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Abstract. We utilize the concept of sparsity or compressibility to develop an new generation
of inversion codes for the Stokes parameters. The inversion code uses numerical optimization
techniques based on the idea of proximal algorithms to impose sparsity. In so doing, we allow
to exploit the presence of spatial correlation on the maps of physical parameters. Sparsity also
regularizes the solution by reducing the number of unknowns. The solution has an increased
robustness.

Keywords. Sun: magnetic fields, atmosphere, line: profiles, methods: data analysis

1. Introduction
An inversion code is a computer program based on algorithms that allows the user to

extract information about the parameters of a physical system from the interpretation of
observables. In solar physics, nonlinear inversion codes are routinely applied after their
development in the ’70s to get the thermodynamical and magnetic properties of different
regions of the solar atmosphere from the interpretation of the Stokes parameters (Harvey
et al. 1972, Auer, Heasly & House 1977 or Skumanich & Lites 1987).

The appearance of the first powerful computers allowed researchers to apply opti-
mization techniques for nonlinear functions and use more elaborate models. A χ2 merit
function (a direct consequence of the assumption that the observations are corrupted with
additive Gaussian noise) is minimized with respect to the physical parameters defining
the specific model. The first efforts (with the application of the computers available at
that time) made use of the Milne-Eddington (ME) approximation to analytically solve
the radiative transfer equation (Landi degl’Innocenti & Landolfi 2004). Although the
simplifying assumptions that one needs to use when using the ME approximation may
not be fully fulfilled in real solar plasmas, it is still one of the most widely used models, in
part because of its simplicity. This simplicity leads to very fast inversion codes that can
be applied to the large number of observations that we currently obtain. State-of-the-art
inversion codes such as VFISV (Borrero et al. 2010), used for inferring magnetic field
vectors from the Helioseismic and Magnetic Imager (HMI; onboard the Solar Dynamics
Observatory) data, MILOS (Orozco Suárez et al. 2007) and MERLIN (Lites et al. 2007),
currently applied to data from the Hinode spacecraft, or the codes based on look-up ta-
bles and the principal component analysis (PCA) decomposition (Rees et al. 2000) used
for the inversion of THEMIS data, are based on the ME approximation.

The availability of more powerful computers in recent years allowed us to use more
complex and more realistic models. One of the essential ingredients of this revolution
was the application of the idea of response functions (Landi Degl’Innocenti & Landi
Degl’Innocenti 1977) to the inversion of Stokes profiles with non-trivial depth stratifi-
cations of the physical quantities. The first representative of this family of codes was
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SIR (Stokes Inversion based on Response functions; Ruiz Cobo & del Toro Iniesta 1992).
Such evolution occurred naturally at that time because observations were showing strong
asymmetries in the Stokes profiles in magnetized regions. The explanation of such asym-
metries requires the presence of gradients along the line-of-sight (LOS) of the physical
properties. Another representative of these inversions code is SPINOR (Frutiger et al.
2000). Based on the same strategy, Socas-Navarro et al. (2000) developed the NICOLE
code (Socas-Navarro et al. 2014), capable of dealing with lines in NLTE (non-local ther-
modynamical equilibrium). This model has been mainly applied for the inversion of Ca
ii infrared triplet lines, which are formed under strong NLTE conditions (Socas-Navarro,
Trujillo Bueno & Ruiz Cobo 2000, de la Cruz Rodŕıguez et al. 2012).

Another step forward in the field of inversion codes was carried out by Asensio Ramos,
Mart́ınez González & Rubiño Mart́ın (2007), who introduced Bayesian inference for spec-
tropolarimetric observations. This allows the user to obtain posterior probability distri-
butions for any model parameter and their correlation with the remaining ones. This
probabilistic inference is extremely powerful but requires a huge effort in terms of com-
putational power.

With the use of fast slit spectropolarimeters and also two-dimensional filterpolarime-
ters, we routinely have 2D maps of regions in the solar atmosphere with the four Stokes
parameters observed at several points along one or several spectral lines. This rate of new
high-quality 2D observations will increase in the future with the advent of bi-dimensional
spectropolarimeters based on image slicers or optical fibers. The interpretation of these
observations have been done in the past by assuming that all pixels are completely unre-
lated and applying the inversion codes in a pixel-by-pixel basis. After this pixel-by-pixel
inversion, the spatial smoothness of the derived quantities is taken as an indication of
the success of the inversions. Salt-and-pepper noise present in the inverted maps of phys-
ical parameters is an indication of problems: either the required information cannot be
extracted from the Stokes profiles, or the inversions failed to converge to a good solution.

It has become more and more evident that two-dimensional observations and the en-
suing inversions are needed to fully understand the physical processes in the solar at-
mosphere. This is the case even when one assumes local thermodynamical equilibrium
(LTE), which relates radiation to the local properties of the plasma. The first represen-
tatives of such approach are the already described codes of van Noort (2012) and Ruiz
Cobo & Asensio Ramos (2013), where the point spread function of the telescope couples
the observed Stokes profiles of nearby pixels.

2. The general sparsity prior
We develop the general idea of regularized inversion codes, with the regularization

being based on the idea of sparsity. Sparsity or compressibility idealizes the concept that
the data can be projected to a parameter space where a reduced set of variables can be
used to fully describe that dataset. The motivation for this regularization resides on a
very simple observation. When one saves a continuum image as a raw file (for instance,
a standard 512×512 pixel image), the size of the file is roughly 1 MB (using 4 bytes
per pixel). The same image compressed using a lossless file format reduces the size by
a factor 3-4, while a lossy format can go further and increase the compression ratio to
a factor ∼ 10. In general, the compression is possible because of the existence of spatial
correlation on the image. With that term we usually refer to properties like smoothness,
the presence of edges, repeated structures in the image, etc. If appropriately exploited by
a suitable algorithm, it is possible to predict the value of a certain pixel from the values
of other pixels thus making it unnecessary to store the value of all pixels. This is the
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case, for instance, of the JPEG compression algorithm (or the more modern JPEG2000
version). In this algorithm, the image is divided in 8 × 8 portions. The discrete cosine
transform (DCT) is obtained for each portion (a specific wavelet transformation is used
in the JPEG2000 version of the algorithm) and only a fraction of the coefficients is saved.
The uncompressed image is obtained by reversing the algorithm.

Helped with these ideas, let us assume that we have observed the Stokes parameters
on a 2D grid of Nx × Ny pixels for a set of Nλ wavelength points that sample one
or several spectral lines. We propose a model atmosphere for every pixel to explain
the observations, each model atmosphere being defined with a set of Npar parameters.
These parameters can be, for instance, the standard parameters of the Milne-Eddington
atmosphere, or the depth stratification of the physical parameters needed to synthesize
a line either in local or in non-local thermodynamical equilibrium. Consequently, we
assume that our forward model depends on a set of parameters that we encode on the
vector p = {p1 ,p2 , . . .}. Each parameter pi encodes the value of a certain parameter (i.e.,
magnetic field inclination, Doppler velocity, etc.) as a 2D map. The aim of any inversion
code is, then, to infer the full vector p that better reproduces the observed Stokes profiles.
As explained in the introduction, classical inversion codes deal with this problem by
inverting the observed Stokes profiles pixel by pixel. In so doing, we fully neglect the
presence of spatial correlation. This spatial correlation is usually a consequence of a
specific physical mechanism in the Sun but we do not require any knowledge of it here
whatsoever.

In our approach, instead of working directly on the real space of parameters, we use a
linear transformation so that the i-th parameter is given by:

qi = W[pi ]. (2.1)

In the previous equation, W is a linear operator that transforms from the real space to the
transformed space. This transformation is usually orthogonal (Fourier, wavelet or discrete
cosine transforms) and are associated with a standard basis set. However, they can also
be non-orthogonal, and they are associated with a dictionary. It is clear that by working
on the transformed space and using an inversion code to infer the transformed parameters
we have gained nothing. However, here we can impose a fundamental key ingredient: the
assumption that the transformed image is sparse in the transformed domain. In other
words, if the appropriate transformation W is used, many elements of the transformed
image (that we term modes in the following for simplicity) are zero or very close to zero
in absolute value. Sparsity, that is usually fulfilled in nature, has been shown to be an
extremely powerful assumption. Techniques like compressed sensing (Candès, Romberg &
Tao 2006, Donoho 2006) or exact matrix completion from partial measurements (Candès
& Recht 2009) strongly rely on the sparsity assumption. Note that, although orthogonal
transformations are easier to deal with because they usually have a fast transform, it has
become clear in the last years that non-orthogonal (or overcomplete) transformations
greatly enhance the sparsity level. This is not difficult to understand in the simple case of
an overcomplete transformation (or dictionary) made of the union of several orthogonal
basis. Parts of the signal not sparse in one of the orthogonal basis, can be sparse in
another of the basis used in the dictionary.

As a motivating example, Fig. 1 shows the compressibility of model parameters using
the Daubechies-1 (db1 or Haar) orthonormal wavelet (Jensen & la Cour-Harbo 2001),
specially suited for discontinuous signals, the Daubechies-8 (db8) orthonormal wavelet,
that is a wavelet appropriate for representing efficiently maps with smooth maps and
the DCT, also appropriate for smooth and periodic signals. Each panel shows the recon-
struction of the original image (the rightmost image in each panel) when the image is
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Figure 1. Testing for sparsity using the Daubechies-1 (upper panels), Daubechies-8 (middle
panels) and discrete cosine (lower panels) transforms for a sunspot map. The rows display maps
of the parameters of the Milne-Eddington model. Each column indicates the fraction of non-zero
coefficients of the original map that are retained. The last column is the original map.

transformed, thresholded leaving only a certain percentage of the largest coefficients and
transformed back. The percentage of non-zero coefficients is shown as a label in each col-
umn. The figure demonstrates that one gets an image that is essentially indistinguishable
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from the original one when the number of non-zero coefficients is as low as 15%. This
compression can be obtained because the linear transformations capture part of the
spatial correlation in the image. As a consequence, the value of ∼85% of the pixels
can be predicted from the value of just 15% of the image plus the presence of spatial
correlation.

An inversion code based on the previous idea of applying a sparsity regularization leads
to the following obvious advantages:
• Imposing that the solution to the inversion has to be sparse introduces a strong

regularization because the number of unknowns is heavily reduced. From the potential
NparNxNy to only sNparNxNy , with s � 1. We have found that typical values of the
sparsity s will be around 20-30%. Given that a large fraction of the coefficients can be set
to zero without degrading the solution, the number of free variables that we are currently
using in pixel-by-pixel inversions is highly overestimated. An overly large number of
degrees of freedom can produce nonphysical fluctuations of the physical parameters.
• The inverse linear transformation gives the value of a physical parameters at a

specific observed pixel as a linear combination of all modes in the map. This global
character induces changes in all the pixels of the original space simultaneously when
perturbing the value of a single mode. Reversing the argument, the observed Stokes pro-
files of a single pixel provide a little amount of information to all modes simultaneously.
This large redundancy is a very interesting advantage of our approach and introduces a
strong regularization of the solution. This global character also introduces strong regu-
larization due to the presence of spatial correlation in the observables and the physical
parameters.

3. Numerical methods
All standard inversion codes work by optimizing a merit function that measures the �2-

norm of the residuals with respect to the vector p of physical parameters. If the observed
Stokes parameters are corrupted with Gaussian noise with diagonal covariance matrix,
the merit function is:

χ2
p =

1
4NλNpix

Np ix∑
k=1

4∑
i=1

Nλ∑
j=1

wi
[Si(λj , p̂k ) − Oi(λj , k)]2

σ2
ijk

(3.1)

where S(λj , p̂k ) = (I(λj , p̂k ), Q(λj , p̂k ), U(λj , p̂k ), V (λj , p̂k )) refers to the synthetic Stokes
vector at wavelength position j and position k, while O(λj , k) is the equivalent observed
Stokes vector at this very same wavelength and pixel. The symbol σijk stands for the
standard deviation of the noise at wavelength position i, for the Stokes parameter j and
pixel k, and wi is the weight associated to each Stokes parameter. Note that p̂k are
the model parameters for pixel k seen as a vector. This weight is introduced for tech-
nical reasons to help improve the convergence during the optimization. Classically, it is
customary to solve the problem

argminp χ2
p , (3.2)

where the operator argminp returns the value of p that minimizes the function to which
the operator is applied. Problem (3.2) is usually solved by direct application of the
Levenberg-Marquardt algorithm, which is specially suited to the optimization of such
�2-norms.
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When working on the transformed domain, we substitute the merit function of Eq.
(3.1) by:

χ2
q =

1
4NλNpix

Np ix∑
k=1

4∑
i=1

Nλ∑
j=1

wi

[
Si(λj ,

[
W−1 [q]

]
k
) − Oi(λj , k)

]2

σ2
ijk

. (3.3)

Additionally, if we impose the sparsity constraint, we want to solve the following problem:

argminqχ2
q , subject to ‖q‖0 � s (3.4)

where ‖q‖0 is the �0-norm of q, equivalent to counting the number of non-zero elements.
The desired sparsity level is set by the upper limit s � NparNxNy . In other words, we
minimize the merit function χ2 with respect to the modes q but using only a very small
number of non-zero elements in q. The problem can be written equivalently in lagrangian
form as:

argminq

(
χ2

q + λ‖q‖0
)
. (3.5)

This is the form of the optimization that is commonly known as synthesis prior. The
idea is that we work directly with the transformed coefficients and impose the sparsity
on them. However, it has been realized recently that another dual view of the problem
appears if we optimize the following analysis prior problem:

argminp

(
χ2

p + λ‖Wp‖0
)
. (3.6)

It is clear that both schemes are equivalent when W is an orthogonal transformation, but
it remains to check what are the differences when the transformation is non-orthogonal.
It is obvious that the analysis prior problem is much more convenient for overcomplete
dictionaries because the number of unknowns is smaller. Our computer code uses the two
approaches although we focus now on the synthesis prior.

As a consequence of the recent huge increase on the interest of compressed sensing, big
data and related techniques based on the idea of sparsity, several algorithms have been
developed to optimize convex functions with non-convex constraints (�0 or �1 norms).
One of the most successful ones belong to a class of methods termed proximal algorithms
Parikh & Boyd (2014), which can be viewed as the equivalent of the Newton method for
non-smooth, constrained, and large-scale optimization problems. All these methods try
to solve the following problem:

argminqf(q) + g(q), (3.7)

where f(q) is a convex and differentiable function, while g(q) is another convex function,
possible non-smooth. The solution is given by the following iteration:

qi+1 = proxg [G(qi)] , (3.8)

where G(q) is an operator that carries out a step along the gradient of f(q). Given that
f(q) is differentiable, it is possible to use all the machinery used in all the inversion codes
discussed in the introduction.

The key ingredient of these algorithms is the application of the proximity operator of
the regularization function h(x), defined as

proxh(x) = argminv

[
1
2
‖v − x‖2

2 + λh(v)
]

. (3.9)

Examples of this operator for different regularization functions can be found in Parikh &
Boyd (2014). For our case of using the �0-norm as regularization, the proximity operator
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is simply given by:

prox�0
(x) = Hs(x), (3.10)

where Hs(x) is the nonlinear hard thresholding operator. This operator keeps the s ele-
ments of x with largest absolute value untouched and sets to zero the remaining elements.
Although all the results presented in this paper use the �0-norm as regularization, some-
times it is interesting to use the �1-norm, which is given by ‖x‖1 =

∑
i |xi |. In this case,

the proximal operator is the smooth thresholding operator, which is given by:

prox�1
(x) = sign(x)(|x| − λ)+ , (3.11)

where (·)+ denotes the positive part.
Concerning the operator G(q), it is desirable to use one that produces a very fast con-

vergence to the solution. Second order iterative algorithms (for instance the Levenberg-
Marquardt algorithm) would be desirable. However, even with the imposed compression,
the number of unknowns in the problem we want to solve is still extremely large. There-
fore, the use of second order algorithms like LM is computationally prohibitive. The main
reason is that the Hessian matrix that is used in these algorithms turns out to be im-
mensely large and constructing and inverting it becomes unfeasible on most computers.
Despite these complications, it would still be possible to use these methods when the
Hessian is sparse. This is the case of the strategy followed by van Noort (2012), who
finds a sparse diagonally-dominant Hessian, a direct consequence of the local character
of the PSF. Our case is much less favorable because the global character of the linear
transformation W produces a dense Hessian matrix and no shortcut can be used to build,
store or invert it.

The only current way to avoid this obstacle, that is widespread in big data applications,
is the application of first order algorithms, which are in essence equivalent to the gradient
descent method. Using Eq. (3.8), the simplest proximal algorithm using the gradient
descent method to solve Eq. (3.4) is given by (Parikh & Boyd 2014):

qk+1 = Hs

[
qk − h∇qχ2(qk )

]
. (3.12)

This iteration is just a plain gradient descent algorithm (which only makes use of first
order derivatives) which is augmented by using a hard thresholding projection operator in
each iteration. In other words, after moving the solution on the direction of the negative
gradient (controlled by the step-size h), one sets to zero all elements that do not fulfill
the sparsity constraint. This simple iterative scheme displays a sublinear convergence
rate O(1/k). Recently, a trivial improvement of the gradient descent method known as
Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) has been developed by Beck &
Teboulle (2009) showing a quadratic convergence rate O(1/k2). We utilize a combination
of FISTA and the restarting scheme developed by O’Donoghue & Candès (2013).

Eq. (3.12) shows that the optimization method relies on the computation of the gra-
dient of the merit function with respect to the modes, that we have made explicity by
using the subindex q on ∇qχ2 . Given the linear character of the transformation of Eq.
(2.1), this gradient can be trivially related to the gradient with respect to the physical
parameters (the response functions), that can be analytically written as:

∇qχ2 = W−1∇pχ2 (3.13)

Even though gradient descent methods are known to be fast when approaching the
minimum, they become slower in the refinement phase of the solution (that is precisely
the reason why the Levenberg-Marquardt method is a combination of a gradient descent
method and a Newton method, controlled by the Hessian). However, the non-convex
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optimization of large-scale problems has to rely on first-order derivatives because the
calculation and storage of the Hessian is impractical. In our experience and that of many
others in the literature, the FISTA algorithm is a competitive optimization technique.
To achieve a good convergence speed, the vector of step-sizes h has to be tweaked.
Our experiments have shown that these steps can be kept fixed and used for inverting
completely different data sets without any special impact on the convergence speed.
However, we are currently investigating the possibility of improving the convergence
speed along two lines. First, using approximations to the diagonal Hessian matrix that
can be efficiently computed using quasi-Newton methods. Quasi-Newton methods update
the Hessian matrix by analyzing successive gradient vectors using a generalization of the
secant method. We anticipate that the methods developed by Becker & Fadili (2012) or
Marjugi & Leong (2013) can be of help. Second, using conjugate gradient methods.
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