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ON A CLASS OF PROJECTIVE MODULES OVER 
CENTRAL SEPARABLE ALGEBRAS 

BY 

GEORGE SZETO 

In [5], DeMeyer extended one consequence of Wedderburn's theorem; that is, 
if R is a commutative ring with a finite number of maximal ideals (semi-local) and 
with no idempotents except 0 and 1 or if R is the ring of polynomials in one variable 
over a perfect field, then there is a unique (up to isomorphism) indecomposable 
finitely generated projective module over a central separable i£-algebra A. Also, 
for this ring R, DeMeyer proved a structure theorem for a central separable R-
algebra A. The purpose of this paper is to extend the above results of DeMeyer 
by using the Pierce's representation of a commutative ring with identity. 

Throughout this paper, we assume that R is a commutative ring with identity, 
that all modules are left and unitary modules over a ring or an algebra. Let us 
recall some notations used in [6] and [7]. Let B(R) denote the Boolean algebra of 
idempotents of R with addition e+f—e+f— ef and multiplication e*f=ef for 
any elements e and / in B(R). Let Spec B(R) be the set of maximal ideals of 
B(R) and let Ue be the subset of Spec B(R) such that Ue={x with e in x and e 
fixed in B(R)}. Then Spec B(R) is a topological space with the basic open sets Ue. 
Furthermore, it is a compact, totally disconnected and Hausdorff topological 
space. Finally, let Rx denote R/xR for each x in Spec B(R) and Mx denote 
Rx <g)R M for a i^-module M. A sheaf is defined whose base space is Spec B(R) 
and whose stalks are Rx. Then the ring R is represented as a global cross 
section of this sheaf. We will employ the facts which were proved by D. 
Zelinsky and O. Villamayor in [7, §2]. We are interested in a class of rings R such 
that Rp is a semi-local ring for each/? in Spec B(R) (for example, a regular ring R 
in the sense of Von Neumann, see the remark in [4, p. 625]), or a polynomial ring 
F[X] in one variable Zwith B(R)=B(F) and Fp a field for each p in Spec B(R) 
(for example, F[X] with F a Boolean ring). We begin with extending Theorem 2 
in [5]. 

LEMMA 1. Let M and N be any two finitely generated projective and indecomposable 
modules over a central separable R-algebra A. If R is a polynomial ring F[X] in 
one variable X over a commutative Noetherian ring F with 1 such that Fp is a perfect 
field and B(R)=B(F), then the following statements are equivalent: (a) M^N, 
(b) M^N as R-modules, (c) Mp^0 and Np^0for somep in Spec B(R). 
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Proof, (a) => (b) is clear. For (a) => (c), suppose to the contrary that Mp = 0 
and JVp=0 for all/? in Spec B(R). Then M=0 and N=0 [7, (2.11)]. But M and N 
are always assumed nonzero then there is p in Spec B(R) such that Mp^0 and 
iVp^O. For (c) => (a), since R=F[X] is a polynomial ring in one variable X such 
that Fp is a perfect field and B(R)=B(F), RP = FP[X]; and so there is only one 
isomorphic class of finitely generated projective and indecomposable v4p-modules 
[5, Theorem 2]. Assume the number of indecomposable submodules of Mp is less 
than that of Np. We then have a homomorphism/from Np onto Mp. The modules 
M and N are finitely generated and projective ^-modules so / i s lifted to a homo-
morphism/' from N'mto M. This gives M=f'(N)+pM and so (/?M)P = 0. But i? 
is Noetherian and M is finitely generated then pM is finitely generated. Hence 
there is a neighborhood of /?, U, such that (pM)q=0 for each q in (7. Let e be an 
idempotent of R with 1 — e in q for all # in U. Then J7= Spec 5(J?^) and e{pM) = 0. 
So, eM=f'(eN). Thus the sequence is exact and splits, 0 -> ker (/') -> eiV-> eM 
-> 0. This implies that eN^eM® ker (/'). Noting that M and JV are indecom
posable ^-modules we have N=eN^eM=M. (b) => (a) holds true by similar 
arguments. 

With some minor modifications it is easy to extend Theorem 1 in [5]. 

LEMMA 2. Let M and N be any two finitely generated projective and indecomposable 
modules over a central separable R-algebra A. If R is a commutative Noetherian 
ring with Rp a semi-local ring for eachp in Spec B(R), then the following statements 
are equivalent: (a) M^N, (b) M^N as R-modules, (c) Mp^0 and Np^0for some 
p in Spec B(R). 

A classification of all finitely generated projective and indecomposable modules 
over a central separable algebra can be obtained. From now on we assume that 
for each/? in Spec B(R) there is a finitely generated projective and indecomposable 
i^-module M with Mp^0. 

THEOREM. If R is given by Lemma 1 or 2, then the number of isomorphic classes 
of finitely generated projective and indecomposable modules over a central separable 
R-algebra A is finite. 

Proof. First we claim that all finitely generated and projective ^-modules are free 
for some idempotent e of R. Let M be any finitely generated projective and indecom
posable iÊ-module with Mp^0 for some p in Spec B(R). Since Mp is a free Rp-
module, Mp^02?=i {Rp\ for some integer n. But then M and ©2?=i (R)i are 
finitely generated and projective i?-modules with MP^(©J?=1 (#)I)P- By the proof 
of Lemma 1 we have an idempotent e of R and a neighborhood of/?, Ue, such that 
eM^ e(©2?= l (R)d- The module M is indecomposable so n = 1. Thus M= eM^ eR. 
On the other hand, let N be any finitely generated projective and indecomposable 
iÊ-module with Nq^0 for some q in Ue. Then M^eR^N. This follows because 
Mq^(eR)qy^0(Ue = SpecB(eR)). Therefore all finitely generated and projective 
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ei£-modules are free. Let/? vary over Spec B(R) and cover Spec B(R) with such Ue. 
Noting that Specl?(i£) is compact we have a finite subcover of Ue,{Uei, Ue2,..., Uej}9 

such that i? = ©2f=i etR and all finitely generated and projective e^-modules are 
free for each /. Consequently, there is exactly one isomorphic class of finitely 
generated projective and indecomposable e^-modules for each i by Lemmas 1 
and 2 and so the number of isomorphic classes of finitely generated projective and 
indecomposable modules over a central separable jR-algebra A is finite. 

For R given by Lemma 1 or 2, since ^ = ©2f=i etR and 4̂ = ©2?=i e%A such 
that there is exactly one isomorphic class of finitely generated projective and in
decomposable e^-modules, using the same proof as Corollaries 1 and 2 in [5] 
for each e{A we have: 

COROLLARY. If the ring is given by Lemma 1 or 2, then (a) the Brauer group ofR, 
G(R)9 is isomorphic to a finite direct sum of Brauer groups, GfeR), and (b) every 
class ofG(eiR) contains a unique element D such that for any A equivalent to D9 A 
is isomorphic to a matrix ring over D and D^eAefor some idempotent of A, e. 
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