyhedra
in dimension d > 3 and prove Einstein infinitesimal rigidity of convex polyhedra.
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A Some Trigonometry

The first two lemmas concern a spherical triangle with side lengths a, b, c, and values
α, β, γ of the respective opposite angles.

Lemma A.1 The partial derivatives of the angles as functions of side lengths are:

∂α

∂a
=

1

sin b sin γ
=

1

sin c sinβ
,

∂α

∂b
= −cot γ

sin b
.

Proof The lemma can be proved with straightforward calculation using spherical
cosine and sine laws.

dγ dβ

≈ dβ(1− cos c)
α

b
c

Figure 5: Variation of the area of a spherical triangle when one of the side lengths is preserved.

Lemma A.2 Let the side lengths b and c change with velocities ḃ and ċ, while the length
a remains constant. Then the corresponding variations of the angles satisfy the equation

(A.1) α̇ + β̇ cos c + γ̇ cos b = 0.

Proof This can be proved by tedious computations using Lemma A.1. We give an
alternative geometric argument.

Denote by area the area of the triangle. As area = α + β + γ − π, equation (A.1)
is equivalent to

˙area = β̇(1− cos c) + γ̇(1− cos b).

The latter is proved in Figure 5 (recall that the area of a spherical cap of radius c
equals 2π(1− cos c)).
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[15] M. Dehn, Über die Starrheit konvexer Polyeder. Math. Ann. 77(1916), no. 4, 466–473.
http://dx.doi.org/10.1007/BF01456962

[16] J. Dodziuk, Finite-difference approach to the Hodge theory of harmonic forms. Amer. J. Math.
98(1976), no. 1, 79–104. http://dx.doi.org/10.2307/2373615

[17] F. Fillastre and I. Izmestiev, Hyperbolic cusps with convex polyhedral boundary. Geom. Topol.
13(2009), no. 1, 457–492. http://dx.doi.org/10.2140/gt.2009.13.457

[18] , Gauss images of hyperbolic cusps with convex polyhedral boundary. Trans. Amer. Math. Soc.
363(2011), no. 10, 5481–5536. http://dx.doi.org/10.1090/S0002-9947-2011-05325-0

[19] P. Filliman, Rigidity and the Alexandrov-Fenchel inequality. Monatsh. Math. 113(1992), no. 1, 1–22.
http://dx.doi.org/10.1007/BF01299302

[20] R. Forman, Bochner’s method for cell complexes and combinatorial Ricci curvature. Discrete
Comput. Geom. 29(2003), no. 3, 323–374. http://dx.doi.org/10.1007/s00454-002-0743-x

[21] D. Glickenstein, Discrete conformal variations and scalar curvature on piecewise flat two- and
three-dimensional manifolds. J. Differential Geom. 87(2011), no. 2, 201–237.
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