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1. Introduction

It is of some interest to the theory of locally convex "-algebras to know under what
conditions such an algebra A is a pre-C*-algebra (the topology of A can be described by
a submultiplicative norm such that ||x*x|| = ||x||2,Vx6/l). We recall that a locally convex
""-algebra is a complex *-algebra A with the structure of a Hausdorff locally convex
topological vector space such that the multiplication is separately continuous, and the
involution is continuous.

Allan [3] has studied the problem for normed algebras, showing that a unital Banach
•-algebra is a C*-algebra if and only if A is symmetric and the set 3B of all absolutely
convex hermitian idempotent closed bounded subsets of A has a maximal element.
Recalling that an element x of a locally convex algebra A is bounded if there exists A > 0
such that the set {(lx)":neN} is bounded, we find the following simple generalisation of
Allan's result:

Proposition 0. A unital locally convex *'-algebra A is a C'-algebra if and only if:

(a) A is sequentially complete;

(b) A is barreled;

(c) every element of A is bounded;

(d) A is symmetric;

(e) the family 38 of absolutely convex hermitian idempotent closed bounded subsets of A

has a maximal element Bo.

Proof. For any x = x* in A, we can find X > 0 such that the closed absolutely convex
hull of the set {(/bc)":ne^J} is contained in Bo. Thus Bo is absorbing, hence a barrel.
Thus Bo is a bounded neighbourhood of 0, so the Minkowski functional ||-|| of fl0 ' s a

norm on A defining the original topology, and (A,\\-\\) is a Banach "-algebra satisfying
the conditions of Theorem 2 of Allan [3]. •

Another interesting characterisation of C*-algebras is to be found in the Vidav-Palmer
Theorem (Bonsall and Duncan [4]), which states that a unital Banach algebra can be
given an involution which turns it into a C*-algebra if and only if A = H(A) + iH(A),
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where

H(A) = {he A: f(h)eRVfe A' s.L f(e) = \\f\\ = l}. (1)

Unlike that of Allan, this approach does not lend itself so well to generalisation to the
non-normed case. However Wood [12] has proved an analogue of the Vidav-Palmer
Theorem, which uses the same principle of numerical range to characterise a particular
class of locally convex "-algebras (which contains all C*-algebras), the so-called
complete semi-GB*-algebras with hypocontinuous involution. A semi-GB*-algebra with
continuous involution is a GJ3*-algebra in the sense of Dixon [6]. Thus the Vidav-
Palmer Theorem can be generalised to characterise Gfl*-algebras, if not C*-algebras.

In this paper we shall find a new characterisation of pre-C-algebras in terms of
properties of the positive elements A+ of the locally convex "-algebra A and the
continuous positive linear functionals P(A) on A. A+ will be defined to be the closed
algebraic cone, as used by Alcantara and Dubin [1] and other quantum field theorists;
we shall not need to use the spectral theory of Allan [2]. The main property that we
shall use (in the unital case) is an order-boundedness property concerning the
absorption of positive elements by the order interval [0,e]. We shall prove that a unital
locally convex "-algebra with identity e is a C*-algebra if and only if:

(a) A is sequentially complete;

(b) A is barreled;
(c) A + is a normal cone for A;
(d) for xeA there exists A>0 such that e-Xx*xeA+,

and a similar characterisation for non-unital algebras will also be found.
Thanks go to Dr. D. A. Dubin for some interesting ideas, and for advice with the

terminology and notation.

2. Introduction of notation

Let (A, t) be a locally convex "-algebra. A natural candidate for the cone of positive
elements of A is given by A+—the closed algebraic cone generated by the elements
{x*x:xeA}. It is clear that A+ ^Ah, the set of hermitian elements of A, and that Ah is a
real Hausdorff locally convex space with the induced topology.

If A' is the topological dual of (A, t), we define the positive functionals P(A) to be

= {feA':f(x*x)>OVxeA}. (2)

Applying the Cauchy-Schwarz inequality and the Hahn-Banach Theorem, we see that:

Lemma 1.

(a) f(x*y) = f(y*x) feP{A), x,yeA;
(b) \f(x*y)\2^f(x*x)f(y*y) feP(A), x,yeA;
(c) ifxeAh, then xeA+ifand only if f(x)^0 for all f eP(A).
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Corollary 2. P{A) = {0} if and only if A+= Ah.

If A is unital with identity e, then A+ is generating, every element of P(A) is
hermitian, and

\f(x)\2^f(e)f(x*x) feP(A), xeA, (3)

so that P(A) = {0} if and only if — eeA+ (cf. Ky Fan [8, Theorem 1]). In this paper we
shall at the least assume that P(A) separates points of A. This is equivalent to saying
that P(A) spans a dense linear subspace of the weak dual A'a of A, or that A+ is a
proper cone in A.

Lemma 3. If A+ is a proper cone in A, then xeAh if and only if f(x)eU for all
feP(A). Also x*x=0 implies x = 0.

It will also be necessary sometimes to assume that P(A) is generating. When (A,t) is
barreled, this is equivalent to saying that A+ is a normal cone in A (Schaefer [11,
V. 3.4]).

3. Infrabarreled spaces

As in the proof of Proposition 0, we shall need to include a property akin to
barreledness to characterise pre-C*-algebras. However, although every Frechet space
(and hence every C*-algebra) is barreled (Schaefer [11, II.7.1]), not every metrisable
locally convex space is. For example (Schaefer [11, p. 70, Ex. 14]), if we let X denote the
subspace of C[0,1] consisting of functions / which vanish on a neighbourhood
(depending on / ) of 0, then X with the uniform norm is a pre-C*-algebra which is not
barreled. Thus, when characterising pre-C*-algebras, barreledness is too strong a
property.

Let X be a locally convex space. A barrel in X is called bound-absorbing if it absorbs
every bounded subset of X, and we recall that X is called infrabarreled if every bound-
absorbing barrel is a neighbourhood of 0. Every bornological space (and hence every
pre-C*-algebra) is infrabarreled. The relationship between bounded sets and null
sequences found in 1.5.3 of Schaefer [11] enables us to simplify the criterion for
infrabarreledness to a form which we shall find more useful. We shall say that a barrel
is null-absorbing if it absorbs every null sequence.

Lemma 4. A barrel is null-absorbing if and only if it is bound-absorbing.

Proof. If U is a barrel in X which is not bound-absorbing, let B be a bounded set
not absorbed by U. Thus we can find a sequence (xn) in B such that xn$n2U for all
neN. Thus (n~lxn) is a null sequence. If n'^x^kU for all neN and some A>0, it
would follow that xnen2U for all n^A. This contradiction implies that (n~1xn) is not
absorbed by U, and so U is not null-absorbing. The converse follows since every null
sequence is bounded. •

Corollary 5. A locally convex space X is infrabarreled if and only if every null-
absorbing barrel is a neighbourhood ofO.
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4. Properties of pre-C*-algebras

In this section we shall list some properties which are common to all pre-C*-algebras.
In the next section we shall prove that these properties in fact characterise pre-C*-
algebras.

Let A be a pre-C*-algebra, and let B be its C*-algebra completion. If we define the
positive elements B+ and the positive linear functionals P(B) of B as above, then P(B) is
generating (Sakai [10, Proposition 1.17.1]), so that B+ is a normal cone in B, and:

Lemma 6.

(a) A + =B+ nA;
(b)ifFeP(B),thenF\AeP(A);

(c) if feP(A), we can find a unique element FeP(B) which extends f.

Corollary 7. P(A) is generating.

Finally, if A is unital with identity e, we obtain the following result:

Proposition 8. / / (xn) is a null sequence in A, we can find A>0 such that e—kx*xneA +

for all neN.

Proof. We can find K>0 such that ||x?xn|| = ||xn||2^X for all n, and hence e-K~1x*xn

belongs to B+ n A = A+ for all n. •

Thus, if A is a unital pre-C*-algebra, then A is a unital locally convex *-algebra such
that:

(A) A is infrabarreled;
(B) P(A) is generating;

(C) for any null sequence (xj in A, we can find X>0 such that e—kx*xneA+ for all

5. A characterisation of pre-C*-algebras

We shall now show that the properties (A),(B),(C) characterise the pre-C*-algebras
over all unital locally convex *-algebras. Initially, however, we begin by weakening
property (B). Let us therefore assume that (A,t) is a unital locally convex *-algebra
which satisfies properties (A), (C) and

(B') A+ is a proper cone in A.

We need to find a bounded neighbourhood of 0 in A whose Minkowski functional
defines a C*-algebra norm on A. To this end we define the set

V={xeA:e-x*xeA + }. (4)

Theorem 9. V is an idempotent barrel in A.
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Proof. For any xeA, considering the null sequence (xn) defined by xn = n~lx shows
us that V is absorbing. An elementary application of the Cauchy-Schwarz inequality
(Lassner [9]) and Lemma 1 shows that

V= f

and hence V is absolutely convex and closed. Thus V is a barrel.
For any ye A and feP(A) we can define fyeP(A) by fy(x) = f(y*xy) (xeA). If

x,yeV, then for any feP(A) we have f((xy)*(xy)) = fy(x*x)Zfy(e) = f(y*y)^f(e), so
that e—(xy)*(xy) e A+, and hence xyeV. Thus V is idempotent. •

Corollary 10. V is a neighbourhood ofO in A, and so the Minkowski functional \\x\\ =
inf{A>0: xekV) (xeA) of V is a continuous submultiplicative seminorm on A.

Proof. Condition (C) states precisely that V is null-absorbing. •

Proposition 11. If xeA and A^O, then f(x*x)^k2f(e) for all feP(A) if and only if
^\\x\\. Thus

\f(x)\^f(e)\\x\\ feP(A), xeA, (5)

and so ||-|| is a norm on A, and every element of P(A) is a continuous linear functional on
the normed space (A, \\ • ||).

Proof. f(x*x) g X2f(e) V/ g P(A)of{x*x) Z (A + e)2f(e) V/ e P(A), Ve > 0

(using Lemma 1). Thus f(x*x)^\\x\\2 f(e) for all feP(A) and xeA, and so (3) yields (5).
Since A+ is a proper cone, (5) implies that || • || is a norm. •

Proposition 12. ||x*x|| = ||x||2 for all xeA, so that (A,\\-1|) is a pre-C*-algebra.

Proof. For any feP(A) we see that

/((x*x)*(x*x))2 = /(x*xx*x)2 g /(x*x)/(x*xx*xx*x) ^ ||x||2/(e)/x.x(x*x)

^ IMr/(«)/*.,(e) = \\x\\*f(e)f(x*xx*x).

Thus /((x*x)*(x*x))g||x||4/(e) for all feP(A), and so
/(x*x)^||x*x||/(e) for all feP(A), so that ||x||2g||x*x|

c*x||g||x||2. But (5) implies that

•
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Thus, if (A, t) is a unital locally convex "-algebra satisfying (A), (B'), (C), then we can
define a pre-C*-algebra topology T on A which is coarser than t. Replacing (B') by (B)
enables us to sharpen the result.

Proposition 13. If(A,t) satisfies properties (A),(B),(C), then T=t, so that (A,t) is a
pre-C*-algebra.

Proof. Since t^T, every element of the norm dual A~ of (A, T) belongs to A'. But
P(A) is generating, and every element of P(A) belongs to A~. Thus A~ = A', and so
T(A,A')^t^T^a(A,A'). Since V is the closed unit ball of (A, T), it is T-bounded, and
hence t-bounded (Schaefer [11, IV.3.3]). Thus T^t, and so T=t. •

Hence, summarising the results of the last two sections, we see that:

Theorem 14. / / A is a unital locally convex *-algebra, then A is a pre-C*-algebra if
and only if it satisfies properties (A),(B),(C).

The order-boundedness property (C) is fairly complicated. We might like to simplify it
by replacing (C) by the property

(C) for any xeA, we can find A>0 such that e — 2.x*xeA+.

Examination of the proof of Theorem 9 shows that V is still an idempotent barrel, but
is no longer necessarily null-absorbing. Thus, if we wish to replace property (C) by
property (C), we need to strengthen property (A).

Theorem 15. / / {A, t) is a unital locally convex *-algebra such that:

(A') A is barreled;
(B') A + is a proper cone in A;

(C) for any xeA we can find A>0 such that e — Xx*xeA+,

then we can find a pre-C*-algebra topology T on A which is coarser than t.

Corollary 16. A unital locally convex *-algebra (A,t) is a barreled pre-C*-algebra if
and only if it satisfies properties (A'),(B),(C).

6. Algebras without identity

It would be useful to generalise the results of Section 5 to cover the case of algebras
without identity. Evidently, property (C) would have to be changed, as it is explicitly
dependent on an identity element e.

If A is a locally convex *-algebra without identity, we can form the unital algebra
Ae = A@Ce in the usual way (Allan [2]), giving it the product topology. Our first
important observation is that the property of infrabarreledness transfers from A to Ae.
The proof is straightforward.

Proposition 17. If A is infrabarreled, so is Ae.
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In order to relate P(A) to P(Ae), we recall (Hewitt and Ross [7]) that an element / of
P(A) is called extendable if it is hermitian and there exists a ̂  0 such that

\f(x)\2^af{x*x) xeA. (6)

If / e P(A) is extendable we define

| (7)

and notice that / = 0 if and only if N(f) = 0. It is well-known that it feP(A), then there
exists F e P(Ae) which extends / if and only if / is extendable. In this case we must have

Let us now assume that every element of P(A) is extendable.

Proposition 18. / / P(A) is generating, so is P(Ae).

Proof. If FeA'e, then F\AeA', so we can find g in the linear span of P(A) which
equals F\A. Thus we can find G in the linear span of P(Ae) such that F l ^ ^ G ^ . Thus
F — GeA'e must be of the form (F—G)(x + ke) = kfi (xeA,ke£.) for some fieC. For any
a^O the element Gx of A'e defined by Ga(x + Ae) = od belongs to P(Ae). Thus F-G, and
hence F, belongs to the linear span of P(Ae). •

If we introduce the following generalisations of properties (C) and (C):

(GC) for any null sequence (xj in A we can find A>0 such that Xf(x*xn)^N(f) for
all n e N and feP(A);

(GC) for any xeA we can find A>0 such that A/(x*x) = N(/) for all feP(A),

then simple calculations now show that:

Proposition 19. / / A satisfies (GC), then Ae satisfies (C). / / A satisfies (GC), then Ae

satisfies (C).

Consequently, the results of Section 5 may be appealed to.

Theorem 20. / / (A, t) is a locally convex *-algebra such that every element of P(A) is
extendable, then A is a pre-C*-algebra if and only if it satisfies properties (A),(B),(GC),
and A is a barreled pre-C*-algebra if and only if it satisfies properties (A'),(B),(GC)-

Finally, let us consider under what circumstances every element of P(A) is extendable.
Let us suppose that the algebra A possesses an approximate identity (ej. We say that
(ex) is C*-bounded if the net (e*ea) is bounded. If A is a pre-C*-algebra, then bounded
and C*-bounded approximate identities are the same.

Proposition 21. / / A possesses a C*-bounded approximate identity, or if A is barreled
and possesses a bounded approximate identity, then every element of P(A) is extendable.

Proof. Let (ex) be the approximate identity for A. Since f{e*x) = f(x*ea) for all
feP(A), xeA and all a, it follows that every element of P(A) is hermitian. For any
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/ e P(A), the net (f(e* ea)) is bounded. This is obvious if ( e j is C*-bounded. If A is
barreled and ( e j is bounded, it follows from the fact that the map xi->/(x*x)1/2 is a
continuous seminorm on A (Lassner [9]). Thus we can always find a^O such that
f(e*ea)^a for all a, and so \f(e*x)\2^f(e*eCL)f(x*x)^af(x*x) for all xeA and all a.
Taking limits, we deduce that / is extendable. •

If A is a C*-algebra, then A possesses a bounded approximate identity (Dixmier [5],
1.7.2). Thus we have the following results.

Theorem 22. / / A is a locally convex *'-algebra such that:

(a) A is infrabarreled;

(b) P(A) is generating;

(c) A has a C*-bounded approximate identity;

(d) for every null sequence (xn) in A we can find X>0 such that Xf(x*xn)^N(f)for all
feP(A) andneM.

then A is a pre-C*-algebra.

Theorem 23. A locally convex *'-algebra A is a C*-algebra if and only if:

(a) A is sequentially complete;

(b) A is barreled;

(c) A+ is a normal cone in A;

(d) A has a bounded approximate identity;

(e) for any xeA we can find A>0 such that Xf(x*x)^N{f) for all feP(A).

The version of Theorem 23 for unital algebras is as follows:

Theorem 24. A unital locally convex *-algebra A is a C*'-algebra if and only if:

(a) A is sequentially complete;

(b) A is barreled;

(c) A+ is a normal cone in A;

(d) for any xeA we can find A > 0 such that e — kx*x e A+.

REFERENCES

1. J. ALCANTARA and D. A. DUBIN, /*-algebras and their applications, Publ. RIMS Kyoto Univ.
17 (1981), 179-199.

2. G. R. ALLAN, A spectral theory for locally convex algebras, Proc. London Math. Soc. (3) 15
(1965), 399-421.

3. G. R. ALLAN, A note on B*-algebras, Math. Proc. Cambridge Philos. Soc. 61 (1965), 29-32.

4. F. F. BONSALL and J. DUNCAN, Numerical ranges of operators on normed spaces and of elements
of normed algebras (L.M.S. Lecture Note Series 2, Cambridge University Press, 1971).

5. J. DIXMIER, C*-algebras (North-Holland, Amsterdam, 1982).

https://doi.org/10.1017/S0013091500026845 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500026845


A CHARACTERISATION OF C-ALGEBRAS 453

6. P. G. DIXON, Generalised B*-algebras, Proc. London Math. Soc. (3) 21 (1970), 693-715.

7. E. HEWITT and K. Ross, Abstract Harmonic Analysis (Springer-Verlag, Berlin, 1963).

8. KY FAN, On infinite systems of linear inequalities, J. Math. Anal. Appl. 21 (1968), 475-478.

9. G. LASSNER, Topological algebras of operators, Rep. Math. Phys. 3 (1972), 279-293.

10. S. SAKAI, C*-algebras and W*-algebras (Springer-Verlag, Berlin, 1971).

11. H. H. SCHAEFER, Topological Vector Spaces (Springer-Verlag, Berlin, 1971).

12. A. W. WOOD, Numerical range and generalised B*-algebras, Proc. London Math. Soc. (3) 34
(1977), 245-268.

SIDNEY SUSSEX COLLEGE

CAMBRIDGE

CB3 3HU

https://doi.org/10.1017/S0013091500026845 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500026845

