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Abstract
We assess the feasibility of conducting web-based eye-tracking experiments with children
using two methods of webcam-based eye-tracking: automatic gaze estimation with the
WebGazer.js algorithm and hand annotation of gaze direction from recorded webcam
videos. Experiment 1 directly compares the two methods in a visual-world language task
with five to six year-old children. Experiment 2 more precisely investigates WebGazer.js’
spatiotemporal resolution with four to twelve year-old children in a visual-fixation task.We
find that it is possible to conduct web-based eye-tracking experiments with children in
both supervised (Experiment 1) and unsupervised (Experiment 2) settings – however, the
webcam eye-tracking methods differ in their sensitivity and accuracy. Webcam video
annotation is well-suited to detecting fine-grained looking effects relevant to child language
researchers. In contrast, WebGazer.js gaze estimates appear noisier and less temporally
precise. We discuss the advantages and disadvantages of each method and provide recom-
mendations for researchers conducting child eye-tracking studies online.

Keywords: web-based experimentation; eye-tracking; phonemic cohort competition; language
comprehension; WebGazer

Introduction

Visual-world eye-tracking is an important tool for studying real-time language processing
in children. In the visual-world paradigm, participants are presented with a display, and
their eye-movements are recorded as they listen to or produce an utterance. Individuals
systematically look to referents or associates of the words they hear (e.g., Cooper, 1974;
Tanenhaus et al., 1995) or are planning to produce (e.g., Griffin &Bock, 2000;Meyer et al.,
1998). Saccades are tightly linked to linguistic information, with fixations to relevant
stimuli rising within 200ms of the onset of linguistic cues in adults (e.g., Allopenna et al.,
1998; Cooper, 1974). This relationship has allowed researchers to use eye-movements to
investigate a variety of questions in language processing (see Huettig et al., 2011 for
review). This paradigm is particularly useful for child research, as it provides a non-
invasive, real-time measure of language processing that doesn’t require meta-linguistic
reasoning (cf. grammaticality judgments, lexical decision), reading ability (cf. self-paced
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reading), or a lengthy set-up (cf. electroencephalography). Children similarly look to
relevant stimuli shortly after the onset of linguistic cues, and visual-world experiments
have been used with children to study multiple levels of language processing, including
phonological (e.g., McMurray et al., 2018; Sekerina & Brooks, 2007), morphological (e.g.,
Özge et al., 2022; Zhou et al., 2014), syntactic (e.g., Contemori et al., 2018; Snedeker &
Trueswell, 2004; Trueswell et al., 1999), semantic (e.g., Borovsky et al., 2012; Brouwer
et al., 2019), and pragmatic processing (e.g., Cooper-Cunningham et al., 2020; Huang &
Snedeker, 2009; Kampa & Papafragou, 2020).

Visual-world experiments are primarily conducted in university labs where
researchers employ specialized equipment to monitor participant gaze (e.g., SR Research,
2021; Tobii, 2021). More recently, however, algorithms that determine gaze location
based on webcam video have increased interest in conducting eye-tracking experiments
without specialized equipment and outside of lab settings (e.g., Erel et al., 2022; Fraser
et al., 2021; Papoutsaki et al., 2016; Valenti et al., 2009; Valliappan et al., 2020; Xu et al.,
2015). Webcam-based eye-tracking allows researchers to conduct experiments over the
internet, in either supervised settings (with an experimenter present over video confer-
encing) or unsupervised settings (with no experimenter present). Web-based testing has
several advantages, many of which are particularly relevant to child research. Participants
can complete experiments from the comfort of their own homes, where children may feel
more at ease. This frees families from needing to travel to the lab and make babysitting
arrangements for siblings. Unsupervised web-based experiments allow for even more
efficient data collection, as sessions can occur outside of working hours at whatever time is
most convenient for families. Collecting data over the internet gives researchers access to
more diverse populations (see Henrich et al., 2010 for the importance of sample diversity)
and languages not spoken near their home institutions. Webcam-based eye-tracking can
also be used in conjunction with direct participant contact, allowing researchers to set up
mobile labs wherever they can bring a laptop (e.g., schools, parks, museums, etc.).

Of the algorithms that track eye-gaze from webcam videos, the JavaScript library
WebGazer.js (hereafter “WebGazer”; Papoutsaki et al., 2016) has garnered the most
attention from behavioral researchers. WebGazer is open-source and has been integrated
into popular frameworks for running online behavioral tasks, such as PCIbex (Zehr &
Schwarz, 2018), JsPsych (de Leeuw, 2015), and Gorilla (Anwyl-Irvine et al., 2020). Gaze
estimation occurs locally in the user’s web-browser, and no video is saved, thus main-
taining participant privacy. Although initially designed to detect eye-gaze during user
interactions with webpages (Papoutsaki et al., 2016), recent studies have explored
WebGazer’s suitability for behavioral research with adults.

The results of these investigations are promising. WebGazer detects looks to percep-
tual stimuli shortly after they appear (e.g., Semmelmann & Weigelt, 2018; Slim &
Hartsuiker, 2022) and has been used to replicate previously-observed eye-tracking effects
in a variety of domains, including visual inspection of faces (Semmelmann & Weigelt,
2018), decision making (X. Yang & Krajbich, 2021), and language processing (Degen
et al., 2021; Slim & Hartsuiker, 2022; Vos et al., 2022). However, WebGazer has
limitations compared to the eye-tracking devices typically used for in-lab studies. Spe-
cifically, the offset between estimated gaze and stimulus locations is greater and looking
patterns are delayed relative to in-lab studies (e.g., Degen et al., 2021; Semmelmann &
Weigelt, 2018; Slim&Hartsuiker, 2022). At present, it is not clear to what extent this noise
is attributable to WebGazer itself as opposed to properties of the less controlled web-
based setting (e.g., variations in software, hardware, environments, and internet connec-
tions) or differences in participant behavior when completing studies online.
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Given these findings with adults, it seems reasonable to consider using WebGazer for
web-based psycholinguistic studies with children. However, it is not obvious that Web-
Gazer would perform as well when estimating child gaze. Child faces are smaller than
those of adults, and children are likely to be in a different position relative to the webcam
because of their height, which could reduce the accuracy of WebGazer’s pupil detection
and gaze estimation algorithms. In addition, young children are less likely to remain in the
same position for the duration of a task, and they are unlikely to have the patience to sit
through extensive calibration/recalibration procedures that improve accuracy in adult
studies (e.g., Semmelmann&Weigelt, 2018; X. Yang&Krajbich, 2021). In fact, even high-
end in-lab eye-trackers are less accurate when used with children (Dalrymple et al., 2018).
Furthermore, children may have more difficulty maintaining attention when completing
an experiment from home, where there may be more distractions than in controlled lab
settings.

In the present study, we investigate whether it is possible to run web-based visual-
world studies with school-aged children. We test two webcam eye-tracking methods:
automatic gaze estimation with WebGazer and frame-by-frame annotation of gaze
direction (e.g., Snedeker & Trueswell, 2004) from webcam videos recorded via Zoom
teleconferencing software (https://zoom.us/). Experiment 1 directly compares these two
methods in a visual-world language task with five to six year-old children. We assess how
well these methods discriminate both robust fixation patterns (looks to target stimuli) as
well as more subtle eye-movement patterns of the kind relevant to child language
researchers (phonemic cohort competition effects; e.g., Allopenna et al., 1998; Sekerina
& Brooks, 2007). By collecting both forms of gaze data simultaneously, we can assess the
extent to which any noise observed in the WebGazer data stems fromWebGazer itself as
opposed to participant behavior or the web-based setting. Experiment 2 focuses more
specifically on WebGazer, assessing its performance with child participants aged four to
twelve years in a visual-fixation task. Experiment 2 was run without an experimenter
present, allowing us to assess the feasibility of conducting unsupervised web-based eye-
tracking studies with child participants.

Experiment 1: visual-world task

Experiment 1 comprised two linked experiments focused on the phonemic cohort
competition effect. This effect is well-suited for testing the efficacy of web-based visual-
world eye-tracking, as it has been replicated many times with both adults (e.g., Allopenna
et al., 1998; Dahan&Gaskell, 2007; Dahan et al., 2001; Farris-Trimble &McMurray, 2013;
Magnuson et al., 1999; inter alia) and children (e.g., Desroches et al., 2006; Sekerina &
Brooks, 2007; Rigler et al., 2015; Weighall et al., 2017; inter alia), and the presence of
cohort activation is often used to investigate higher-level linguistic constraints on
incremental language processing (e.g., Dahan & Tanenhaus, 2004; Gaston et al., 2020;
Ito et al., 2018; Li et al., 2022; Paul et al., 2019). In a visual-world context, cohort
competition effects arise when listeners hear a target word that shares onset phonemes
with one of the images on the screen; when hearing the onset of the target word (e.g.,
beaker), listeners fixate more on the image of a cohort competitor (e.g., beetle) than
phonologically-unrelated distractors (e.g., carriage) (e.g., Allopenna et al., 1998). The
onset of competition effects follows a similar time-course in both adults and children,
though effects continue longer in young children (Sekerina & Brooks, 2007).
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Experiment 1 used two different visual displays to see how each is affected by the noise
introduced in web-based experimentation. Experiment 1A used a simple two-image
display (with images on the left and right), similar to many infant preferential-looking
studies. Experiment 1B used the four-image display that is common in visual-world
studies (one image in each quadrant). Experiment 1B’s four-image display further allows
us to assess the performance of the eye-tracking methods on horizontal and vertical look
discrimination.

The experiment methods andWebGazer phonemic cohort analysis were preregistered
(https://osf.io/cn3ur/). The analysis of the webcam video data was exploratory. Prior to
conducting Experiment 1, we ran a pilot experiment (N=24) to assess WebGazer’s
performance with adult participants (see Supplementary Materials).

Methods

A more detailed description of the methods is available in the Supplementary Materials.
All experiments reported in this paper were approved by the Harvard University-Area
Committee on the Use of Human Subjects.

Participants
Experiment 1 had 64 participants of five and six years of age whowere nativemonolingual
speakers of American English. Half completed Experiment 1A (N=32, 14 F, 18 M;
Mage=5.8 years, SD=0.6, range=5;0–6;11), and half completed Experiment 1B (N=32,
20 F, 12M;Mage=6.2 years, SD=0.5, range=5;0–6;11). Our sample size (32 participants per
experiment) is similar to psycholinguistic experiments in general and to previous studies
of the phonemic cohort effect (e.g., Farris-Trimble & McMurray, 2013; Huettig &
McQueen, 2007). Informed written consent was received from the parent or guardian
for their child’s participation. Participants were compensated with a $5.00 gift card.

Materials
We selected 36 target–cohort pairs with onset overlap of one or more phonemes. As a
control, each target word was pseudo-randomly assigned a competitor from another
target–cohort pair with no onset overlap. The experiments consisted of 36 trials (one per
word pair). The trial displays included a target image (corresponding to the target word)
and a competitor image. In Experiment 1B, the displays also included two pseudo-
randomly assigned distractor images whose names had different onsets from the target
and competitor.1 The trials were rotated through two conditions in two presentation lists.
In the cohort condition, the competitor image depicted the cohort pair of the target (e.g.,
the targetmilk appeared with the competitormitten). In the control condition, the target
appeared with its control competitor (e.g., the target milk appeared with the competitor
windmill from the cohort pair window – windmill ). The cohort effect was assessed by
comparing looks to the competitor images in the cohort and control conditions.

The experiments were built in PCIbex (Zehr & Schwarz, 2018) using PCIbex’s
implementation of WebGazer v2 and were completed in the participant’s web-browser.

1One target (doctor) was accidentally assigned a distractor (dolphin) that shared onset sounds, so this trial
was omitted from the Experiment 1B analysis.

678 Margaret Kandel and Jesse Snedeker

https://doi.org/10.1017/S0305000924000175 Published online by Cambridge University Press

https://osf.io/cn3ur/
https://doi.org/10.1017/S0305000924000175


To accommodate the variability in screen-sizes across participant computers, stimulus
size and location were defined by browser window size (equivalent to screen-size since the
experiment was displayed fullscreen). Images appeared on canvases centered in their
quadrant or half of the screen (Figure 1). Throughout each trial, WebGazer tracked looks
to these canvases. WhenWebGazer detected a look to a canvas, the canvas border turned
purple.2

Procedure
Participants completed the experiment while in a Zoom teleconference call with the
experimenter(s), and the session was recorded via the Zoommeeting recording function.
The participant opened the link to the experiment on their computer in Google Chrome
or Mozilla Firefox and used the Zoom screen-sharing function to share the display with
the experimenter. Participants using a non-Mac computer (with the exception of one
Chromebook user) turned off their Zoom video prior to opening the experiment, as
piloting revealed that many of these computers do not allow the same webcam to be used
by Zoom and WebGazer simultaneously.

At the beginning of the experiment, the participant completed an audio check and a
WebGazer calibration sequence. As we were interested in the range of calibration
accuracy that would be obtained with our sample, we did not specify a minimum
calibration threshold. After calibration, participants completed three practice trials
followed by the 36 experimental trials. Each trial started with a calibration check. Next,
the images appeared. After 2000ms, participants heard pre-recorded audio instructions

Figure 1. Example Experiment 1A (left) and Experiment 1B (right) trials. Each competitor image (e.g., mitten)
appeared with its own target in the cohort condition (e.g., milk, right) and with another target in the control
condition (e.g., banana, left). Image canvas borders turned from gray to purple when WebGazer estimated eye-
gaze to fall on the image. Stills include images from Duñabeitia et al. (2018) and Rossion and Pourtois (2004).

2This color-change functionality allowed participants to use their eyes to select images from the screen (see
Supplementary Materials for additional information about the task instructions given to participants). Initial
piloting of web-based tasks with young children revealed that they were not familiar with how to use a
computer mouse or trackpad, and click-based selection responses thus prompted a large number of
participant looks directed at these tools instead of on the screen. Piloting with the color-change functionality
indicated that it kept participants’ attention on the screen, gave them a sense of agency in the task, andwas not
distracting.
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telling them to Look at the + [target word]. The images remained on screen for 2250ms
after audio offset. The full experiment session took approximately 20–30 minutes.

Analysis

The data for Experiments 1A and 1B were analyzed separately. All analyses were
conducted using R v4.1.0 (R Core Team, 2021).

WebGazer
In each trial, WebGazer recorded looks from trial onset to two seconds after audio offset.
In each sample, a 0 or 1 was recorded for each image canvas indicating whether or not
participant gaze fell upon it (0=no, 1=yes). Sampling rate varied by participant, likely
dependent upon their computer, webcam, and internet connection (grand mean time
between samples=96ms, SD=43ms).3 Samples which recorded no looks to any of the
image canvases were excluded from analysis (41.24% of Experiment 1A samples; 27.07%
of Experiment 1B samples). To regularize sampling rates prior to analysis, we analyzed
gaze locations in bins of 100ms. A time bin received a value of 1 for a canvas if at least 50%
of recorded looks within the bin fell on that canvas.

We preregistered a cluster permutation analysis to investigate competitor looks 0–
2000ms after target onset (e.g., Hahn et al., 2015; Yacovone et al., 2021). This analysis
assessed the effect of interest at each time step using generalized linear mixed-effect
models (GLMMs) with a binomial distribution and logit link (step size=100ms).4 All
models in the present studywere fit using the {lme4} package v1.1-27.1 (Bates et al., 2015).
The models had looks to the competitor image (0, 1) as the dependent variable, a fixed
effect of condition (cohort, control), and random slopes and intercepts for condition by
participant and item. Item was individuated by competitor image identity to account for
variance in properties of the competitor images. An effect was considered reliable at a step
if the absolute value of its z-value was greater than 2 (Gelman &Hill, 2007).5 Aminimum

3Note that this average sampling rate (approximately 10 Hz) is slower than observed in some other
WebGazer investigations, in which sampling rates range from 14–21 Hz (e.g., Prystauka et al., 2023;
Semmelmann & Weigelt, 2018; Vos et al., 2022). Vos et al. (2022) and Prystauka et al. (2023) both
implemented exclusion criteria to omit participants with a sampling rate below 5 Hz. Applying this same
exclusion criteria to Experiment 1 (resulting in omission of n=2 participants), the mean time between
samples is 93ms (SD=38ms), or approximately 11 Hz, suggesting that the slower sampling rate observed in
Experiment 1 is not due to the lack of exclusion criteria but rather reflects the variability of web-based
experimentation.

4It is important to note that while cluster-based permutation analyses provide information about the
presence of effects, they cannot be used to make inferences about the onset and duration of these effects (for
discussion, see Fields & Kuperberg, 2019; Groppe et al., 2011; Sassenhagen &Draschkow, 2019). As there are
no corrections for multiplicity, false positives may emerge in the initial cluster identification, meaning that
researchers cannot make inferences about effect significance at any one time bin in the cluster (including the
first or final time bins). In addition, the cluster-mass permutation test does not assess how adding or
removing time bins from the cluster (e.g., at the beginning or end) influences its overall reliability.
Furthermore, cluster duration is sensitive to data quantity, power, and the chosen threshold for including
time bins within a cluster, which could lead to under- or overestimations of the extent of effects.

5If a model failed to converge at a step (excluding singular fit warnings), we did not use the computed
model estimates for that step. Instead, following Yacovone et al. (2021), we used themodel estimates from the
prior step; if the model at the first step did not converge, the z-value was set to zero. This procedure prevents

680 Margaret Kandel and Jesse Snedeker

https://doi.org/10.1017/S0305000924000175 Published online by Cambridge University Press

https://doi.org/10.1017/S0305000924000175


of two sequential reliable effects were required to comprise a cluster. To assess cluster
reliability, we performed 1000 simulations reshuffling the condition labels for each
participant. In each simulation, we summed the z-values of the adjacent steps in identified
clusters to obtain a z-sum statistic. We compared the z-sum of the observed cluster to the
distribution of each simulation’s largest z-sum. A p-value for the observed cluster was
determined by its position in this distribution (e.g., for a p-value of <0.05, 95% of the
z-sums in the distribution must be greater than or equal to the observed statistic).6

We also analyzed the effect of condition on competitor looks in two time windows:
300–700ms after target onset (preregistered) and 600–1000ms after target onset
(exploratory to account for a potential WebGazer delay in look detection). The results
of these analyses are broadly consistent with the findings from the cluster analyses
reported below and appear in the Supplementary Materials.

We conducted an additional exploratory analysis to investigate when target image
looks were reliably different from chance in each condition. For each condition, we
performed cluster permutation analyses assessing looks to the side of the screen contain-
ing the target image 0–2000ms after target onset; for Experiment 1B, we performed
separate analyses for the horizontal and vertical side distinctions. In Experiment 1A, a
look was considered to fall on the same side of the screen as the target if it fell on the target
image; the analysis thus assesses the likelihood of target image looks. In Experiment 1B, a
look was considered to fall on the same side of the screen as the target if it fell on the target
or on the image vertically-adjacent (for the horizontal-side analysis) or horizontally-
adjacent (for the vertical-side analysis). The analyses followed the same procedure
described above, except that to assess reliability, we reshuffled the trial image location
configurations by participant (thus preserving for each participant the overall number of
target and non-target images appearing in each quadrant). The GLMMs computed at
each step had target side looks (0, 1) as the dependent variable and random intercepts for
participant and item (i.e., target image identity); as the model had no fixed effect, the
likelihood of target side looks was compared to chance (50%). This analysis allows us to
identify when eachmethod is able to discriminate looks to the target quadrant along both
the horizontal and vertical dimensions. For Experiment 1B, we supported the results of
this analysis with amultinomial regression analysis assessingwhen looks differed between
the target and the horizontally-, vertically-, and diagonally-adjacent images (see Supple-
mentary Materials); the results align with the target side looks analyses.

Webcam video annotation
To gain further information about the eye-gaze patterns of our participants, we hand
annotated gaze direction in the webcam videos of all participants who were able to keep
their Zoom video on as they completed the experiment. Trial onsets times were identified
from Zoom screen recordings using Python scripts that detected when the colored
stimulus images appeared on screen (Anthony Yacovone, personal communication).
These onsets were used to divide the continuous webcam videos into separate trial videos.

models that do not converge properly from breaking up or prematurely ending a cluster. There were no steps
with non-convergence in the analyses of the observed data.

6In this analysis, it is possible to produce a p-value equal to zero if 0% of z-sums in the distribution of
simulated statistics are greater than or equal to the observed statistic. We report these p-values as p < 0.001.

Journal of Child Language 681

https://doi.org/10.1017/S0305000924000175 Published online by Cambridge University Press

https://doi.org/10.1017/S0305000924000175


Coders (blind to condition and target/competitor location) annotated gaze direction for
each frame of these videos (annotation script by Anthony Yacovone).

Paralleling the WebGazer analysis, samples that were not coded as looks to one of the
image locations were removed from analysis (i.e., center looks, blinks, etc.) (34.72% of
Experiment 1A samples; 23.24% of Experiment 1B samples). The webcam videos had
40ms between samples. To compare to theWebGazer data, we analyzed gaze locations in
bins of 100ms, following the binning procedure described above.

All videos were annotated by a single coder. To assess reliability, each video was
additionally annotated by a secondary coder. Within our cluster analysis window (0–
2000ms after target onset), inter-coder agreement was 92.18% in the Experiment 1A
dataset and 90.02% in the Experiment 1B dataset (see Supplementary Materials for
details). We performed the same analyses on the webcam video data as on the
WebGazer data.

WebGazer results

Ten Experiment 1A trials across eight participants and 18 Experiment 1B trials across
seven participants were omitted from theWebGazer analysis because no data were saved
for them on our server.

Calibration scores
Participant calibration scores in the initial calibration sequence ranged from 2–80%
across Experiments 1A and 1B, with an average of 43% (SD=18, see Supplementary
Materials for plots and more detail). Mean participant calibration scores during the
calibration checks at the beginning of each experimental trial ranged from 8–50%, with an
average of 30% (SD=11).

Experiment 1A
Figure 2 illustrates the increase in looks to the target image in the WebGazer output
following target word articulation in both the cohort and control conditions. This pattern
was similar for targets on the left and right of the screen (see Supplementary Materials).
While there was a substantial rise in target looks in both conditions (~75% of looks), this
rise was smaller than commonly observed in two-image studies with children and adults
(e.g., 80–85% with adults and three to four year-olds in Simmons, 2017).

Target looks were reliably different from chance in clusters starting 800ms after target
onset in the control condition (z-sum=64.94, p<0.001) and 1000ms after target onset in
the cohort condition (z-sum=61.82, p<0.001).

Figure 3 focuses on the cohort effect by plotting looks to the competitor image in the
cohort and control conditions. Prior to target word onset, looks to the competitor image
were at chance (50%). These looks began to decline approximately 700ms after target
word offset (as target looks increased). Our analyses explored whether this decline was
faster in the control condition than the cohort condition. The analysis identified a reliable
difference in competitor looks between conditions in a cluster 900–1099ms after target
onset (z-sum=4.87, p=0.02).
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Experiment 1B
Figure 4 shows looks to the target image, competitor image, and two distractor images
(collapsed) as detected by WebGazer in the cohort and control conditions. In both
conditions, WebGazer detected increased looks to the target image following target word
onset. However, the effects appeared smaller than in previous studies (≤50% in the
present study vs. >60% with five and six year-olds in Sekerina & Brooks, 2007).

In the control condition, looks to the side of the screen containing the target were
reliably different from chance in clusters starting 900ms after target onset along the
horizontal axis (z-sum=62.73, p<0.001) and 1200ms after target onset along the vertical

Figure 2. Mean WebGazer looks to the target and competitor images by condition in Experiment 1A. Ribbons
indicate standard error. Vertical lines indicate average target word duration. Shading indicates when looks to the
target image differed from chance.

Figure 3. MeanWebGazer looks to the competitor image by condition in Experiment 1A. Ribbons indicate standard
error. Vertical lines indicate average target word duration. Shading indicates when looks between conditions were
reliably different in the cluster analysis.
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axis (z-sum=29.10, p<0.001). In the cohort condition, clusters emerged 1000ms after
target onset for the horizontal-side distinction (z-sum=50.49, p<0.001) and 1400ms after
target onset for the vertical-side distinction (z-sum=17.83, p=001).

The observed clusters for the horizontal-side distinction had similar onsets to those in
Experiment 1A (800ms in the control condition, 1000ms in the cohort condition) –
however, the observed clusters for the vertical-side distinction started 300–400ms later,
suggesting that WebGazer may have more difficulty discriminating looks along the
vertical axis. Figure 5 plots participant looks to the target and distractor (non-target)
images in the control condition 1200–2000ms after target onset (when participants were
likely fixating on the target quadrant, according toWebGazer). In this window, there were
more looks to the vertical distractor than the other non-target images, supporting the
hypothesis that WebGazer has increased difficulty discriminating vertical looks (this
pattern was confirmed in an exploratory multinomial analysis; see Supplementary
Materials). A figure showing target and distractor looks by target location is available
in the Supplementary Materials.

Figure 6 plots looks to the competitor image in the cohort and control conditions.
Prior to target word onset, looks to the competitor image were at chance (25%). These
looks began to decrease approximately 1200ms after target onset. The cluster analysis did
not identify any clusters where competitor looks differed in the two conditions. Thus, we
did not replicate the phonemic cohort effect.

Webcam video annotation results

We had video data for 13 of 32 participants for each experiment.

Figure 4. Mean WebGazer looks to the target image, competitor image, and distractor images (collapsed) by
condition in Experiment 1B. Ribbons indicate standard error. Vertical lines indicate average target word duration.
Shading indicates the temporal overlap of the clusters when target side looks differed from chance in both the
horizontal and vertical directions.
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Experiment 1A
Figure 7 plots looks to the target and competitor images in the cohort and control
conditions as detected by hand annotation and WebGazer for the 13 participants with
video data.Webcam video annotation identified a higher proportion of target image looks
thanWebGazer. The pattern of performance was similar for targets on the left and right of
the screen (see Supplementary Materials).

Target looks were reliably different from chance in clusters starting 500ms after target
onset in the control condition (z-sum=93.02, p<0.001) and 800ms after target onset in the
cohort condition (z-sum=75.36, p<0.001). These clusters started earlier than in the
WebGazer data from the same participants, in which the corresponding clusters began

Figure 5. Boxplot of participant WebGazer fixation proportions to the target and non-target images in the
Experiment 1B control trials from 1200–2000ms after target onset. Mean fixation proportions for each image
are labeled and identified by black diamonds. The gray points represent participant means.

Figure 6. Mean WebGazer looks to the competitor image by condition in Experiment 1B. Ribbons indicate
standard error. Vertical lines indicate average target word duration.
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1100ms after target onset in both the control (z-sum=38.65, p<0.001) and cohort
(z-sum=35.28, p<0.001) conditions.

Figure 8 shows looks to the competitor image in the cohort and control conditions. In
the video data, competitor looks in the control condition decreased during target word

Figure 7. Mean looks to the target and competitor images by condition in the Experiment 1A annotated webcam
video data and in the WebGazer data from the same participants. Ribbons indicate standard error. Vertical lines
indicate average target word duration. Shading indicates when looks to the target image differed from chance.

Figure 8. Mean looks to the competitor image by condition in the Experiment 1A annotated webcam video data
and in the WebGazer data from the same participants. Ribbons indicate standard error. Vertical lines indicate
average target word duration. Shading indicates when looks between conditions reliably differed.
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articulation, whereas looks in the cohort condition did not decrease until target word
offset. In contrast, in the WebGazer data from the same participants, competitor looks
decreased only after target word offset in both conditions (similar to the pattern observed
in the full WebGazer dataset), and competitor looks were more similar in the two
conditions. In the video data, the analysis identified a reliable difference in competitor
looks between conditions in a cluster 700–1099ms after target onset (z-sum=13.26,
p=0.001), thereby showing evidence of a phonemic cohort effect. A cluster analysis of
the corresponding WebGazer data did not identify any clusters.

Experiment 1B
Figure 9 plots looks to the target and competitor images in the cohort and control
conditions, as identified by webcam video annotation and WebGazer for the same
13 participants (plots including distractor images are available in the Supplementary
Materials). Target looks rose earlier and reached higher proportions in the video data than
the WebGazer data.

In the video data for the control condition, looks to the side of the screen containing
the target were reliably different from chance in clusters starting 600ms after target
onset along the horizontal axis (z-sum=60.27, p<0.001) and 700ms after target
onset along the vertical axis (z-sum=63.13, p<0.001). In the cohort condition, clusters
emerged 800ms after target onset for the horizontal-side distinction (z-sum=65.33,
p<0.001) and 600ms after target onset for the vertical-side distinction (z-sum=75.98,
p<0.001).

In the WebGazer data from the same participants, the detection of target looks
appeared considerably later. In the control condition, target-side looks were reliably

Figure 9. Mean looks to the target and competitor images by condition in the Experiment 1B annotated webcam
video data and in the WebGazer data from the same participants. Ribbons indicate standard error. Vertical lines
indicate average target word duration. Shading indicates the temporal overlap of the clusters when target side
looks differed from chance in both the horizontal and vertical directions.
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different from chance in clusters emerging 1200ms after target onset along both the
horizontal (z-sum=34.73, p<0.001) and vertical (z-sum=15.96, p=0.001) axes.7 In the
cohort condition, clusters emerged 1000ms after target onset for the horizontal-side
distinction (z-sum=36.28, p<0.001) and 1400ms after target onset for the vertical-side
distinction (z-sum=15.80, p=0.001).

Figure 10 shows participants’ looks to the target and distractor images in the control
condition 700–2000ms after target onset (when participants were likely fixating on the
target quadrant, according to the video annotation) for the webcam video data. The
proportion of looks to the target was higher than during detected target fixations in the
full WebGazer sample (Figure 5), and there were fewer distractor looks. Similar to the full
WebGazer sample, there was a slight preference for vertical distractors over the other
non-target images (this patternwas confirmed in an exploratorymultinomial analysis; see
Supplementary Materials) – however, the relative differences were smaller in the webcam
video data. A figure showing target and distractor looks by target location is available in
the Supplementary Materials.

Figure 11 shows looks to the competitor image in the cohort and control conditions. In
the video data, looks to the competitor image in the cohort condition increased during
target articulation, while looks in the control condition decreased. In the WebGazer data
from the same participants, there was no obvious difference between conditions. In the
video data, the analysis identified a reliable difference in competitor image looks between
conditions in a cluster 600–999ms after target onset (z-sum=11.19, p<0.01), thus finding
evidence of a phonemic cohort effect. A cluster analysis of the corresponding WebGazer
data did not identify any clusters.

Figure 10. Boxplot of participant fixation proportions to the target and non-target images in the Experiment 1B
control trials from 700–2000ms after target onset for the annotatedwebcam video data. Mean fixation proportions
for each image are labeled and identified by black diamonds. The gray points represent participant means.

7The analysis of vertical-side looks identified two clusters: one 1200–1699ms after target onset
(z-sum=15.96, p=0.001) and one 1800–1999ms after target onset (z-sum=6.65, p=0.049). The effect in the
1700ms bin had a z-score of 1.98, so it did not meet the threshold to be included in a cluster.
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Experiment 1 summary

Experiment 1 used a standard visual-world task to assess the relative performance of two
webcam-based eye-tracking methods with five to six year-old children: automatic Web-
Gazer gaze coding and hand annotation of gaze direction from recorded webcam videos.
Both methods detected increased looks to named (target) images in both two- and four-
image displays. However, the rise in target fixations was lower and later in theWebGazer
data compared to in-lab experiments with children of the same age or younger (e.g.,
Sekerina & Brooks, 2007; Simmons, 2017). The annotated video data, on the other hand,
looked more like data collected in in-lab experiments: the onset of target looks was faster,
and the proportion of target looks was considerably higher than in simultaneously-
collected WebGazer data. Interestingly, for both methods, unrelated images vertically-
adjacent to the target received more looks than distractor images in the other locations of
the display; this pattern was especially notable in the WebGazer data.

The differences between the twomethods were particularly pronounced in the analysis
of the phonemic cohort effect. In the video data, the cohort effect emerged in both the
four- and two-image displays in clusters beginning 600–700ms after target onset and was
detectable in a sample of just 13 children. This effect is later than observed in previous lab-
based studies, in which cohort effects began 200–400ms after target onset (e.g., Allopenna
et al., 1998; Huettig & McQueen, 2007; Sekerina & Brooks, 2007). While this difference
could reflect our small sample size or a difference in our analysis method, it is consistent
with other research using webcam video annotation (i.e., the web-based replication of
Allopenna et al., 1998 by Ovans, 2022). In the WebGazer data, the effect was detectable
only in the two-image display with a larger sample (N=32), and this effect window
emerged later (900ms after target onset). These results suggest that while WebGazer can
detect robust fixation patterns like target looks, webcam video annotation is better suited
to detecting more fine-grained effects.

Figure 11. Mean looks to the competitor image by condition in the Experiment 1B annotated webcam video data
and in the WebGazer data from the same participants. Ribbons indicate standard error. Vertical lines indicate
average target word duration. Shading indicates when looks between conditions reliably differed.
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In Experiment 1 we tracked looks in a binary fashion, monitoring whether or not a
look fell inside a particular region. While this measure reflects how visual-world studies
are generally conducted, we cannot tell from these results how close WebGazer’s gaze
estimates are to the true locations of visual stimuli. Experiment 2 explores WebGazer’s
accuracy more directly. This additionally allows us to address one limitation of Experi-
ment 1: because our image canvases did not cover the full halves (Experiment 1A) or
quadrants (Experiment 1B) of the screen, gazes that were estimated to fall near a canvas,
but not within it, may have been coded as looks in our video data but not in the
WebGazer data.

Experiment 2: fixation task

Experiment 2 used a visual-fixation task to investigate the spatial and temporal resolution
of WebGazer’s gaze estimation with four to twelve year-old children. This task was
adapted fromSlim andHartsuiker (2022) (“S&H2022”). The experiment had four goals: i)
to assess the feasibility of conducting web-based eye-tracking tasks with children without
an experimenter present; ii) to assess how closely WebGazer estimates correspond to
stimulus locations; iii) to assess whether there are age-related differences in WebGazer
performance between four and twelve years; and iv) to assess whether the accuracy of
quadrant-based analyses with WebGazer is improved by using larger canvases.

Participants

The study included 45 participants between four and twelve years of age (Table 1).
Participants spokeAmerican or British English natively. Participants were not required to
be monolingual, as the experiment was non-linguistic. Three participants in Experiment
2 previously took part in Experiment 1 during a different experiment session. Informed
written consent was received from the parent or guardian for their child’s participation;
child participants additionally provided written assent. Participants were compensated
with a $5.00 gift card.

Materials

The experiment was built in PCIbex (Zehr & Schwarz, 2018) usingWebGazer v2 and was
completed in the participant’s web-browser. The stimuli were modeled on those from
S&H2022. Participants looked to fixation crosses that appeared in 13 possible screen
positions (Figure 12). Each fixation cross appeared in each location six times, resulting in
78 total trials. Trial order was randomized for each participant. To accommodate

Table 1. Experiment 2 participant ages

Age group Count Mean age (months) Range (years;months)

4–5 years 12 (7 F, 5 M) 62.9 (SD=5.2) 4;6–5;9

6–7 years 12 (5 F, 7 M) 81.8 (SD=6.6) 6;0–7;7

8–9 years 11 (4 F, 6 M, 1 NB) 104.4 (SD=4.5) 8;3–9;6

10–12 years 10 (7 F, 3 M) 132.5 (SD=9.6) 10;0–12;8
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variability in computer screen-sizes, the experiment was completed in fullscreen, and
stimulus size and location were defined by browser window size. To make the task more
fun for child participants, the 78 trials were divided into six blocks: in each block, the
fixation cross appeared in a different color and was accompanied by a different audio
sound effect.

Procedure

The experiment was completed by participants from their own computers, unsupervised
by researchers. An experiment access link was sent to the parent’s email. Participants were
asked to complete the experiment on a computer or laptop using either Google Chrome or
Mozilla Firefox. An adult was asked to help the child get set up and to remain in the room
as they completed the task.

The experiment started with an introductory sequence that walked participants
through an audio check, the WebGazer calibration, and the experiment instructions.
Following the audio check, the sequence included both written and auditory instructions
so that it would be accessible to both child participants and adult supervisors. As in
Experiment 1, we did not specify a minimum calibration threshold. Participants were
instructed to look at the plus signs that appeared on the screen; they were instructed to
look at them as fast as they could and to stare at them until they disappeared.

To start each block of the task, the participant pressed the spacebar, which initiated a
calibration check (resulting in seven total calibration scores per participant). The trial
structure was the same as in S&H2022. Each trial began with a small black fixation cross
(+) appearing in the center of the screen for 500ms (font size defined as 5% of the screen
height). This cross then disappeared and the colored target fixation cross appeared on
screen for 1500ms (size defined as 10% of the screen height). The trial then ended, and the

Figure 12. The 13 possible target stimulus locations in Experiment 2. The panel represents the full experiment
screen (the axis labels indicate percentage of screen-size).
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next trial began automatically. The experiment took approximately 10–15 minutes to
complete.

Data processing

WebGazer tracked participants’ eye-movements from target stimulus onset to trial offset.
We recorded looks to canvases covering each quadrant of the screen as a binary variable.
These canvases together covered the entire screen (each 50% of browser window height
and width). We also recorded coordinate estimates of gaze location (in pixels). If either
the x- or y-coordinate estimate was missing in the recorded WebGazer data, the sample
was omitted from the data prior to processing (0.53% of samples).

Data processing followed the procedure outlined by S&H2022 using the scripts made
available in their OSF repository (https://osf.io/yfxmw/). We aggregated the data into
100ms bins, calculating for each bin the mean x- and y-coordinate estimates and mean
looks to each quadrant canvas (quadrant looks were later binarized for analysis). We
restricted the dataset to bins ranging from 0–1500ms after trial onset, resulting in
exclusion of 170 out of 3484 recorded bins (4.88%). To account for participants’ different
screen-sizes, we converted the pixel coordinate estimates to a distance metric based on
screen-size proportion, such that the pixel in the center of the screen had coordinates (0.5,
0.5) and the pixel in the bottom right corner had coordinates (1,1). For each bin, we
calculated the Euclidean distance between the estimated gaze location and the center of
the target fixation cross (in proportion of screen-size) using the formula below.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xtarget � xgaze estimation
� �2

+
�
ytarget � ygaze estimation

�2q

In some of our analyses, we compare the Experiment 2 data to S&H2022’s adult data
accessed from their OSF repository.

Results

26 trials across 10 participants were omitted from the analysis because noWebGazer data
were saved for them on our server.

Calibration scores

Participant calibration scores in the initial calibration sequence ranged from 6–80%, with
an average score of 52% (SD=16). The mean participant scores for the six calibration
checks ranged from 4–67%, with an average of 39% (SD=13). Table 2 summarizes
participant mean calibration scores (calculated using all seven scores for each participant)
by age group.

As in S&H2022, participant mean calibration scores were significantly correlated with
webcam sampling rates (measured in frames per second) (ρ=0.33, p=0.03), suggesting
that WebGazer’s estimates are more precise when there are more recorded samples. In
addition, mean calibration score was significantly correlated with participant age in
months (to one decimal place) (ρ=0.52, p<0.001), indicating that older participants
tended to have higher calibration scores. This trend still holds when accounting for
sampling rate (see Supplementary Materials for more details and plots).
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Euclidean distance from the target over time

To assess how closely WebGazer estimates match stimulus location, we plotted the mean
Euclidean distance (in percentage of screen-size) between the target stimulus and
estimated gaze location from stimulus onset to trial offset (Figure 13). The plot includes
data for the Experiment 2 child participants as well as S&H2022’s adult participants. In
both populations, distance from the target began to decrease 200ms after stimulus onset
and plateaued around 500ms after onset. While this timing is similar for the two
populations, the Euclidean offset was larger and more variable for children, settling at
an offset of approximately 38% of screen distance from the target.

To better understand the factors influencing this offset, we plotted mean distance over
time broken down by calibration score (Figure 14) and child age group (Figure 15). 8

Figure 14 illustrates the relationship between mean calibration score and WebGazer’s
spatiotemporal accuracy: mean Euclidean offset was smaller for participants in higher
calibration bins. Figure 15 suggests that there was also a relationship between Euclidean
distance and age: offsets plateaued at the shortest distance for the 10–12 year-old
participants, followed by the 8–9 year-old and 6–7 year-old participants, with the longest
distance offsets for the 4–5 year-old participants. However, as discussed above, mean
calibration score and age were correlated; therefore, it is not obvious from Figure 15 the

Table 2. Experiment 2 mean participant calibration scores by age group

Age group Mean score (%) Range (%)

4–5 years 33 (SD=13) 11–50

6–7 years 40 (SD=12) 4–52

8–9 years 43 (SD=9) 28–52

10–12 years 51 (SD=10) 35–66

Figure 13. Mean Euclidean distance (in percentage of screen-size) from the target stimulus over the course of the
trial. Error bars indicate standard deviation. Ribbons indicate standard error.

8Given variations in WebGazer sampling, there were fewer samples towards the end of the trial (see also
S&H2022). We thus ended the plots at 1200ms, the latest time point for which we had enough samples to
calculate standard errors in all bins for both plots.
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extent to which age contributed to Euclidean offset independently from calibration score.
We address this below.

Looks in the fixation window

As in S&H2022, we analyzed a fixation time window 500–1500ms after target onset to
assess WebGazer’s spatial resolution when gaze had settled on the target location.
Figure 16 plots the density of looks on the screen during this time window for all 13 target
locations. Density plots of the quadrant fixations for the youngest and oldest age groups in
our sample are available in the Supplementary Materials.

For each location, estimated looks tended to fall around the stimulus, though the range
in which the looks fell was large. In the plots for the targets appearing in the center of each
quadrant (the second and fourth row of Figure 16), estimated looks often extended into
quadrants other than the one containing the target stimulus, with particular overlap in the

Figure 14. Mean Euclidean distance (in percentage of screen-size) from the target stimulus over the course of the
trial, broken down by participant calibration score. Ribbons indicate standard error.

Figure 15. Mean Euclidean distance (in percentage of screen-size) from the target stimulus over the course of the
trial, broken down by participant age bin. Ribbons indicate standard error.
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vertical direction. In fact, within the fixation window, participants’ mean vertical offsets
between their estimated gaze location and the true stimulus location (M=0.27, SD=0.08)
were greater than their mean horizontal offsets (M=0.21, SD=0.08) (t(44)=5.55,
p<0.0001). WebGazer’s reduced vertical accuracy appears particularly pronounced in
the upper quadrants of the screen (the second row of Figure 16).

To assess the relative contributions of calibration accuracy and participant age to
Euclidean distance offset during target fixations, we calculated themean distance from the
target during the 500–1500ms fixation window for each participant and computed a
linear regression with fixed effects of mean calibration score and age in months (to one
decimal place). Both the effects of mean calibration score (β=-0.004, t=-3.93, p<0.001)
and age (β=-0.001, t=-2.30, p=0.03) were reliable.9 Model comparison using ANOVA

Figure 16. Density plots indicating estimated looks on the screen 500–1500ms after target onset for each possible
target location. Each panel represents the full experiment screen (the axis labels indicate percentage of screen-
size), and the black crosses indicate the center of the target locations.

9Given the correlation between the two model predictors, multicollinearity in the model was assessed by
calculating the Variance Inflation Factor (VIF); VIF for both predictors was 1.38.
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revealed significant differences between models with both predictors and models with
only calibration score (F(1,42)=5.27, p=0.03) and only age (F(1,42)=15.4, p<0.001). These
results suggest that there was an effect of age on Euclidean offset that was distinct from the
effect of calibration score.

Quadrant looks over time

In addition to investigating Euclidean distance over time, we also analyzed quadrant looks
over time, allowing us to assess WebGazer’s accuracy discriminating quadrant looks
when using larger canvases than in Experiment 1B. We restricted the data to the trials in
which the fixation cross appeared in the center of each screen quadrant. We binarized
quadrant looks using the same procedure as in Experiment 1B. For comparison, we also
binarized S&H2022’s adult data in the same fashion.

Figure 17 plots looks to the target quadrant over time compared to the other quadrant
locations (horizontally, vertically, or diagonally across from the target) for both popula-
tions. A plot showing quadrant looks by target location for the child participants is
available in the SupplementaryMaterials. The pattern of target quadrant looks in the child
data resembles that observed in Experiment 1B: looks to all quadrants began at chance
(25%), and then looks to the target increased and plateaued around 50%.

To assess target quadrant looks, we performed the same target side analyses as we
conducted for Experiment 1B.We analyzed looks from 0–1400ms after target onset given
the reduced number of samples at the end of the trial. The analyses followed the same
procedure as the Experiment 1B analyses, except quadrants were used instead of images,
and item was defined as target location (top left, top right, bottom left, bottom right). In
the Experiment 2 child data, looks to the side of the screen containing the target were

Figure 17. Quadrant looks over time for the Experiment 2 child participants and Slim andHartsuiker’s (2022) adult
participants. Ribbons indicate standard error. Shading indicates the temporal overlap of the clusters when target
side looks differed from chance in both the horizontal and vertical directions.
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reliably different from chance in clusters starting 300ms after target onset along both the
horizontal (z-sum=92.71, p<0.001) and vertical (z-sum=56.30, p<0.001) axes (in the
exploratory multinomial analysis, target quadrant looks similarly differed from looks
to all other quadrants in a cluster starting 300ms after onset; see Supplementary Mater-
ials). In the S&H2022 adult data, clusters started at target onset for the horizontal-side
distinction (z-sum=136.59, p<0.001)10 and 200ms after target onset for the vertical-side
distinction (z-sum=90.31, p<0.001), suggesting that WebGazer detected target quadrant
fixations starting 200ms after target onset (in the exploratory multinomial analysis, looks
to the target differed in a cluster starting 300ms after onset).11

In both the adult and child data, looks to the quadrant vertically adjacent to the target
remained elevated compared to the other non-target quadrants during target fixations
(Figure 17). This pattern was confirmed in an exploratory multinomial analysis (see
Supplementary Materials).

Experiment 2 summary

The Experiment 2 results demonstrate that it is possible to conduct unsupervised web-
based eye-tracking tasks with school-aged children. There was a sharp increase in looks
toward the target shortly after it appeared, indicating that participants were able to
perform the task without an experimenter to guide them. Furthermore, the data suggest
that parents, acting on their own, were just as effective in setting up the experiment as
parents guided by researchers; there was no significant difference between the mean
calibration scores of participants in Experiment 1 and those of the same age range (five–
six years) in Experiment 2 (t(7)=-0.74, p=0.49).

Experiment 2 assessed how closely WebGazer estimates track with stimulus location.
The Euclidean offset between estimated gaze and target stimulus location was approxi-
mately 38% of screen-size. This offset is greater than observed in S&H2022’s adult data
(30% of screen-size) and much larger than reported for in-lab eye-trackers (see General
Discussion). In addition, we found age-related differences in performance: calibration
scores tended to be higher for older participants, and there was a relationship between
participant age and Euclidean offset above and beyond the effect of calibration.

Analyzing the Experiment 2 data using the quadrant-based approach common for
visual-world studies showed a similar overall pattern to Experiment 1B, suggesting that
increasing the size of the tracked quadrant canvases did not substantially improve
WebGazer data quality. Target quadrant looks increased faster in Experiment 2 than

10The early cluster onset identified in the horizontal target-side looks analysis appears to be driven by a
slight preference for target-side looks in the 0ms and 100ms time bins (in both bins, 54% of recorded looks
fell on the target side). The beta coefficients for these time bins (0.17 and 0.12, respectively) suggest that the
effect was small; for reference, the beta coefficient 500ms after target onset (once target looks plateau in
Figures 13 & 15) was >2.

11This timing differs from that identified in S&H2022’s analysis, which identified clusters in the 0–200ms
and 400–1400ms bins (Slim & Hartsuiker, 2022). Their analysis collapsed all non-target quadrants into a
single other quadrant variable that received a 1 if there was a look to any quadrant other than the target
quadrant; they then analyzed whether looks (0,1) differed based on focus (target quadrant, other quadrant).
We did not perform our analyses this way due to concerns about dependencies in the data structure.
Repeating our cluster analysis using this structure, we obtained the same two clusters identified by S&H2022
(in the bins 0–200ms and 400–1400ms after target onset). Using S&H2022’s analysis structure on the
Experiment 2 child data yields clusters in the 0–300ms and 500–1400ms bins.
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Experiment 1, likely due to the larger quadrant sizes and the fact that attention was
directed to the stimulus by a single visual cue (the target was the only item on screen),
whereas in Experiment 1 participants needed to process linguistic input to determine
which of multiple visual stimuli to fixate upon. Our results furthermore support the
finding from Experiment 1 that WebGazer is less accurate at detecting vertical distinc-
tions: during target fixations, offsets between estimated gaze locations and the true
stimulus location were greater in the vertical direction than the horizontal direction,
and in the quadrant-based analysis, there were elevated looks to the quadrant vertically
adjacent to the target. This inaccuracy appears to be particularly pronounced in the top–
down direction, with greater vertical offsets for targets appearing on the top half of the
screen (Figure 16).

General discussion

The present study investigated the suitability of two webcam eye-tracking methods for
child language research: automatic WebGazer gaze estimation and frame-by-frame
annotation of gaze direction from webcam videos. Experiment 1 compared these two
methodswith five and six year-olds in a visual-world task replicating the phonemic cohort
effect. The experiment used two display types: a two-image display with one image on
each side of the screen (Experiment 1A) and a four-image display with one image in each
quadrant (Experiment 1B). Experiment 2 investigated WebGazer’s gaze estimation
accuracy in an unsupervised visual-fixation task with four to twelve year-old children.
Our results suggest that while it is possible to conduct webcam eye-tracking studies with
children (supervised and unsupervised), the two eye-tracking methods differ in their
spatiotemporal resolution and thus are not equally suitable for detecting all types of eye-
movement patterns. In this Discussion, we discuss the spatiotemporal accuracy of the two
methods, their ability to detect fine-grained linguistic effects, and recommendations for
researchers conducting web-based eye-tracking experiments with children.

Spatiotemporal accuracy of the eye-tracking methods

Spatial resolution
Both webcam eye-tracking methods were sufficiently accurate to detect the preference to
look at a target that either is explicitly mentioned (Experiment 1) or suddenly appears on
the screen (Experiment 2). This is true bothwhen target and foil occupy different halves of
the screen (Experiment 1A) and when the target occupies one quadrant (Experiment 1B,
Experiment 2). Nevertheless, webcam video annotation had a higher signal-to-noise ratio,
as evidenced by a higher proportion of target looks than in simultaneously-collected
WebGazer data (89% vs. 72% in Experiment 1A; 80% vs. 47% in Experiment 1B). In fact,
the target looks in the video data parallel those from prior in-lab experiments
using commercial eye-trackers with children of this age (Sekerina & Brooks, 2007;
Simmons, 2017).

Experiment 2 confirmed WebGazer’s reduced spatial accuracy compared to in-lab
eye-tracking using a more fine-grained distance metric. Target fixations as detected by
WebGazer were approximately 38% of the screen distance from the true stimulus
location, compared to an offset of 1–2% (0.4–0.9º of the visual angle) reported for Tobii
TX300 eye-trackers in standard laboratory conditions (Tobii, 2010; see Dalrymple et al.,
2018 for data from 8–11 year-old children). This offset could result from WebGazer
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inaccuracy or because participants are looking somewhere else. We believe that the latter
explanation does not play a substantial role, as: i) piloting the task over Zoom showed
children directing their eyes towards target stimuli; ii) children similarly directed their
eyes towards visual cues in the Experiment 1 WebGazer calibration sequence; and iii) if
inattention were the primary driver of this gap, we would expect to see a more random
distribution of looks in the Figure 16 density plots. Furthermore, this larger offset is
consistent with prior WebGazer studies with adults; for example, Semmelmann and
Weigelt (2018) and Slim and Hartsuiker (2022) reported offsets of 18% and 30% of
screen-size (respectively) in online fixation tasks.

In particular, WebGazer appears to have difficulty discriminating looks along the
vertical axis. This was evidenced by elevated looks to the image or quadrant vertically
adjacent to the target and by greater vertical than horizontal offsets between gaze and
target location. The results of Experiment 2 suggest that this difficulty may be greater for
stimuli appearing on the top half of the screen. We observed a similar (but less pro-
nounced) pattern in the video data in Experiment 1. Poor vertical resolution could reflect
three constraints. First, most computer screens are rectangles with a landscape orienta-
tion, thus vertical distances between stimuli are generally smaller than horizontal ones.
Second, webcams are typically placed above the screen but centered on the left–right axis.
Consequently, a left look will be in the opposite direction relative to the webcam from a
right look. In contrast, looks to both the upper and the lower half of the screen will be
downward relative to the webcam. Finally, while it is easy to encourage participants to
center themselves relative to their screen on the left–right axis (by sliding their computer
or chair), vertical position is variable and more difficult to control. Most adults sit with
their eyes above the screen, and thus theWebGazer algorithmwas presumably trained on
data of this kind. Children, who are shorter but live in a world of artifacts scaled to adults,
typically sit with their heads nearer to the level of the screen. This may explain why the
vertical spread is greater for children in the WebGazer data.

In our study, we identified two factors that influence WebGazer’s performance: calibra-
tion score and participant age. Higher calibration scores are associated with data patterns
suggesting better gaze tracking. In Experiment 2, the distance between estimated looks and
the true stimulus location was reduced for participants with higher mean calibration scores
(see also Slim&Hartsuiker, 2022). In both Experiment 1 and the adult pilot experiment, the
size of the cohort effect was larger in trials with higher scores on the preceding calibration
check (see Supplementary Materials). These results highlight the potential utility of calibra-
tion thresholds as ameans to improve data quality, though the thresholdof 50%oftenused in
adult WebGazer experiments (e.g., Slim &Hartsuiker, 2022, Experiment 2; Vos et al., 2022)
may be too high a bar for younger child participants (see Table 2).

Participant age also seems to influence WebGazer accuracy. WebGazer’s spatial
resolution appears higher for adult participants compared to child participants: in
Experiment 2, the Euclidean distance offset between estimated gaze location and the true
target locationwas smaller for adults, and in the quadrant analysis, the adult data yielded a
higher proportion of target quadrant looks. Moreover, the age of the child participants
influenced both calibration score and Euclidean distance offset: calibration scores were
higher and distance offsets were smaller for older children.

Age-related differences could reflect factors specific to WebGazer. For example, older
children may be in a more optimal position for WebGazer, because they are generally
taller and thusmay be positionedmore like adults. In addition, older children tend to have
larger faces than younger children, which could facilitateWebGazer’s pupil detection and
gaze estimation algorithms. Alternatively, age-related differences could reflect differences
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between participants that are independent of the technology used to estimate gaze. For
example, older children may be less susceptible to distraction and more likely to sit still
throughout the duration of the task.

Temporal resolution
In addition to observing differences in the eye-tracking methods’ spatial resolutions, we
also found that the timing of effects was slower than expected whenWebGazer was used.
In Experiment 1, in the absence of cohort competition, WebGazer detected reliable
preferences for the target in clusters starting 800ms after target word onset for the two-
picture display and 1200ms after target onset for the four-picture display. In contrast, in
the annotated video data, this preference emerged in clusters starting 500ms after target
word onset in the two-picture display and 700ms after target word onset in the four-
picture display, similar to the timing in laboratory-based studies (Sekerina & Brooks,
2007; Simmons, 2017).We also found delays in the timing of the phonemic cohort effects
(discussed below).

The apparent lag is not limited to studies with linguistic stimuli: we observed
comparable WebGazer fixation delays in Experiment 2. In in-lab settings, saccade
latencies in response to perceptual stimuli take approximately 200–250ms for adults
(e.g., Matin et al., 1993; Rayner, Slowiaczek et al., 1983; Saslow, 1967; Theeuwes et al.,
1998; Walker et al., 2000; White et al., 1962) and ten to twelve year-old children (Q. Yang
et al., 2002). Q. Yang et al. (2002) observed mean latencies of approximately 300–350ms
for children between the ages of four-and-a-half to twelve years. In contrast, in Experi-
ment 2, looks settled on the target location approximately 500ms after onset (see also
Semmelmann & Weigelt, 2018; Slim & Hartsuiker, 2022, for evidence of fixation delays
with WebGazer).

We can imagine two possible explanations for this lag, which are not mutually
exclusive. First, WebGazer could detect the same eye-movements as other eye-tracking
measures but do so later due to time-consuming steps in the execution of the algorithm.
Second, the lag could be a side-effect of WebGazer’s poorer signal-to-noise ratio: effect
sizes at the onset of an eye-movement pattern are typically smaller, making differences
more difficult to detect. The data to date suggest that both factors play a role. On the one
hand, streamlining WebGazer’s algorithm to remove unnecessary computations
improves its temporal resolution (X. Yang & Krajbich, 2021), suggesting processing
limitations result in temporal delays. On the other hand, the variability that we observed
in the WebGazer estimates well after stimulus onset (Figure 16) demonstrates that the
spatial signal has substantial noise. Since even more streamlined versions of the WebGa-
zer algorithm produce smaller effects than in-lab baselines (Vos et al., 2022), we expect
that they would also fail to detect the earliest and weakest effects. Critically, we did not see
comparable delays in the simultaneously-collected video data (Experiment 1), demon-
strating that these delays are due to properties of the WebGazer algorithm and its
execution and not to the less controlled nature of web-based settings.

Using webcam eye-tracking to detect fine-grained linguistic effects

Our findings suggest thatWebGazer is not well suited for studying small or fleeting effects
in children, particularly in the typical quadrant-based visual-world display. This wasmost
clearly demonstrated by our analyses of the phonemic cohort effect in Experiment 1. In
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the annotated webcam video data, we found significant cohort effects in both the two- and
four-image displays, despite a sample of just 13 participants in each experiment. In
contrast, even though our WebGazer sample contained more than twice as many
participants (N=32 per experiment), WebGazer only detected evidence of a cohort effect
in the two-image display. Moreover, the cluster window containing the effect was later
and shorter than that in the video data (extending from 900–1099ms vs. 700–1099ms).
Prior studies with adults have similarly observed WebGazer effects emerging later than
in-lab baselines (Degen et al., 2021; Slim & Hartsuiker, 2022) as well as effects that are
smaller and/or noisier than in-lab counterparts (Degen et al., 2021; Vos et al., 2022; Slim&
Hartsuiker, 2022).

We conducted a series of power simulations using the {mixedpower} package v0.1.0
(Kumle et al., 2021) to assess the relative effect sizes in our webcam video andWebGazer
data (see Supplementary Materials). We analyzed the likelihood of competitor image
looks in the time windows where the Experiment 1 cluster analyses identified a
difference between the two conditions (700–1099ms in Experiment 1A; 600–999ms in
Experiment 1B).

In Experiment 1A (the two-image display), the effect of condition was larger in the
webcam video data (β=-1.12, z=-3.52, p<0.001) than in the WebGazer data (β=-0.29,
z=-1.83, p=0.07). In fact, theWebGazer effect was only 26% as large as the webcam video
effect (as measured by the standardized beta coefficients). Given the sample sizes that we
had, the observed power was 94% in the video data (N=13) and 45% in theWebGazer data
(N=32). To achieve 94% power with theWebGazer data, the sample size would have to be
increased to approximately 125 participants. To achieve power of at least 80% in the
WebGazer data, the sample size would have to be increased to approximately 65 partici-
pants (power=80%). In contrast, reaching 80% power in the video data requires only
seven participants (power=81%). In short, these simulations suggest that to achieve
comparable power, a WebGazer study of this kind would require almost ten times as
many participants as a study relying on webcam video annotation.

In Experiment B (the four-image display), the effect of condition was significant in the
webcam video data (β=-1.08, z=-3.97, p<0.0001), with an observed power of 98% (N=13).
To reach at least 80% power for an effect of this size required only five participants
(power=82%). The effect of condition was not reliable in the WebGazer data (β=-0.03,
z=-0.18, p=0.86; observed power 5% for N=32). If we assume that the true effect in the
WebGazer data was 25% the size of the effect in video data, then a sample of approximately
120 participants would be required to achieve power greater than 80% (power=84%). This
sample is 24 times the required minimum for the video data effect size. This conjecture is
based on the relative effect sizes in Experiment 1A, though it is of course possible that the
true effect size for WebGazer is considerably larger, or smaller, than our estimate.

In sum, our results suggest that webcam video annotation is a farmore sensitivemeans
of detecting the kind of fine-grained eye-movement effects that are relevant tomany child
language researchers. WebGazer estimation may be better suited to detecting fairly long-
lasting effects in which the primary outcome measure is which part of the screen
participants fixated on.

Recommendations for practice and directions for future research

Our results suggest that while both webcam video annotation and WebGazer estimation
can be used with child participants in web-based tasks, the two methods have different
advantages and disadvantages.
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Webcam video annotation has better spatiotemporal accuracy than WebGazer
(drastically reducing the amount of noise in our child data), making the method better
suited to detecting the temporally-sensitive, fine-grained looking patterns assessed in
studies of real-time language processing. Collecting webcam video data over Zoom
requires relatively little technical expertise, as the experiment itself can be built and run
in any software; the experiment can either be run on the participant’s computer (as in
Experiment 1) or displayed from the experimenter’s computer using Zoom’s screen
sharing function (as in unpublished work by Anthony Yacovone, personal communica-
tion). It is possible to collect webcam video for gaze annotation in unsupervised web
experiments using Zoom (Slim et al., 2022) or other webcam recording functions (e.g., via
PCIbex; Ovans, 2022). However, the hand annotation process is time consuming
(in Experiment 1, annotating a seven second video took approximately one minute),
and the resulting gaze location estimates are relatively coarse-grained (representing
regions of the display instead of coordinate estimates).

WebGazer’s gaze coding, on the other hand, is automatic, reducing the data processing
burden on the researcher. It can be used to obtain either gaze coordinate estimates or
binary looks to relevant screen locations, and the data are saved in text format, thus
helping to maintain participant privacy and requiring less storage space than video
recordings. Our results suggest that it is possible to achieve similar target look resolution
with WebGazer in quadrant-based analyses in both supervised and unsupervised web-
based studies. In addition, WebGazer is free to use and has implementations in popular
frameworks for web-based research. However, use of these implementations often
requires working proficiency in programming languages, and implementations may
not be compatible with all web-browsers. Furthermore, WebGazer’s low spatiotemporal
accuracy makes it more difficult to detect fine-grained effects with sufficient resolution
and power. The sample sizes required to detect such effects with sufficient power are
much larger than for webcam video annotation (10x the size or greater). These sample
sizes may be prohibitively large for experiments targeting smaller effects. Nevertheless,
WebGazer was able to detect looks towards targets in both of our experiments, suggesting
that it is suitable for tasks that require spatial discrimination of robust looking patterns.

It is possible that the quality of data collected with WebGazer would be improved by
having participants complete the experiment in the same environment or with the same
computer (e.g., Özgoy et al., 2023; Semmelmann & Weigelt, 2018) – for instance, if a
researcher uses a laptop as a mobile lab. However, recent work in our lab withMieke Slim
and Anthony Yacovone suggests that the limitations of WebGazer persist under more
controlled conditions; in a comparison of an infrared eye-tracker, WebGazer, and
webcam video annotation, we found no substantial differences in eye-movement effects
when the two webcam methods were applied in the lab or in a web-based setting (where
participants completed the experiment from their own computers).

Researchers should consider these trade-offs when deciding whether to conduct eye-
tracking studies online and which gaze estimation method to use. For researchers
interested in using WebGazer for online studies, we have several recommendations:

1) When designing the task, do not rely on vertical distinctions between critical
stimuli. Consider simplifying the task to involve a two-image display or place
critical stimuli on different halves of the screen in quadrant-based designs. Looks
to diagonally-adjacent stimulimay bemost easily discriminated (see Experiment 2).

702 Margaret Kandel and Jesse Snedeker

https://doi.org/10.1017/S0305000924000175 Published online by Cambridge University Press

https://doi.org/10.1017/S0305000924000175


2) When determining sample size, assume a 50–75% reduction in effect size relative to
in-lab effects. Specifically, we found that the effects observed usingWebGazer were
roughly 25% as large (for the Experiment 1A cohort effect) to 45% as large (for
horizontal target-side looks in the Experiment 1 control trials) as in the webcam
video data, which produced effects of roughly the same magnitude as prior in-lab
studies. The estimated reduction in effect size for WebGazer appears to vary based
on effect type (short-lived, small effects vs. long-lasting fixations). Future work
should investigate the performance of webcam eye-tracking methods in detecting
various types of effects in order to provide more accurate recommendations for
estimating expected effect sizes.

3) When planning the analysis, consider the likelihood of temporal delays in effect
emergence. To account for such delays, researchers should shift or widen their
planned analysis window appropriately or use an analysis method that does not
assume a precise effect time window (e.g., cluster permutation analyses).

4) Consider setting calibration thresholds and/or including recalibration checkpoints
to encourage participants to remain in an optimal position for WebGazer. Based
on the data in Figure 14, we tentatively recommend a calibration threshold of at
least 30% (though thresholdsmay need to be higher for smaller effects and/ormore
complicated displays).12 To help improve WebGazer performance, ask parents to
adjust their child’s distance from the computer, the camera angle, and room
lighting as necessary so that the participant’s eyes can easily be seen in the webcam
video feed at the onset of the calibration sequence.

For researchers interested in using webcam video annotation, we have the following
recommendations:

1) Consider placing critical stimuli on different halves of the screen. While hand
annotators were better at distinguishing quadrant looks thanWebGazer in Experi-
ment 1, horizontal differences are still easier for annotators to discriminate.

2) Re-center participant gaze with a central fixation prior to the onset of the
experimental stimuli; having the gaze begin in the center of the screen makes it
easier to identify in which direction looks are launched.

3) If using Zoom to record webcam video, utilize the gallery view layout for the
recording (as opposed to the active speaker view) and hide non-video participants.
This will ensure that the participant’s webcam stream is present in the recording
throughout the entire duration of the experiment. If the experimenter(s) turn off
their video after starting the recording, the participant’s face will be the only
recorded view (note that at the time of writing, turning the experimenter video
off prior to starting the recording causes Zoom to default to recording active
speaker view). Zoom allows for simultaneous recordings in multiple layouts (e.g.,
screen recording, screen recording + thumbnail speaker view), which may be
useful for aligning the recorded gaze data to trial onsets in the experiment.

12See Supplementary Materials for an analysis of the cohort effect in the Experiment 1 WebGazer data
restricted to trials thatmeet this calibration threshold. In Experiment 1A, the cohort effect cluster increased in
size (800–1199ms after target onset; z-sum=9.42, p<0.01) relative to our original analysis; there was still no
cohort effect identified in the Experiment 1B WebGazer data. See Supplementary Materials for additional
analyses relating trial calibration score to the size of the phonemic cohort effect in Experiments 1A and 1B.
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4) If using teleconferencing software like Zoom to collect screen and/or webcam
video recordings, test the available functions and settings for recordings. Some
functions (e.g., Zoom’s optimize for video function) may produce unexpected
delays in the audio–visual sync within recordings.

5) Consider using a combination of visual and auditory prompts to identify trial
onsets within the Zoom recordings; this will allow researchers to recover trial
onsets should there be any issues with audio–visual synchrony in the recording.

6) Make sure that participant and/or experimenter has a way to view the participant
webcam stream prior to the start of the experiment (e.g., through Zoom telecon-
ference or by showing a video preview in PCIbex) so that the participant can adjust
positioning and lighting to ensure that their eyes are visible in video recording.

While this work provides a starting point for evaluating online eye-tracking research
with children, much remains to be done. For instance, future work should compare
webcam-based eye-tracking methods to traditional high-end in-lab eye-trackers and
should further assess the feasibility of running unsupervised web-based experiments
with children. Despite the success of the Experiment 2 fixation task, we know very little
about the limits of unsupervised tasks, particularly those with more complicated designs.
In addition, while we observed age-related differences inWebGazer accuracy, it is unclear
what is driving those differences, the extent to which theymight influence the detection of
linguistic effects, and whether we should expect similar differences in annotated webcam
videos. Finally, as improvements continue to be made to automatic gaze-coding algo-
rithms, their performance with child populations will need to be re-assessed.

Conclusion

We have demonstrated in two experiments that it is possible to run web-based visual-
world studies with school-aged children in both supervised and unsupervised experi-
mental settings. We tested two webcam eye-tracking methods and found that they are
differentially suitable for detecting different kinds of effects. While both methods can
discriminate looks to a target (albeit with different levels of accuracy), we found that
WebGazer is not well-suited to detecting effects that require a high level of spatiotemporal
accuracy (see Slim & Hartsuiker, 2022 for a similar conclusion). In contrast, frame-by-
frame annotation of gaze direction from webcam videos provided sufficient spatial and
temporal resolution to detect a fleeting and subtle effect typical of those studied by child
language researchers.We anticipate that webcam eye-trackingwill continue to improve as
researchers develop tools, experimental protocols, and practices that are more precise,
accurate, and efficient. We hope that these improvements will allow child language
researchers to take advantage of the benefits of large-scale web-based experimentation
for eye-tracking research.
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