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Abstract

In this paper we study the size of the largest clique ω(G(n, α)) in a random graph G(n, α)

on n vertices which has power-law degree distribution with exponent α. We show that,
for ‘flat’degree sequences with α > 2, with high probability, the largest clique in G(n, α)

is of a constant size, while, for the heavy tail distribution, when 0 < α < 2, ω(G(n, α))

grows as a power of n. Moreover, we show that a natural simple algorithm with high
probability finds in G(n, α) a large clique of size (1 − o(1))ω(G(n, α)) in polynomial
time.
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1. Introduction

Random graphs with finite density and power-law degree sequence have attracted much
attention in the last few years (see, e.g. [8] and the references therein). Several models for
such graphs have been proposed; in this paper we concentrate on a Poissonian model G(n, α)

in which the number of vertices of degree at least i decreases roughly as ni−α (for a precise
definition of the model, see Section 2).

We show (Theorem 1) that there is a major difference in the size of the largest clique
ω(G(n, α)) between the cases α < 2 and α > 2 with an intermediate result for α = 2. In the
‘light tail case’, when α > 2 (this is when the asymptotic degree distribution has a finite second
moment), the size of the largest clique is either two or three, i.e. it is almost the same as in the
standard binomial model of the random graph G(n, p) in which the expected average degree
is a constant. On the other hand, in the ‘heavy tail case’, when 0 < α < 2, ω(G(n, α)) grows
roughly as n1−α/2. In the critical case when α = 2 we have ω(G(n, α)) = Op(1), but the
probability that G(n, α) ≥ k is bounded away from 0 for every k. We also show (Corollary 1)
that in each of the above cases there exists a simple algorithm which, with high probability
(w.h.p.), finds in G(n, α) a clique of size (1 − o(1))ω(G(n, α)). This is quite different from
the binomial case, where it is widely believed that finding a large clique is hard (see, e.g. [10]).
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Large cliques in a power-law random graph 1125

Similar but less precise results have been obtained by Bainconi and Marsili [1], [2] for a
slightly different model (see Subsection 6.6). The existence of large cliques in random graphs
with a heavy tail degree sequence has also been observed by van der Hofstad et al. [16].

2. The model and the results

The model we study is a modification of the conditionally Poissonian random graph studied
in [14] (the significance of this modification will be studied in Subsection 6.5; see also [7] for
a related model). For α > 1, it is also an example of the ‘rank 1 case’ of an inhomogeneous
random graph studied in [5, Section 16.4].

In order to define our model, consider a set of n vertices (labelled 1, . . . , n for convenience).
We first assign a capacity or weight Wi to each vertex i. For definiteness and simplicity,
we assume that these are independent and identically distributed random variables with a
distribution with a power-law tail

P(W > x) = ax−α, x ≥ x0, (1)

for some constants a > 0 and α > 0, and some x0 > 0 (here and below, we write W for
any of the Wi when the index does not matter). Thus, for example, W could have a Pareto
distribution, when x0 = a1/α and P(W > x) = 1 for x ≤ x0, but the distribution could be
arbitrarily modified for small x. We denote the largest weight by Wmax = maxi Wi . Observe
that (1) implies that

P(Wmax > tn1/α) ≤ n P(W > tn1/α) = O(t−α). (2)

Note also that E Wβ < ∞ if and only if α > β; in particular, for the ‘heavy tail case’ when
α ≤ 2, we have E W 2 = ∞.

Now, conditionally given the weights {Wi}n1, we join each pair {i, j} of vertices by Eij

parallel edges, where the numbers Eij are independent Poisson-distributed random numbers
with means

E Eij = λij = b
WiWj

n
, (3)

where b > 0 is another constant. We denote the resulting random (multi)graph by Ĝ(n, α).
For our purposes, parallel edges can be merged into a single edge, so we may alternatively
define G(n, α) as the random simple graph where vertices i and j are joined by an edge with
probability

pij = 1 − exp(−λij ), (4)

independently for all pairs (i, j) with 1 ≤ i < j ≤ n.
Then our main result can be stated as follows. Let us recall that an event holds w.h.p. if it

holds with probability tending to 1 as n → ∞. We also use op and Op in the standard sense
(see, e.g. [12, pp. 10–11]).

Theorem 1. (i) If 0 < α < 2 then

ω(G(n, α)) = (c + op(1))n1−α/2(log n)−α/2,

where

c = abα/2
(

1 − α

2

)−α/2

. (5)
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(ii) If α = 2 then ω(G(n, α)) = Op(1); that is, for every ε > 0, there exists a constant Cε such
that, for every n, P(ω(G(n, α)) > Cε) ≤ ε. However, there is no fixed finite bound C such that
ω(G(n, α)) ≤ C w.h.p.

(iii) If α > 2 then ω(G(n, α)) ∈ {2, 3} w.h.p. Moreover, the probabilities of each of the events
ω(G(n, α)) = 2 and ω(G(n, α)) = 3 tend to positive limits, given by (24) below.

A question which naturally emerges when studying the size of the largest clique in a class of
graphs is whether we can find a large clique in such graphs in a polynomial time. By Theorem 1,
w.h.p., we can find ω(G(n, α)) in a polynomial time for α > 2, and, with some extra effort,
the same can be accomplished for α = 2 (see Corollary 1). Thus, we concentrate on the case
in which α < 2, when the large clique is of polynomial size. Let us suppose that we know the
vertex weights Wi defined in Section 2 and, for simplicity, that these are distinct (otherwise
we resolve ties randomly; we omit the details). Since vertices with larger weights tend to have
higher degrees, they are more likely to be in a large clique, so it is natural to try to find a large
clique by looking at the vertices with largest weights. One simple way is the greedy algorithm
which checks the vertices in order of decreasing weights and selects every vertex that is joined
to every other vertex already selected. This evidently yields a clique, which we call the greedy
clique and denote by Kgr. Thus,

Kgr = {i : i ∼ j for all j with Wj > Wi and j ∈ Kgr}.
A simplified algorithm is to select every vertex that is joined to every vertex with higher

weight, regardless of whether these are already selected or not. This gives the quasi top clique
studied in [13], which we denote by Kqt. Thus,

Kqt = {i : i ∼ j for all j with Wj > Wi}.
Obviously, Kqt ⊆ Kgr. The difference between the two cliques is that if we, while checking
vertices in order of decreasing weights, reject a vertex, then that vertex is ignored for future
tests when constructing Kgr, but not for Kqt. A more drastic approach is to stop at the first
failure; we define the full top clique, Kft , as the result, i.e.

Kft = {i : j ∼ k for all distinct j, k with Wj, Wk ≥ Wi}.
Thus, Kft is the largest clique consisting of all vertices with weights in some interval [w, ∞).
Clearly, Kft ⊆ Kqt ⊆ Kgr. Finally, by Kmax we denote the largest clique (chosen at random,
say, if there is a tie). Thus,

|Kft| ≤ |Kqt| ≤ |Kgr| ≤ |Kmax| = ω(G(n, α)). (6)

The following theorem shows that the last two inequalities in (6) are asymptotic equalities, but
not the first one. Here, we use ‘

p−→’ for convergence in probability, and all unspecified limits
are as n → ∞.

Theorem 2. For G(n, α) with 0 < α < 2, both Kgr and Kqt have size (1−op(1))ω(G(n, α));
in other words, |Kgr|

|Kmax|
p−→ 1 and

|Kqt|
|Kmax|

p−→ 1.

On the other hand, |Kft|
|Kmax|

p−→ 2−α/2.
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Thus, w.h.p., Kgr and Kqt almost attain the maximum size of a clique, while Kft falls short
by a constant factor. As a simple corollary of the above result, we obtain the following.

Corollary 1. For every α > 0, there exists an algorithm which, w.h.p., finds in G(n, α) a clique
of size (1 − o(1))ω(G(n, α)) in a polynomial time.

3. The proof for the case α < 2 (no second moment)

We begin with a simple lemma giving an upper bound for the clique number of the Erdős–
Rényi random graph G(n, p) (for much more precise results, see, e.g. [12]).

Lemma 1. For any p = p(n), w.h.p.,

ω(G(n, p)) ≤ 2 log n

1 − p
.

Proof. Denote by Xk the number of cliques of size k in G(n, p). For the expected number
of such cliques, we have

E Xk =
(

n

k

)
p(k

2) ≤
(

ne

k
p(k−1)/2

)k

.

If we set k ≥ 	2 log(n)/(1 − p)
 then

p(k−1)/2 = (1 − (1 − p))(k−1)/2 ≤ e−(1−p)(k−1)/2 ≤ e

n
.

Consequently, we arrive at

P(ω(G(n, p)) ≥ k) = P(Xk ≥ 1) ≤ E Xk ≤
(

e2

k

)k

→ 0,

since k ≥ 	2 log n
 → ∞.

Proofs of Theorems 1(i) and 2. For s > 0, let us partition the vertex set V = {1, . . . , n} of
Gn = G(n, α) into

V −
s = {i : Wi ≤ s

√
n log n} and V +

s = {i : Wi > s
√

n log n};
we may think of elements of V −

s and V +
s as ‘light’ and ‘heavy’ vertices, respectively. By (1),

E |V +
s | = n P(W > s

√
n log n) = as−αn1−α/2 log−α/2 n.

Moreover, |V +
s | ∼ Bin(n, P(W > s

√
n log n)), and Chebyshev’s inequality (or the sharper

Chernoff bounds [12, Section 2.1]) implies that, w.h.p.,

|V +
s | = (1 + o(1)) E |V +

s | = (1 + o(1))as−αn1−α/2 log−α/2 n. (7)

We now condition on the sequence of weights {Wk}. We will repeatedly use the fact that if
i and j are vertices with weights Wi = x

√
n log n and Wj = y

√
n log n, then, by (3) and (4),

λij = bxy log n and

pij = 1 − e−λij = 1 − e−bxy log n = 1 − n−bxy. (8)
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In particular,

pij ≤ 1 − n−bs2
if i, j ∈ V −

s , (9)

pij > 1 − n−bs2
if i, j ∈ V +

s . (10)

Consider, still conditioning on {Wk}, for an s that will be chosen later, the induced subgraph
Gn[V −

s ] of G(n, α) with vertex set V −
s . This graph has at most n vertices and, by (9), all edge

probabilities are at most 1 − n−bs2
, so we may regard Gn[V −

s ] as a subgraph of G(n, p) with
p = 1 − n−bs2

. Hence, Lemma 1 implies that, w.h.p.,

ω(Gn[V −
s ]) ≤ 2 log n

n−bs2 = 2nbs2
log n. (11)

If K is any clique in G(n, α) then K ∩ V −
s is a clique in Gn[V −

s ], and, thus, |K ∩ V −
s | ≤

ω(Gn[V −
s ]); furthermore, trivially, |K ∩ V +

s | ≤ |V +
s |. Hence, |K| ≤ ω(Gn[V −

s ]) + |V +
s |,

and, thus,
ω(G(n, α)) ≤ ω(Gn[V −

s ]) + |V +
s |. (12)

We choose, for a given ε > 0, s = (1 − ε)b−1/2(1 − α/2)1/2 so that the exponents of n in (7)
and (11) almost match; we then obtain, from (12), (11), and (7), that, w.h.p.,

ω(G(n, α)) ≤ (1 + o(1))as−αn1−α/2 log−α/2 n

= (1 + o(1))(1 − ε)−αcn1−α/2 log−α/2 n, (13)

with c defined as in (5).
To obtain a matching lower bound, we consider the quasi top clique Kqt. Again, let s be

fixed and condition on the weights {Wk}. If i, j ∈ V +
s then, by (10), the probability that i is

not joined to j is less than n−bs2
. Hence, conditioned on the weights {Wk}, the probability that

a given vertex i ∈ V +
s is not joined to every other j ∈ V +

s is at most |V +
s |n−bs2

, which, by (7),
w.h.p., is at most 2as−αn1−α/2−bs2

log−α/2 n. We now choose s = (1 + ε)b−1/2(1 − α/2)1/2

with ε > 0. Then, for some constant C < ∞, w.h.p.,

P(i /∈ Kqt | {Wk}) ≤ Cn−2ε(1−α/2),

and, thus,
E(|V +

s \ Kqt| | {Wk}) ≤ Cn−2ε(1−α/2)|V +
s |.

Hence, by Markov’s inequality, w.h.p.,

|V +
s \ Kqt| ≤ Cn−ε(1−α/2)|V +

s |.
Thus, using (7), w.h.p.,

ω(G(n, α)) ≥ |Kgr|
≥ |Kqt|
≥ |V +

s | − |V +
s \ Kqt|

≥ (1 − o(1))|V +
s |

≥ (1 − o(1))as−αn1−α/2 log−α/2 n

= (1 − o(1))(1 + ε)−αcn1−α/2 log−α/2 n. (14)

Since ε > 0 is arbitrary, (13) and (14) imply Theorem 1(i) and the first part of Theorem 2.
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In order to complete the proof of Theorem 2, it remains to consider Kft . Define Ḡn as the
complement of G(n, α). Then, using (10) and conditioned on {Wi}, we infer that the expected
number of edges of Ḡn with both endpoints in V +

s is at most n−bs2 |V +
s |2. If we choose

s = b−1/2(2 − α)1/2 then (7) implies that this is, w.h.p., o(1); hence, w.h.p., V +
s contains no

edges of Ḡn, i.e. Kft ⊇ V +
s .

On the other hand, let 0 < ε < 1
2 and define, still with s = b−1/2(2 − α)1/2,

V ′ = V +
(1−2ε)s ∩ V −

(1−ε)s .

Then, conditioned on {Wi}, the probability of having no edges of Ḡn in V ′ is, by (9),

∏
i,j∈V ′, i<j

pij ≤ (1 − n−b(1−ε)2s2
)(

|V ′|
2 ) ≤ exp

(
−1

2
n−(1−ε)2(2−α)(|V ′| − 1)2

)
. (15)

By (7), w.h.p.,

|V ′| − 1 = |V +
(1−2ε)s | − |V +

(1−ε)s | − 1

= (1 + o(1))a((1 − 2ε)−α − (1 − ε)−α)s−αn1−α/2 log−α/2 n,

and it follows from (15) that

P(Kft ⊇ V +
(1−2ε)s) ≤

∏
i,j∈V ′, i<j

pij → 0.

Hence, w.h.p., Kft ⊂ V +
(1−2ε)s .

We have shown that, for any ε ∈ (0, 1
2 ), w.h.p., V +

s ⊆ Kft ⊂ V +
(1−2ε)s , and it follows, by (5)

and (7) (by letting ε → 0), that, w.h.p.,

|Kft| = (1 + o(1))|V +
s |

= (1 + o(1))as−αn1−α/2 log−α/2 n

= (1 + o(1))2−α/2cn1−α/2 log−α/2 n

= (1 + o(1))2−α/2ω(G(n, α)),

where the last equality follows from Theorem 1.

4. The case α = 2 (still no second moment)

Proofs of Theorem 1(ii) and Corollary 1. Given the weights Wi , the probability that four
vertices i, j, k, and l form a clique is, by (3) and (4),

pijpikpilpjkpjlpkl ≤ λijλikλilλjkλjlλkl = b6
W 3

i W 3
j W 3

k W 3
l

n6 .

Thus, if Xm is the number of cliques of size m in G(n, α) then the conditional expectation of
X4 is

E(X4 | {Wi}n1) ≤ b6n−6
∑

i<j<k<l

W 3
i W 3

j W 3
k W 3

l ≤ b6
(

n−3/2
∑

i

W 3
i

)4

. (16)
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To show that the number of such cliques of size 4 is bounded in probability, we shall calculate
a truncated expectation of

∑
i W 3

i . Using (1), for any constant A > 0, we obtain

E

(∑
i

W 3
i ; Wmax ≤ An1/2

)
≤ E

(∑
i

min(Wi, An1/2)3
)

= n E min(W, An1/2)3

= n

∫ An1/2

0
3x2 P(W > x) dx

= O(nAn1/2), (17)

and, thus, using (2) and Markov’s inequality, for every t > 0 and some constant C independent
of A, t , and n, we infer that

P

(
n−3/2

∑
i

W 3
i > t

)
≤ t−1 E

(
n−3/2

∑
i

W 3
i ; Wmax ≤ An1/2

)
+ P(Wmax > An1/2)

≤ CAt−1 + CA−2. (18)

Given t > 0, we choose A = t1/3 and find that P(n−3/2 ∑
i W 3

i > t) = O(t−2/3). Hence,
n−3/2 ∑

i W 3
i = Op(1), and it follows, by (16) and Markov’s inequality, that X4 = Op(1).

Finally, we observe that, for any m ≥ 4,

P(ω(G(n, α)) ≥ m) ≤ P

(
X4 ≥

(
m

4

))
,

which can thus be made arbitrarily small (uniformly in n) by choosing large enough m. Hence,
ω(G(n, α)) = Op(1).

To complete the proof of Theorem 1(ii), let us note that, for any fixed m ≤ n, the probability
that there are at least m vertices with weights Wi > n1/2 is larger than c1 > 0 for some absolute
constant c1 > 0, and conditioned on this event, the probability that the first m of these vertices
form a clique is larger than c2 for some absolute constants c1, c2 not depending on n.

Finally, we remark that all cliques of size 4 can clearly be found in time O(n4). The number
of such cliques is, w.h.p., at most log log n, say, so there exists an algorithm which, w.h.p., finds
the largest clique in a polynomial time (for example, by crudely checking all sets of cliques of
size 4).

5. The case α > 2 (finite second moment)

Proof of Theorem 1(iii). Choose ν such that 1
2 > ν > 1/α. Then (2) (or (1) directly) implies

that, w.h.p., Wmax ≤ nν . Furthermore, in analogy to (17) and (18),

E

(∑
i

W 3
i ; Wmax ≤ nν

)
≤ E

(∑
i

min(Wi, n
ν)3

)

= n

∫ nν

0
3x2 P(W > x) dx

= O(nnν)

= o(n3/2),
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and, thus,

P

(
n−3/2

∑
i

W 3
i > t

)
≤ t−1 E

(
n−3/2

∑
i

W 3
i ; Wmax ≤ nν

)
+ P(Wmax > nν)

= o(1). (19)

Hence, n−3/2 ∑
i W 3

i

p−→0, and it follows from (16) that

P(X4 ≥ 1 | {Wi}n1) ≤ E(X4 | {Wi}n1)
p−→ 0.

Dominated convergence yields

P(ω(G(n, α)) ≥ 4) = P(X4 ≥ 1) = E P(X4 ≥ 1 | {Wi}n1) → 0.

Consequently, w.h.p., ω(G(n, α)) ≤ 3.
Moreover, for the number, X3, of cliques of size 3, we have

E X3 ≤ E
∑

i<j<k

λij λikλjk = E

(
b3n−3

∑
i<j<k

W 2
i W 2

j W 2
k

)
≤ 1

6
b3(E W 2)3. (20)

Note that E W 2 < ∞ by (1) and the assumption that α > 2. Hence, the number of K3 in
G(n, α) is Op(1). To obtain the limit distribution, it is convenient to truncate the distribution,
as we have done in the previous section. Let A be a fixed large constant, let XA

3 be the number
of K3 in G(n, α) such that all three vertices have weights at most A, and let XA∗

3 be the number
of the remaining triangles. Arguing as in (20), we easily see that

E XA
3 ≤ 1

6b3(E(W 2; W ≤ A))3, (21)

E XA∗
3 ≤ b3(E(W 2))2 E(W 2; W > A). (22)

Moreover, if Wi, Wj ≤ A then λij = O(1/n), and, thus, pij ∼ λij . It is easily seen that (21)
can be sharpened to

E XA
3 → µA = 1

6b3(E(W 2; W ≤ A))3.

Furthermore, we may calculate fractional moments E(XA
3 )m by the same method, and it follows

easily by a standard argument (see, e.g. [12, Theorem 3.19] for G(n, p)) that E(XA
3 )m → µm

A

for every m ≥ 1. Thus, by the method of moments [12, Corollary 6.8],

XA
3

d−→ Po(µA) (23)

as n → ∞ for every fixed A, where ‘
d−→’ denotes convergence in distribution.

To conclude the proof, observe that the right-hand side of (22) can be made arbitrarily small
by choosing A large enough, and, hence,

lim
A→∞ lim sup

n→∞
P(XA∗

3 �= 0) = 0,

and that µA → µ = 1
6 (b E(W 2))3 as A → ∞. It follows by a standard argument (see [3,

Theorem 4.2]) that we can let A → ∞ in (23) and obtain

X3
d−→ Po(µ).
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In particular, P(X3 = 0) → e−µ, which yields

P(ω(G(n, α)) ≤ 2) → e−µ = e−(b E(W 2))3/6,

P(ω(G(n, α)) = 3) → 1 − e−µ = 1 − e−(b E(W 2))3/6. (24)

Finally, note that G(n, α) contains, w.h.p., cliques K2, i.e. edges, so, clearly, w.h.p.,

ω(G(n, α)) ≥ 2.

6. Final remarks

In this section we make some comments on other models of power-law random graphs as
well as some remarks on possible variants of our results. We omit detailed proofs.

Let us remark first that, for convenience and to facilitate comparisons with other papers, in
the definition of G(n, α) we used two scale parameters, a and b, above, besides the important
exponent α. By rescaling Wi �→ tWi for some fixed t > 0 we obtain the same G(n, α) for the
parameters atα and bt−2; hence, only the combination abα/2 matters, and we could fix either
a or b as 1 without loss of generality.

6.1. Algorithms based on degrees

In order to define Kgr, Kqt, and Kft , we ordered the vertices of G(n, α) by their weights
and examined them one by one. However, we could also order them by their degrees (taking
the degrees of either the multigraph Ĝ(n, α) or the corresponding simple graph), and define
K̃gr, K̃qt, and K̃ft accordingly. It turns out that Theorem 2 remains true if we replace Kgr,
Kqt, and Kft , by K̃gr, K̃qt, and K̃ft , respectively. The reason is that, for the vertices of large
weight that we are interested in, the degrees are, w.h.p., all almost proportional to the weights,
and, thus, the two orders do not differ very much. This enables us to find an almost maximal
clique in polynomial time, even without knowing the weights.

6.2. More general weight distributions

Observe that Theorems 1 and 2 remain true (and can be shown by basically the same
argument), provided that only the power law holds asymptotically for large weights, i.e. (1)
may be relaxed to

P(W > x) ∼ ax−α as x → ∞.

6.3. Deterministic weights

Instead of choosing weights independently according to the distribution W we may as well
take a suitable deterministic sequence Wi of weights (as in [7]), for example,

Wi = a1/α n1/α

i1/α
, i = 1, . . . , n. (25)

All our results remain true in this setting also; in fact, the proofs are slightly simpler for this
model. A particularly interesting special case for this model (see [5, Section 16.2] and [15]) is
when α = 2, where (3) and (25) combine to yield

λij = ab√
ij

.
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6.4. Poisson number of vertices

We may also let the number of vertices be random with a Poisson Po(n) distribution (as in,
e.g. [13]). Then the set of weights {Wi}n1 can be regarded as a Poisson process on [0, ∞) with
intensity measure n dµ, where µ is the distribution of the random variable W in (1). Note that
now n can be any positive real number.

6.5. Different normalization

A slightly different power-law random graph model emerges when instead of (3) we define
the intensities λij by

λij = WiWj∑n
k=1 Wk

(see, e.g. [7] and [14]). Let us call this model G̃(n, α). In the case α > 1, when the mean
E W < ∞, the results for G̃(n, α) and G(n, α) are not much different. In fact, by the law of
large numbers,

∑n
1 Wk/n → E W almost surely, so we may, for any ε > 0, couple G̃(n, α)

constructed by this model with G(n, α)± constructed as above, using (3) with b = 1/(E W ∓ε),
such that, w.h.p., G(n, α)− ⊆ G̃(n, α) ⊆ G(n, α)+, and it follows that we have the same
asymptotic results as in our theorems if we let b = 1/ E W .

On the other hand,

n∑
1

Wk = (a + op(1))n log n for α = 1

and
n∑
1

Wk

n1/α

d−→ Y for 0 < α < 1,

where Y is a stable distribution with exponent α (see, e.g. [9, Section XVII.5]). It follows,
arguing as in Section 3 but using the random cutoffs (1 ± ε)( 1

2

∑n
1 Wk log n)1/2, that the size

of the largest clique is always close to
√

n for α ≤ 1; more precisely, for α = 1 (when we can
use the equivalent deterministic cutoffs (1 ± ε)

√
an/2 log n), the largest clique in G̃(n, α) has

(1 + op(1))
√

2an

log n

vertices, while, for 0 < α < 1,

ω(G̃(n, α))√
n log−α/2 n

d−→ Z = a2α/2Y−α/2,

where Z is an absolutely continuous random variable whose distribution has the entire positive
real axis as support. (The square Z2 has, apart from a scale factor, a Mittag-Leffler distribution
with parameter α; see [4, Section 8.0.5].) Thus, for α < 1, ω(G̃(n, α)) is not sharply
concentrated around its median; this is caused by the fact that the normalizing factor

∑
i Wi is

determined by its first terms which, clearly, are not sharply concentrated around their medians as
well. Interestingly enough, since in the proof of Theorem 2 we dealt mostly with the probability
space where we conditioned on Wi , the analogue of Theorem 2 holds for this model as well.
Thus, for instance, despite the fact that neither the largest clique nor the full top clique are
sharply concentrated in this model, we can show the sharp concentration result for the ratio of
these two variables.
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6.6. The model min(λij , 1)

For small λij , (4) implies that pij ≈ λij . In most works on inhomogeneous random graphs, it
does not matter whether we use (4) or, for example, pij = min(λij , 1) or pij = λij /(1+λij ) (as
in [6]); see [5]. For the cliques studied here, however, what matters is mainly the probabilities
pij that are close to 1, and the precise size of 1 −pij for them is important; thus, it is important
that we use (4) (cf. [1] and [2], where a cutoff is introduced). For instance, a common version
(see, e.g. [5]) of G(n, α) replaces (4) by

pij = min(λij , 1). (26)

This makes very little difference when λij is small, which is the case for most i and j , and,
for many asymptotical properties, the two versions are equivalent (see, again, [5]). In the
case

∑
i W 3

i = op(n
3/2), which in our case with Wi governed by (1) holds for α > 2 as a

consequence of (19), a strong general form of asymptotic equivalence is proved in [11]; in
the case α = 2, when

∑
i W 3

i = op(n
3/2), by (17), a somewhat weaker form of equivalence

(known as contiguity) holds provided that, say, maxij λij ≤ 0.9 also; see again [11]. In our
case we do not need these general equivalence results; the proofs above for the α ≥ 2 cases
hold for this model too, so Theorem 1(ii) and (iii) hold without changes.

If α < 2, however, the results are different. In fact, (26) implies that all vertices with
Wi ≥ b−1/2n1/2 are joined to each other, and, thus, form a clique; conversely, if we now define
V − = {i : Wi ≤ (b + ε)−1/2n1/2} then pij = λij ≤ b/(b + ε) for i, j ∈ V −, and, thus,
ω(G(n, α)[V −]) = O(log n) w.h.p. by Lemma 1. Consequently, arguing as in Section 3,

ω(G(n, α)) = (1 + op(1))n P(W > b−1/2n1/2) = (1 + op(1))abα/2n1−α/2,

so the logarithmic factor in Theorem 1(i) disappears.

6.7. The model λij /(1 + λij )

Another version of G(n, α) replaces (4) by

pij = λij

1 + λij

.

This version has the interesting feature that, conditioned on the vertex degrees, the distribution
is uniform over all graphs with that degree sequence; see [6].

In this version, for large λij , 1−pij = 1/(1+λij ) is considerably larger than for (4) (or (26)),
and, as a consequence, the clique number is smaller. For α ≥ 2, stochastic domination (or a
repetition of the proofs above) shows that Theorem 1(ii) and (iii) hold without changes.

For α < 2, there is a significant difference. Arguing as in Section 3, we find that, for some
constants c and C depending on a, b, and α, w.h.p.,

cn(2−α)/(2+α) ≤ ω(G(n, α)) ≤ Cn(2−α)/(2+α)(log n)α/(2+α).

Although this only determines the clique number up to a logarithmic factor, note that the expo-
nent of n is (2 − α)/(2 + α), which is strictly less than the exponent (2 − α)/2 in Theorem 1.

6.8. Preferential attachment

Finally, let us observe that not all power-law random graph models contain large cliques.
Indeed, one of the most popular types of model of such graphs is the preferential attachment
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graph in which the graph grows by acquiring new vertices, where each new vertex v is joined
to some number kv of ‘old’ vertices according to some random rule (which usually depends on
the structure of the graph we have constructed so far); see, e.g. [8]. Clearly, such a graph on n

vertices cannot have cliques larger than Xn = maxv≤n kv +1, and since, for most of the models,
Xn is bounded from above by an absolute constant or grows very slowly with n, typically the
size of the largest clique in preferential attachment random graphs is small.
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