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Abstract

We establish a measure of algebraic independence for values of E-functions which is more nearly
effectively computable than the previous one. When the system of equations meets either of two
criteria, then the measure becomes entirely effectively computable.

1980 Mathematics subject classification (Amer, Math. Soc): 10 F 37.

1. Statement of main result

In 1929 C. L. Siegel [11] proved the algebraic independence of values of certain
functions at an algebraic point. These functions satisfy a system of first order
linear differential equations over C(z) and in addition are A7:-functions, so the
coefficients of their Maclaurin expansion are of the form ajv\ with the av from a
fixed algebraic number field K (see Section 3 below). This new class of functions
included the exponential function (thus generalizing the celebrated theorem of
Lindemann) and certain hypergeometric and Bessel functions. In 1949 Siegel [12]
formalized this approach for functions satisfying a more general normality
condition, whose verification however proved very elusive for further classes.

In 1959 A. B. Shidlovsky [9] removed that imperfection in an ingenious way by
relating the rank of a certain matrix representing the derivatives of a function to
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228 W. Dale Brownawell [2]

the order of vanishing of the function at the origin (see Section 2 below).
Excellent accounts of the method can be found in Feldman and Shidlovsky [3],
Mahler [6] and Shidlovsky [10]. Shidlovsky was thereby able to establish the
following basic result.

THEOREM (Siegel-Shidlovsky). Let the KE-functions fx(z),.. .,fm(z) be algebrai-
cally independent over C(z) and constitute a solution of the system of linear
differential equations

m

(!) y'k = iko + £ ikiy^
/=i

k = \,...,m, qki in C(z). Let a ¥= 0 be a non-zero algebraic number which is not a
pole of any qki. Then the numbers f-^a),... ,/m(a) are algebraically independent over
Q.

Without loss of generality we may assume that a e K. So when a e K and the
hypotheses of the above theorem are satisfied, we will say that we are in the
Siegel-Shidlovsky setting. We take K = [K: Q].

In 1962 S. Lang [4] showed that from this method one can deduce the following
result, which, in its joint dependence on d and H, is comparable to the measure of
algebraic independence established for the exponential case by K. Mahler [5].

THEOREM (Lang). In the Siegel-Shidlovsky setting, there exist an effective
constant cx and a function Sl(d) > 0 such that for every non-zero polynomial
P(Xl,... ,Xm) in 2\XX,... ,Xm] of degree at most d and having coefficients of
maximum modulus H(P) < H,

(2) \P(f1(a),...,fm(a))\>Q(d)H-^.

An easy application of the Dirichlet box principle shows that q > 1. In a
remarkable pair of papers, Yu. V. Nesterenko [7, 8] was able to make Sl(d) in (2)
explicit in its dependence on d.

THEOREM (Nesterenko). In the Siegel-Shidlovsky setting, in (2) one can take
cy = 4mKm(mK2 + K + 1) and ti(d) = exp(-exp(T0d

2m\n(d + 1))), where T0 > 0
is a constant independent of d and H.

Unfortunately T0 is not, in general, an effective constant. The ineffectivity of T0

arises first of all from our inability to determine in general the minimal order of
vanishing of all polynomials belonging to certain ideals whose existence is given
by the Picard-Vessiot theory of solutions of linear differential equations. A
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second source of ineffectivity is the reduction of the system (1) to a system with
coefficients in K(z) (see Lemma 10 of Shidlovsky [9] or Section 87 of Mahler [6])
by selecting a ^f-basis for the finite dimensional vector space E Kqki. However one
cannot in general perform this reduction effectively. The purpose of this paper is
to show nevertheless that a variation of the proof of Nesterenko's result allows
one to completely isolate the ineffectivity of the measure in a form which, after
the reduction just mentioned, contains Nesterenko's theorem.

THEOREM 1. In the Siegel-Shidlovsky setting for a system (1) whose coefficients qki

lie in K( z ), there are
(i) constants cv c2 > 0 depending effectively on m, a, the coefficients qki, K and

the constants C in the KE-function criterion and
(ii) an in general ineffective constant T > 0 depending only on fx{z),... ,fm(z) and

the system (1), such that in (2) one has

where tt^d) = exp(-exp(c2d
2mln(d + 1))). The constant cl may be chosen as

above.

The author thanks K. Vaananen for his comments on a preliminary sketch of
this result. The author also thanks the referee for his suggestion to state the
proposition below separately from Theorem 1 and for his helpful advice on the
amount of detail appropriate to our exposition. In addition, the author is
indebted to the referee and to D. Bertrand for alerting him to the very recent
paper of N. T. Tai [153], which extends Nesterenko's results in another direction.
We hope to comment on this interesting work elsewhere.

2. Effectivity of T

In order to allow easy comparison with the fundamental results of Nesterenko
[8] and thus permit a condensed presentation, we retain his outline and much of
his notation. We shall however distinguish explicitly between effective and
ineffective constants. In fact all our constants depend effectively on m, a, K, the
qki's, the constant C from the ^-function criterion below, all of which we regard
as given, and the constant TX, whose existence is guaranteed by the fundamental
result of Nesterenko below. We denote the constants depending only on the
former, effective constants by c's and those depending on TX by T'S. We begin by
stating Nesterenko's strengthening (Theorem 3 of Nesterenko [8]) of Shidlovsky's
fundamental result, which makes the dependence on h explicit.
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THEOREM (Shidlovsky-Nesterenko). Let the functions fx{z),... ,fm(z) constitute a
solution of the system (1) of linear differential equations. We assume that these
functions are analytic at z = 0 and algebraically independent over C(z). Let P be
non-trivial in C[z, Xv... ,Xm] with degz P ^ n, degxP < h. Set R(z) =
P(z, fi(z),... ,fm(z)) and let s0 be the dimension of the vector space over C(z)
spanned by the derivatives R('\z), i = 0,1,2, Then the order G(P) of zero at
z = 0 of the analytic function R(z) is bounded as follows:

son + T,h\

where the constant TX depends only on f\,-.-,fm and the system (1) and y =
(m + l ) m + 1 + m + 1.

It is possible to sharpen this tov = (w + l)! + w + l using the improvement
in Brownawell [2] of Corollary 2 of Nesterenko [8] and even further to y = 2m by
D. Bertrand and F. Beukers [1]. However this does not affect our discussion of the
effectivity of the measure. Indeed an examination of the proof shows that
improvements in estimations of y have only the disappointingly slight effect of
improving the bounds on the constants cx, c2, T appearing in Theorem 1.

Definitions (6) and (9) in the proof of Theorem 2, together with our choice of S
express T explicitly in terms of Tj. The last displayed line of the proof of Theorem
3 of Nesterenko's [8] shows that

TX ^ cV + c",

where c', c" are explicitly given constants and the constant T' (called C in
Theorem 1 of Nesterenko [7] and Theorem 2 of Nesterenko [8]) arises in the
following way.

Let t(z) in K[z] be a common denominator for the coefficients qki of the
system (1). Then the operator on C(z)[X0,... ,Xm] defined as

reflects differentiation for solutions of the homogenized system of differential
equations

(lh) Jo = 0 , yj=Z qj:y,.

So for any polynomial Q(z, Xo,...,Xm) in C(z)[Xo,...,Xm],

j-zQ{z,f0{z),...Jm{z)) = (D1Q){z,f0(z),...,fm(z)).

The related operator D := t{z)Dx acts on C[z, Xo,... ,Xm]. Let $ be a fundamen-
tal solution of the homogenized system of equations (lh). We may as well choose
$ so that the first column is the transpose of (1, fx(z),... ,fm{z)) and the
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remaining columns have first entry zero, and thus correspond to solutions of the

truncated homogeneous system obtained from (1) by dropping all the inhomoge-

neous terms. Then every non-trivial solution of ( lh ) can be written uniquely in the

form <£> • $ with j i n C m + 1 \ { 0 } . Those solutions which corrspond to solutions of

(1) will have $ = (xo,...,xm) with x0 # 0. We denote the set of elements they

determine in P m by U. Since the action of Picard-Vessiot group G is given by

right multiplication 0 -> <I> • a, when we realize G as an algebraic matrix group

over C , we may alternatively think of G as acting on P m through multiplication

on the left. F r o m the definitions we see that U is closed under the action of G. Let

Go denote the connected component of the identity in G and let F denote its fixed

field in C(z , <&). Since F is a finite extension field of C(z ) , D can be thought of

as acting on F[ Xo,..., Xm] as well.

For any D-invariant homogeneous radical ideal / of F[X0,...,Xm], let N(I)

denote the set of all x in P m for which $ • x is a zero of / . On the other hand, for

any G0-invariant subvariety F o f P"1, let l(V) denote the ideal of all polynomials

of F[X0,.. .,Xm] vanishing on all of $ • V. Theorem 2 of Nesterenko [7] shows

that the maps N and / establish a bijection between the set of all .©-invariant

homogeneous radical ideals of F[X0,... ,Xm] and the G0-in variant sub varieties of

P m

Lemma 8 of Nesterenko [7] shows that there is a unique minimal radical

£>-invariant non-zero ideal $ j 0 of C[z, Xo,.. .,Xm] which is homogeneous in the

A"s. Then in Lemma 16 in the proof of Theorem 1 of Nesterenko [7], we find that

T ' :=o rdSo=minorde ( l , / 1 ( z ) , . . . , / m ( z ) ) ,

where Q ostensibly runs through all non-zero polynomials in £j0. However in the

application for Theorem 2 of Nesterenko [8], we see that Q need only run through

some prime component ty of 5s 0 . Further the proof of Lemma 8 of Nesterenko [7]

shows that the prime components Ŝ of 5s0 are of two types:

(i) ^ for which $ n C[z] = (0),

(ii) $ for which % n C[z] # (0).

In the second case, since "$ is D-invariant, 3̂ n C[z] = (c(z)), where c(z)

divides t(z) in C[z] (see the proof of Lemma 8 cited above). Moreover since Ŝ is

prime, deg c{z) = 1, and ord $ < 1.

The first case can be treated in the special situation where any of the following

(equivalent) conditions holds:

LEMMA 1. In the above situation, the following are equivalent.

(a) Every solution of (1) has components yt which are algebraically independent

over C(z).

(b) The G0-orbit of any x in U is Zariski dense in P m .

(c) All non-zero D-invariant homogeneous radical ideals in F[X0,.. -,Xm] contain

Xo.
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PROOF, (a) => (b). Take the closure C of an orbit Gox with x in U. By the
correspondence of Nesterenko cited above, C = N(^s) for some D-invariant
homogeneous radical ideal $s of F[X0,.. .,Xm\. Then in particular !g vanishes at
$ • x. However by assumption (a), then $j = (0). From the other half of
Nesterenko's correspondence, we find that C = P m, as desired.

(b) =» (c). Let ^ be a £>-invariant homogeneous radical ideal in F[X0,... ,Xm].
Then iV(3s) is a G0-invariant algebraic variety. So if N(%) n U ¥= 0 , then by
assumption N(%) = Pm, and thus 3 = (0). If on the other hand N(%) n U = 0,
then from the correspondence we find that Xo vanishes on all elements of
$ • N(%), so Allies in $.

(c) => (a). For a solution (gx(z),... ,gm(z)), take the prime .©-invariant homo-
geneous ideal $s vanishing at (1, gx(z),... ,gm{z)). Since Xo does not vanish there,
Xo does not lie in $j. Thus by assumption 3s = (0)- Since then no non-zero
homogeneous polynomial over F vanishes at (1, gx(z),... ,gm{z)), the functions
gi(z),... ,gm(z) are algebraically independent over F.

Thus in case (i) above, if any of the equivalent conditions of Lemma 1 holds,
then Xo lies in ^ and ord $ = 0. We note in passing that the homogeneous
analogue of Lemma 1 (occurring when (1) is already homogeneous, i.e. q10 = • • •
= qm0 = 0) has the three following equivalent conditions.

(a) Every non-trivial solution has components which are homogeneously inde-
pendent over C(z).

(b) Go acts transitively onP"1"1.
(c) There is no proper D-invariant homogeneous radical ideal \nF[Xu...,Xm].
The corresponding changes can also be made in the following result.

PROPOSITION. The constant T is effectively computable whenever we can make the
zero estimate of Shidlovsky-Nesterenko effective. In particular T is effectively
computable whenever either (a) z = 0 is a non-singular point of (1), or (b) every
solution of(l) has componentsyt which are algebraically independent over C(z).

PROOF. It only remains to check case (a). However then D lowers positive, finite
ords of ideals in C[z, XQ,... ,Xm] by 1. Thus no D-invariant ideals there can have
positive but finite ord; consequently T' = 0.

3. Notation and preliminary lemmas

Since all known ^-functions satisfying linear differential equations also satisfy
somewhat stronger and more convenient properties than those of Siegel [11], we
follow the convention of Lang [4] to incorporate those properties into the
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definition. For an element p of the algebraic number field K, denote the
maximum modulus of its conjugates by |p|. Then we call an analytic function
/ ( z ) = T.fLocvz"/v\ a (K)E-function if there is a constant C > 0 such that for
each v = 0 ,1 ,2 , . . . , (a) cr e K, (b) \cv\ < C+1, (c) there is a sequence qv from N
such that (i) for k = 0,1,..., v, qvck is an algebraic integer and (ii) 0 < qv < C + l.

We assume in the Siegel-Shidlovsky setting for k = 1,2,.. .,m that fk(z) =
EJ°_O ckvz"/v\ is a .KE-function and that C is effective and chosen large enough so
that conditions (b) and (c) hold simultaneously for all m of our functions. The
proof follows the usual Siegel-Shidlovsky outline, so we first gather together the
three standard supplementary lemmas.

LEMMA 2. Let 0 < 8 < 1. For arbitrary h, n inN there exist polynomials

t = (k1,.. .,km) with k1 + • • • + km < h, not allPt zero, such that
(1) thept, are algebraic integers of K satisfying \pt ,| < cw

2(« + i)in
(2) the function

Aa* a zero at the origin of order at least [(M — 8)(n + 1)] where M = (h^,m), and

(3) |^J <n"cf<" + 1

This is a straightforward Thue-Siegel application of the box principle (see
Lemma 21 of Nesterenko [8]) using properties (a), (b), (c) above. For k = 1,2,...,
set Pk := DklP, so that Pk(z, A(z ) , . . . ,/m(z)) = {t{z)d/dz)k~1R(<z). Then since
0 ( P ) > [(M - 5)(n + 1)] > (M - 6)n, the Shidlovsky-Nesterenko theorem
shows that when (1 - 8)n > Txh

y, the polynomials Plt...,PM, considered as
linear forms in the M = (h^,m) monomials A'*1 • • • A^m, kl + • • • + km < h, are
linearly independent over C(z). Calling these monomials vx,...,vM and setting
Pk = Ejlx Pki(z)vj, k = 1,2,..., we see from this linear independence that

Moreover as usual (see e.g. the proof of Theorem 1 of Nesterenko [7] for the
details of the argument), we use the multilinearity of the determinant to express
the determinant we have as a C[z]-linear combination of the Pt(z, / x ( z ) , . . . ,/m(z)).
Since the latter have order of vanishing at z = 0 at least 0(P) - (M - 1),
dividing det(Pki(

z)) by the maximal power of z leaves a polynomial of degree at
most 8n + c6M

2, where c6 = max(det/, degtqkl)/2. We set / := [8n + c6M
2].
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Then Lemma 7 of Shidlovsky [9] (or Section 60 of Mahler [6]) shows that the
matrix

)
i = l M
k = l M+t

has rank M.

LEMMA 3. Let the algebraic number a. be such that at(a) ¥= 0. Then for all
i = 1 , . . . ,M, k = 1 , . . . ,M + t, we have

\rkAa)\ ^ n c-, , \rk(a)\^n cs

This is the content of Lemma 22 of Nesterenko [7].

LEMMA 4. Let 0 < S < 1. For arbitrary n, h with h > 1 a « ^ (1 - S)n > ixh
y,

there are M = {h^,m) linearly independent forms Li in the numbers fl{a)kl • • •

fm(a)k"'> ^ i + " ' ' + km < h, with coefficients a ; . in K(a), i, j = 1,2,...,M,

which are algebraic integers such that

„ I „ (1 + o) n _ M n ln{ h + 1) I r ^* vt —( M — 1 — 2o } n^ M n ln( h + 1)

a,y| ^ n c10 , |/^, =̂  n cn

We saw that the matrix

i = l Mhas rank M when (1 - 8)n > Txh
y. Selecting M linearly independent rows and

multiplying by a"
+s(-M+'\ where a is a denominator for a, gives us the linear

forms Lt. The inequalities follow from the corresponding inequalities of Lemma
3.

4. Precise statement and proofs

THEOREM 2. Under the hypotheses given in Theorem 1, there is a constant c3 > 0
depending effectively on a, m, K, the qki and the constant C in the KE-function
criterion and an in general ineffective constant T2 depending only on fi(z),... ,fm(z)
and the system (1) such that if

(4) \nH> max{T 2 Jnn(T 2 ^ 1 ' ) ,exp(c3^ 2 m ln(J+ 1) )} ,

then for every non-zero P(XV... ,Xm) in Z[X1,... ,Xm] with degree at most d and
height H{P)^ H,

(5) |P(/1(a),...,/M(a))|>H-^",

where cx = 4mKm(mK2 + K + 1).
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DEDUCTION OF THEOREM 1 FROM THEOREM 2. For d, H > 1 define
<fr(d, / / ) := min|/)(/1(a),.. -,/m(a))| where the minimum is taken over all non-
zero P in Z[Xx,...,Xm\ with degree P at most d and whose coefficients have
maximum modulus H(P) < H. Then Theorem 2 shows that ln<&(<i, H)^
~cld

m\n H when (4) is satisfied. Since <P(d, H) is a non-increasing function of
both d and //, we see that even when (4) is not satisfied,

\n$(d,H) 7* \n<&(d,exp(max{T2d
y\n(T2d

y), exp(cid2mln(d + 1))}))

> -cld
mmax{T2d-'\n(r2d

y), exp(Cid
2mln(d + l ) )} .

We now distinguish two cases.

Case 1. If In T2 > c3d
2m\n(d + 1), then clearly the first term in the right-hand

side of (4) dominates. For c3 > 2, In T2 > ^ 2 m , and so one can show that, say,

T2d
y\n(r2d

y) < T2(1

Consequently

, H) > -Cld
mT2(\nT2)

1 + y/

Case 2. If on the other hand lnr2 < c3d
2m\n(d + 1) for c3 large enough to

force the aforementioned conclusion in the first case, then

j2d
yln(T2d

y) < (d + if^"Jm+y\

Consequently

ln<*>( d, H) > -Cxd
m{d + l ) 2 ( ' ^ 2 m + V> ^ _ C j ( j + 1)m + 2(c,^- + 1r)_

Taking c2 = m + 2(c3 + y) + log Cj and

(6) T = exp(-C l ( l + Y/2m)T2(lnT2)2 + Y / 2)

gives the following result, which easily implies Theorem 1.

COROLLARY. Under the hypotheses of Theorem 1, there are effective constants cl5

c2 > 0 and an in general ineffective constant T > 0 such that

l^(/i(«).- • • X,(«))l > min{ H-*"m, exp(-exp(c2J2'"ln( J + 1))), T }.

PROOF OF THEOREM 2. The proof follows the usual Siegel-Shidlovsky pattern
and parallels even more exactly that of Theorem 4 of Nesterenko [8]. The only
essential difference lies in our use of the fact that the constants c10, c n of the
conclusion of Lemma 3 are effective. Still, for the sake of clarity, we have repeated
the proof in enough detail for the reader to verify the genealogy of the constants
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(a misprint in Nesterenko [8] omits a factor of n in the the last occurrence of what
corresponds to our cl6 and there is called c28).

We assume first for large enough TX and c3 and for d, H > 1 satisfying (4) that
there is a non-zero polynomial R in Z[Z1;. . . ,Zm] with degree at most d and
height at most H for which

We shall see that this assumption leads to a contradiction. We set v = WK2 + 1,
X = WK, h = (X + Y)d and determine n by the condition

(7) «" <//<* + "> < (« + 1)" + 1.

In particular we have win n < (K + v)ln H. We remark that in the following
proof, the constants c10,... ,c17 do not depend on c2 or c3. Keeping in mind that
x/ln x is an increasing function of x for x > e, we see from the first part of the
inequality (4) that T2d

y < 2 In / / /In In / / . Consequently for our choice of n and
/;, we have from (4) that

2 In / /
xy T2lnln//

Similarly from the monotonicity of x/ ln x and our choice of n, we see that for c3

(and hence / / ) large enough

/o\ n (K + J ' ) m # -,
<8> 2 < In ln / / < 2 W "

From this and the preceding inequality we find that

Thus choosing

(9) T2 = 4 T 1 ( 1 + A ) 7 ( K + 0 ( 1 - 6 )

guarantees that the hypotheses of Lemma 4 are fulfilled for every 0 < 8 < 1. Let
us remark that this will be the last mention of any ineffective constant in the
proof. Choosing, say 8 = 1/4X(K + v) < 1 puts the linear forms Lly...,LM

described by Lemma 4 at our disposal.

First consider the linear forms /r in the monomials (fi(a))k' • • • (fm(a))kni

defined by

for rl + • • • + rm < Xd obtained from R simply by multiplying with the indicated
power products. Obviously kY + • • • + km < Xd + d = h. These Ml = ( x ^ m )
forms are linearly independent, as can be seen from considering the term of R of
maximal lexicographical order.

In addition to the /r we select N := M — Mx linear forms from among
Lx,... ,LM to obtain a system of M linearly independent forms, say, lv.. .,lM;
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1111 Effectivity in independence measures 237

Lx,.. -,LN. Let A denote the determinant of this system. From Lemma 4 we see
that

N ^ jjMl(.M
2Nn \n(h + 1)^(1 +S)Nn

Furthermore, multiplying every column in A by the corresponding expression
(f1(a))kl • • • (/m(a))/tm when kx + • • • + km # 0 and adding to the exceptional
column corresponding to (/i(a))° • • • (/m(«))°, we obtain the expressions /,,
; = 1,. . . , Mv and L,, / = 1,. . . , N, as the entries in this column. Then expanding
along it, we have

(10) A= E/,A,+ EL,.AM+jl
( = 1 i = l

where A, is the appropriate cofactor.
It is easily seen that

max

max |A,.|< #Ml cM^n

Applying these inequalities in (10) and using the bounds for L, from Lemma 4, we
find that

Since A is a non-zero integer of the field K, its norm has modulus at least 1. Thus

(11) 1 ̂  HKM^nK(1 + S)Nnc^2Nniaih + 1)max{H":^m~1, n-(M~S)n).

Note that M = (*+m), N < M and = (1 + \)d so that

M2Nn\n(h + 1) < c16nd3m\n(d + 1) < — ndm\n\n H
C3

from the second part of the inequality (4) of the hypotheses. Together with (8)
and our choice of n in (7), this gives

Recalling our choice (7) of n, we verify that the maximum will be contributed
by the second term in case cxd

m > (K + v)M. But

M < Kmdm(2m + 1) • • • (m + 2)/m\.

Now an application of Stirling's formula to (2m + \){2m)\/(m + \)(m\)2 shows
that M < 4mKmdm. Thus our choice of cx ensures that the maximum is indeed
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contributed by the second term above and thus

Writing in terms of exponents yields

(12) 0 < K[M1 +(1 + 8)(K + v)N] + —dm-(M - 8)(K + v)
C

when we use the inequality provided by the left side of (7).
By Lemma 24 of Nesterenko [8], we have the inequality N < mM/(X +1) .

Consequently from (12) it follows that

0 < KM + ^ + ^ " + "^ mKM + C-^dm - ( M - S)(K + v).

Using the definition of A and J% one calculates the right-hand side to be

A T 1

-8M + —

when we invoke the definition of 8. The expression is thus negative if c3 is taken
large enough. This contradiction of (12) refutes the existence of the polynomial R
satisfying (4) but not (5). Hence Theorem 2 is established.

5. Further remarks

It is possible to deduce directly from Nesterenko's result inequalities of the
same form as ours, albeit weaker in their dependence on d. For example one
obtains, as the analogue of our Corollary,

, H) > maxj//-"^, exp(-exp(^4m(ln(J + I))2)),

by considering which of T or dlm\n(d + 1) is larger.
Finally let us remark that the Dirichlet box principle shows that an inequality

of the form <P(d, H) > H~cd" would be optimal. So inequality (5) cannot be
improved substantially for H large enough compared to d and T. The unfortunate
doubly exponential dependence on d for smaller H comes from the necessity to
use the auxiliary function constructed in the lemmas to provide the forms
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LV...,LN to complement those coming from R itself. Those forms have in-

ordinately large coefficients since the Shidlovsky Lemma requires a function with

order of zero at z = 0 greater that (M — 1)« + I^/J. But we only have Mn

unknowns (coefficients of the auxiliary function). So although the integer coeffi-

cients of the equations are bounded by hcMn, when we are forced to solve so many

equations, the entries in the solution may grow to about hcMl". Finally expanding

the determinant gives hcM2Nn as an upper bound for the contribution from the

coefficients of the auxiliary function. This must be overcome by the known

smallness n~Mn of the absolute values \LX\,... ,\LN\. Thus MNnln(h + 1) must be

dominated by n In n in order to achieve the desired contradiction. This means that

M2\n(h + 1) «; In n.

On the other hand, for our contradiction of (11), we must have Nn\x\. n <s:

d"'ln H. Since N » dm, this gives «ln n -« In H. Together with M2ln(/i + 1) «:

In n this gives in turn

In H » win n » exp(cM2ln(/j + l))M2ln(£ + 1) » exp(cJ2mln(^ + 1)).

Thus to improve this aspect of the measure, it seems that one will have to find an

approach which does not depend on Shidlovsky's Lemma.
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