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First Variation Formula in Wasserstein
Spaces over Compact Alexandrov Spaces

Nicola Gigli and Shin-Ichi Ohta

Abstract. We extend results proved by the second author (Amer. J. Math., 2009) for nonnegatively

curved Alexandrov spaces to general compact Alexandrov spaces X with curvature bounded below.

The gradient flow of a geodesically convex functional on the quadratic Wasserstein space (P(X),W2)

satisfies the evolution variational inequality. Moreover, the gradient flow enjoys uniqueness and con-

tractivity. These results are obtained by proving a first variation formula for the Wasserstein distance.

1 Introduction

This paper should be considered as an addendum to [11]. In that paper, the sec-

ond author studied the quadratic Wasserstein space (P(X),W2) built over a compact

Alexandrov space X with curvature bounded below, and proved the existence of Eu-

clidean tangent cones (see also [4]). This result is particularly interesting for Alexan-

drov spaces with a negative curvature bound, as it is known that Wasserstein spaces

built over them do not admit lower curvature bounds in the sense of Alexandrov.

The existence of such tangent cones was then used in [11] to perform studies of

gradient flows of geodesically convex functionals on (P(X),W2). In particular, the

existence of gradient flows of such functionals was proved via an approach inspired

by [8] (which differs from the “purely metric” approach in [1] in not using tangent

cones). For technical reasons, however, uniqueness and contraction of such gradient

flows have been obtained only in the case where X has nonnegative curvature.

In this paper we extend the latter results to general Alexandrov spaces with cur-

vature bounded below possibly by a negative value (Theorem 4.2). A key tool in

our approach is a first variation formula for the Wasserstein distance (Theorem 3.4)

from which it also easily follows that gradient flows satisfy the evolution variational

inequality (Proposition 4.1). See Remarks 3.7 and 4.5 for the difference from the

argument in [11].

Section 2 is devoted to recalling known results on the geometric structure of and

gradient flows in (P(X),W2). We show the first variation formula in Section 3 and

use it to study gradient flows in Section 4.
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2 Preliminaries

2.1 Wasserstein Spaces over Compact Alexandrov Spaces

Let (X, d) be a metric space. A rectifiable curve γ : [0, l] → X is called a geodesic if

it is locally minimizing and has a constant speed. We say that γ is minimal if it is

globally minimizing (i.e., d(γ(s), γ(t)) = (|s− t|/l) · d(γ(0), γ(l)) for all s, t ∈ [0, l]).

If any two points in X are joined by some minimal geodesic, then X is called a geodesic

space.

Throughout the article, (X, d) will be a compact Alexandrov space of curvature at

least −1. By this we mean that (X, d) is a geodesic space such that every triangle in X

is thicker than a geodesic triangle (with the same side lengths) in the hyperbolic plane

H
2(−1) of constant sectional curvature −1 (see [11] for the detailed definition and

[2, 3, 13] for the basic theory). We remark that (X, d) can be infinite-dimensional, so

that its local structure may be very wild.

Denote by P(X) the set of all Borel probability measures on X. Given µ, ν ∈ P(X),

we consider the L2- Wasserstein distance

W2(µ, ν) := inf
π

{
∫

X×X

d(x, y)2 dπ(x, y)

} 1/2

,

where π ∈ P(X × X) runs over all couplings of µ and ν. Note that W2(µ, ν) is finite

and (P(X),W2) is compact as X is assumed to be compact. We refer to [1, 20] for

more on Wasserstein geometry and optimal transport theory.

It is known that if (X, d) has nonnegative curvature, then so does (P(X),W2) ([19,

Proposition 2.10], [7, Theorem A.8]). Although the analogous implication is false

for negative curvature bounds (essentially because it is not a scaling invariant condi-

tion, [19, Proposition 2.10]), we obtain the following generalization of the 2-uniform

smoothness in Banach space theory.

Proposition 2.1 ([11, Proposition 3.1, Lemma 3.3], [17]) For all µ, ν, ω ∈ P(X),

all minimal geodesics α : [0, 1] → P(X) from ν to ω and for all τ ∈ [0, 1], we have

(2.1) W2

(

µ, α(τ )
) 2 ≥ (1 − τ )W2(µ, ν)2 + τW2(µ, ω)2 − S2(1 − τ )τW2(ν, ω)2,

where S =
√

1 + (diam X)2.

To be precise, the 2-uniform smoothness (2.1) holds in (X, d) and descends to

(P(X),W2) with the same constant S. Although (P(X),W2) is not an Alexandrov

space, it is possible to establish the following theorem (see also [11, Theorem 3.6]).

Theorem 2.2 ([4, Theorem 3.4, Remark 3.5]) Given µ ∈ P(X) and unit speed

geodesics α, β : [0, δ) → P(X) with α(0) = β(0) = µ, the joint limit

lim
s,t→0

s2 + t2 −W2(α(s), β(t))2

2st

exists.

https://doi.org/10.4153/CMB-2011-110-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-110-3


First Variation Formula in Wasserstein Spaces 725

Theorem 2.2 means that (P(X),W2) looks like a Riemannian space (rather than

a Finsler space), and we can investigate its infinitesimal structure according to the

theory of Alexandrov spaces. For µ ∈ P(X), denote by Σ
′
µ[P(X)] the set of all (non-

trivial) unit speed minimal geodesics emanating from µ. Given α, β ∈ Σ
′
µ[P(X)],

Theorem 2.2 verifies that the angle

∠µ(α, β) := arccos
(

lim
s,t→0

s2 + t2 −W2(α(s), β(t))2

2st

)

∈ [0, π]

is well defined and gives an appropriate (pseudo-)distance structure ofΣ ′
µ[P(X)]. We

define the space of directions (Σµ[P(X)],∠µ) as the completion of (Σ ′
µ[P(X)]/∼,∠µ),

where α ∼ β holds if ∠µ(α, β) = 0. Then the tangent cone (Cµ[P(X)], σµ) is defined

as the Euclidean cone over (Σµ[P(X)],∠µ):

Cµ[P(X)] :=
(

Σµ[P(X)] × [0,∞)
)/(

Σµ[P(X)] × {0}
)

,

σµ

(

(α, s), (β, t)
)

:=
√

s2 + t2 − 2st cos∠µ(α, β).

Note that σµ is a distance on Cµ[P(X)] and that

(2.2) σµ

(

(α, s), (β, t)
)

= lim
ε→0

W2

(

α(sε), β(tε)
)

/ε

holds by the definition of ∠µ. We denote the origin of Cµ[P(X)] by oµ and define

〈

(α, s), (β, t)
〉

µ
:= 2st cos∠µ(α, β), |(α, s)|µ := s = σµ

(

oµ, (α, s)
)

for (α, s), (β, t) ∈ Cµ[P(X)]. The subscript µ will be omitted if the space under

consideration is clearly understood. We sometimes abbreviate t · (α, s) := (α, st) and

identify α ∈ Σµ[P(X)] with (α, 1) ∈ Cµ[P(X)].

Using this infinitesimal structure, we introduce a class of “differentiable curves”.

Definition 2.3 (Right differentiability) We say that a curve ξ : [0, l) → P(X) is

right differentiable at t ∈ [0, l) if there is v ∈ Cξ(t)[P(X)] such that, for any se-

quences {εi}i∈N of positive numbers tending to zero and {αi}i∈N of unit speed mini-

mal geodesics from ξ(t) to ξ(t + εi), the sequence {(αi ,W2(ξ(t), ξ(t + εi))/εi)}i∈N ⊂
Cξ(t)[P(X)] converges to v. Such v is clearly unique if it exists, and we then write

ξ̇(t) = v.

In particular, we have limε→0 W2(ξ(t), ξ(t + ε))/ε = |ξ̇(t)|ξ(t). We also remark

that every minimal geodesic α : [0, l] → P(X) is right differentiable at all t ∈ [0, l).

This is because Alexandrov spaces are known to satisfy the non-branching prop-

erty, which is inherited by (P(X),W2) (cf. [20, Corollary 7.32]). Therefore α|[0,t]

is a unique minimal geodesic between α(0) and α(t) for all t ∈ (0, l), and α̇(0) =

(α,W2(α(0), α(t))/t).
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2.2 Gradient Flows in Wasserstein Spaces

The contents of this subsection will come into play in Section 4. The readers inter-

ested only in the first variation formula can skip to Section 3.

Consider a lower semicontinuous function f : P(X) → (−∞,+∞] that is

K-convex for some K ∈ R in the sense that

(2.3) f
(

α(τ )
)

≤ (1 − τ ) f
(

α(0)
)

+ τ f
(

α(1)
)

− K
2

(1 − τ )τW2

(

α(0), α(1)
) 2

holds along all minimal geodesics α : [0, 1] → P(X) and all τ ∈ [0, 1]. We also

suppose that f is not identically +∞, and define

P
∗(X) := {µ ∈ P(X) | f (µ) < ∞}.

The K-convexity guarantees that minimal geodesics between points in P
∗(X) are

again included in P
∗(X), and hence it makes sense to consider Σµ[P∗(X)] as well

as Cµ[P∗(X)] for µ ∈ P
∗(X).

Given µ ∈ P
∗(X) and α ∈ Σµ[P∗(X)], we set

Dµ f (α) := lim inf
β→α

lim
t→0

f (β(t)) − f (µ)

t
,

where β ∈ Σ
′
µ[P∗(X)] is a unit speed geodesic and the convergence β → α is with re-

spect to ∠µ. Clearly Dµ f is well-defined on Σµ[P∗(X)]. Define the absolute gradient

(called the local slope in [1]) of f at µ ∈ P
∗(X) by

|∇− f |(µ) := max
{

0, lim sup
ν→µ

f (µ) − f (ν)

W2(µ, ν)

}

.

Note that −Dµ f (α) ≤ |∇− f |(µ) holds for any α ∈ Σµ[P∗(X)]. According to the

argument in [8, 15], we find a negative gradient vector of f at each point in P
∗(X)

with finite absolute gradient.

Lemma 2.4 ([11, Lemma 4.2]) For each µ ∈ P
∗(X) with 0 < |∇− f |(µ) < ∞, there

exists a unique α ∈ Σµ[P∗(X)] satisfying Dµ f (α) = −|∇− f |(µ). Moreover, for any

β ∈ Σµ[P∗(X)], it holds that Dµ f (β) ≥ −|∇− f |(µ)〈α, β〉µ.

The second assertion is regarded as a first variation formula for f . Using α in the

above lemma, we define the negative gradient vector of f at µ as

∇− f (µ) :=
(

α, |∇− f |(µ)
)

∈ Cµ[P∗(X)].

In the case of |∇− f |(µ) = 0, we simply set ∇− f (µ) := oµ.

Definition 2.5 (Gradient curves) A continuous curve ξ : [0, l) → P
∗(X) that is

locally Lipschitz continuous on (0, l) is called a gradient curve of f if |∇− f |(ξ(t)) < ∞
for all t ∈ (0,∞) and if it is right differentiable with ξ̇(t) = ∇− f (ξ(t)) at all t ∈ [0, l)

with |∇− f |(ξ(t)) < ∞. We say that a gradient curve ξ is complete if it is defined on

[0,∞).
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Again using the discussion in [8, 15], despite some technical difficulties as

(P(X),W2) is not an Alexandrov space, we can show the existence of complete gra-

dient curves.

Theorem 2.6 ([11, Theorem 5.11]) For any µ ∈ P
∗(X), there exists a complete

gradient curve ξ : [0,∞) → P
∗(X) of f with ξ(0) = µ.

Remark 2.7 Let us make a more detailed comment on the construction of gradi-

ent curves. The strategy in [11] (following [8, 15]) is that we first construct a unit

speed curve η with ( f ◦ η) ′(t) = −|∇− f |(η(t)) for almost every t , then an appro-

priate reparametrization of η provides a gradient curve. Another method is the di-

rect construction comprehensively discussed in [1]. In fact, a generalized minimizing

movement u : [0,∞) → P(X) is locally Lipschitz continuous on (0,∞) and satisfies

lim
ε↓0

f (u(t + ε)) − f (u(t))

ε
= −|∇− f |

(

u(t)
) 2

= −
{

lim
ε↓0

W2(u(t), u(t + ε))

ε

} 2

at every t ∈ (0,∞) ([1, Theorem 2.4.15]), and therefore the discussion in [11,

Lemma 5.5] shows that u is a gradient curve in the sense of Definition 2.5. More-

over, the uniqueness of gradient curves proved below (Theorem 4.2) ensures that

both constructions give rise to the same curve.

3 A First Variation Formula

This section contains our main results. These are given after a series of lemmas.

Lemma 3.1 For any minimal geodesic α : [0, t] → P(X) and ν ∈ P(X), we have

W2(α(t), ν)2 −W2(α(0), ν)2

t
≤

lim inf
s→0

W2(α(s), ν)2 −W2(α(0), ν)2

s
+

S2

t
W2

(

α(0), α(t)
) 2
,

where S =
√

1 + (diam X)2.

Proof For s ∈ (0, t), the 2-uniform smoothness (2.1) shows

W2

(

α(s), ν
) 2 ≥

(

1 − s

t

)

W2

(

α(0), ν
) 2

+
s

t
W2

(

α(t), ν
) 2 − S2

(

1 − s

t

) s

t
W2

(

α(0), α(t)
) 2
.

Dividing both sides by s yields

W2(α(t), ν)2 −W2(α(0), ν)2

t
≤

W2(α(s), ν)2 −W2(α(0), ν)2

s
+

S2

t

(

1 − s

t

)

W2

(

α(0), α(t)
) 2
,

and letting s tend to zero completes the proof.
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Lemma 3.2 For any pair of minimal geodesics α : [0, δ) → P(X), β : [0, 1] → P(X)

with α(0) = β(0) =: µ, we have

(3.1) lim sup
s→0

W2(α(s), β(1))2 −W2(µ, β(1))2

s
≤ −2〈α̇(0), β̇(0)〉µ.

Proof For any s ∈ (0, δ) and t ∈ (0, s−1), the triangle inequality gives

W2(α(s), β(1)) −W2(µ, β(1))

s

≤ W2(α(s), β(st)) + W2(β(st), β(1)) −W2(µ, β(1))

s

=
W2(α(s), β(st)) −W2(µ, β(st))

s
.

Thus we deduce from (2.2) that for any t > 0,

lim sup
s→0

W2(α(s), β(1)) −W2(µ, β(1))

s
≤ σ

(

α̇(0), tβ̇(0)
)

− t|β̇(0)|

=
|α̇|2 − 2t|α̇||β̇| cos∠(α, β)

σ(α̇, tβ̇) + t|β̇|
(0).

Letting t go to infinity implies

lim sup
s→0

W2(α(s), β(1))2 −W2(µ, β(1))2

s

= 2W2

(

µ, β(1)
)

lim sup
s→0

W2(α(s), β(1)) −W2(µ, β(1))

s

≤ 2|β̇|−2|α̇||β̇| cos∠(α, β)

2|β̇|
(0) = −2〈α̇(0), β̇(0)〉.

We remark that equality holds in (3.1) if X is nonnegatively curved (cf. [2, Theo-

rem 4.5.6]).

Lemma 3.3 For any triplet v1, v2,w ∈ Cµ[P(X)], we have

〈v1,w〉µ ≤ 〈v2,w〉µ + |w|µ · σµ(v1, v2).
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Proof We just calculate, putting vi = (αi , si) and w = (β, t),

|〈v1,w〉 − 〈v2,w〉|2

= t2
{

s1 cos∠(α1, β) − s2 cos∠(α2, β)
} 2

= t2
[

s2
1{1 − sin2

∠(α1, β)} + s2
2{1 − sin2

∠(α2, β)}

− 2s1s2 cos∠(α1, β) cos∠(α2, β)
]

≤ t2
[

s2
1 + s2

2 − 2s1s2

{

cos∠(α1, β) cos∠(α2, β) + sin∠(α1, β) sin∠(α2, β)
}]

= t2
{

s2
1 + s2

2 − 2s1s2 cos
(

∠(α1, β) − ∠(α2, β)
)}

≤ t2
{

s2
1 + s2

2 − 2s1s2 cos∠(α1, α2)
}

= t2σ(v1, v2)2.

Now we are ready to prove our main theorem.

Theorem 3.4 (First variation formula) Let ξ : [0, δ) → P(X) be a curve right dif-

ferentiable at 0, and let β : [0, 1] → P(X) be a minimal geodesic from µ := ξ(0) to ν.

Then we have

lim sup
t→0

W2(ξ(t), ν)2 −W2(µ, ν)2

t
≤ −2〈ξ̇(0), β̇(0)〉µ.

Proof For each small t > 0, let αt : [0, t] → P(X) be a minimal geodesic from µ to

ξ(t). Then it follows from the right differentiability of ξ that α̇t (0) converges to ξ̇(0)

in Cµ[P(X)]. We deduce from Lemmas 3.1, 3.2, and 3.3 that

W2(ξ(t), ν)2 −W2(µ, ν)2

t

=
W2(αt (t), ν)2 −W2(µ, ν)2

t
≤ −2〈α̇t (0), β̇(0)〉 +

S2

t
W2

(

µ, αt (t)
) 2

≤ −2〈ξ̇(0), β̇(0)〉 + 2|β̇(0)| · σ
(

ξ̇(0), α̇t (0)
)

+
S2

t
W2

(

µ, ξ(t)
) 2
.

Letting t tend to zero, we complete the proof.

The following simple lemma (valid for general metric spaces) is useful.

Lemma 3.5 Let ξ, ζ : [0, δ) → Y be curves in a metric space (Y, d), and let z ∈ Y be

a midpoint of x := ξ(0) and y := ζ(0) (i.e., d(z, x) = d(z, y) = d(x, y)/2). Then we

have

lim sup
t→0

d(ξ(t), ζ(t))2 − d(x, y)2

t
≤

2 lim sup
t→0

d(ξ(t), z)2 − d(x, z)2

t
+ 2 lim sup

t→0

d(ζ(t), z)2 − d(y, z)2

t
.
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Proof The triangle inequality immediately implies

lim sup
t→0

d(ξ(t), ζ(t))2 − d(x, y)2

t

= 2d(x, y) lim sup
t→0

d(ξ(t), ζ(t)) − d(x, y)

t

≤ 2d(x, y) lim sup
t→0

d(ξ(t), z) + d(ζ(t), z) − d(x, y)

t

≤ 2d(x, y)

{

lim sup
t→0

d(ξ(t), z) − d(x, z)

t
+ lim sup

t→0

d(ζ(t), z) − d(y, z)

t

}

= 2 lim sup
t→0

d(ξ(t), z)2 − d(x, z)2

t
+ 2 lim sup

t→0

d(ζ(t), z)2 − d(y, z)2

t
.

Combining this with Theorem 3.4 yields the following first variation formula for

the distance between two right differentiable curves.

Corollary 3.6 Let ξ, ζ : [0, δ) → P(X) be two curves right differentiable at 0. Put

µ := ξ(0), ν := ζ(0); let α : [0, 1] → P(X) be a minimal geodesic from µ to ν, and let

β(τ ) := α(1 − τ ) be its converse curve. Then we have

lim sup
t→0

W2(ξ(t), ζ(t))2 −W2(µ, ν)2

t
≤ −2〈ξ̇(0), α̇(0)〉µ − 2〈ζ̇(0), β̇(0)〉ν .

Proof Apply Lemma 3.5 to ξ and ζ with z = α(1/2) = β(1/2). Then Theorem 3.4

yields the desired estimate.

Remark 3.7 If X is nonnegatively curved, then (P(X),W2) is an Alexandrov space,

and hence the right differentiability gives a better control at the level of P(X) (not

only in Cµ[P(X)]). Such strong right differentiability ([11, (6.1)]) and the first varia-

tion formula along geodesics (Lemma 3.2) immediately lead us to the formula along

right differentiable curves (see [11, Lemma 6.1]).

4 Applications for Gradient Flows in P(X)

In this section, we use the first variation formula in the previous section to extend

results in [11, Section 6], where we assumed that (X, d) is nonnegatively curved.

4.1 Uniqueness and Contraction

As in Subsection 2.2, let f : P(X) → (−∞,+∞] be a lower semi-continuous,

K-convex function for some K ∈ R such that P
∗(X) = f −1((−∞,+∞)) is

nonempty. We first verify the evolution variational inequality (see [1, (4.0.13)]) as

a consequence of first variation formulas Lemma 2.4 and Theorem 3.4.
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Proposition 4.1 (Evolution variational inequality) Let ξ : [0,∞) → P
∗(X) be a

gradient curve of f . Then we have for any t ∈ (0,∞) and ν ∈ P(X)

lim sup
ε↓0

W2(ξ(t + ε), ν)2 −W2(ξ(t), ν)2

2ε
+

K

2
W2

(

ξ(t), ν
) 2

+ f
(

ξ(t)
)

≤ f (ν).

Proof The assertion is clear if f (ν) = ∞, so that we assume ν ∈ P
∗(X). We observe

from Theorem 3.4 that

lim sup
ε↓0

W2(ξ(t + ε), ν)2 −W2(ξ(t), ν)2

2ε
≤ −〈ξ̇(t), β̇(0)〉ξ(t),

where β : [0, 1] → P
∗(X) is a minimal geodesic from ξ(t) to ν. As ξ̇(t) = ∇− f (ξ(t)),

Lemma 2.4 and the K-convexity (2.3) of f together imply

−〈ξ̇(t), β̇(0)〉ξ(t) ≤ lim
τ→0

f (β(τ )) − f (ξ(t))

τ
≤ f (ν) − f

(

ξ(t)
)

− K

2
W2

(

ξ(t), ν
) 2
.

This completes the proof.

A similar argument shows the contraction property of gradient curves.

Theorem 4.2 (Contraction and uniqueness) Given any pair of gradient curves

ξ, ζ : [0,∞) → P
∗(X) of f ,

W2

(

ξ(t), ζ(t)
)

≤ e−tKW2

(

ξ(0), ζ(0)
)

holds for all t ∈ [0,∞). In particular, each µ ∈ P
∗(X) admits a unique complete

gradient curve starting from µ.

Proof Put h(t) := W2(ξ(t), ζ(t))2, fix t ∈ (0,∞), let α : [0, 1] → P(X) be a min-

imal geodesic from ξ(t) to ζ(t) and put β(τ ) := α(1 − τ ). Then Corollary 3.6 and

Lemma 2.4 show that

lim sup
ε↓0

h(t + ε) − h(t)

ε
≤ −2〈ξ̇(t), α̇(0)〉ξ(t) − 2〈ζ̇(t), β̇(0)〉ζ(t)

≤ 2

{

lim
τ→0

f (α(τ )) − f (α(0))

τ
+ lim

τ→0

f (β(τ )) − f (β(0))

τ

}

≤ −2Kh(t).

We used the K-convexity (2.3) along α in the last inequality. Therefore we obtain

h ′ ≤ −2Kh for almost every t , and hence h(t) ≤ e−2tK h(0) by Gronwall’s theorem.

We define the gradient flow G : P∗(X) × [0,∞) → P
∗(X) as ξ(t) := G(µ, t) to

be the unique gradient curve starting from ξ(0) = µ. Note that G is continuous by

virtue of the contraction property.
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Corollary 4.3 The gradient flow G : P∗(X)× [0,∞) → P
∗(X) extends uniquely and

continuously to G : P∗(X) × [0,∞) → P∗(X). Moreover, G satisfies the contraction

property

W2

(

G(µ, t),G(ν, t)
)

≤ e−tKW2

(

G(µ, 0),G(ν, 0)
)

for µ, ν ∈ P∗(X) and t ∈ (0,∞) as well as the semigroup property

G(µ, s + t) = G
(

G(µ, s), t
)

for µ ∈ P∗(X) and s, t ∈ [0,∞).

4.2 Heat Flow as Gradient Flow on Riemannian Manifolds

Up to this point, we have only dealt with the triangle comparison property of the

Wasserstein space. In this last subsection, in order to see that gradient flow of the

free energy produces a solution to the Fokker–Planck equation, we use the structure

of the underlying space (that was implicitly avoided in [11]). This kind of interpre-

tation of evolution equations goes back to celebrated work of Jordan et al. [5]. It was

recently demonstrated that there is also a remarkable connection with the Ricci flow

(see [10]).

Although some parts also work in Alexandrov spaces, we consider only compact

Riemannian manifolds for brevity (the compactness guarantees that the sectional

curvature is bounded below). Since Theorem 4.2 ensures that our gradient curve co-

incides with the one constructed in [1] (see Remark 2.7), the realization of solutions

to the Fokker–Planck equation as gradient flows of the free energy is a well estab-

lished fact in the Riemannian setting. Here, however, we present a way of completing

the self-contained proof in [11, Subsection 6.2] using our notion of gradient curves

for thoroughness.

Let (M, g) be a compact Riemannian manifold equipped with the associated Rie-

mannian distance d and the volume measure volg . Thanks to McCann’s theorem [9],

we can represent each v ∈ Cµ[P(M)] as a (measurable) vector field on M that will be

again denoted by v, with a slight abuse of notation. Moreover, for v,w ∈ Cµ[P(M)],

we have σµ(v,w)2
=

∫

M
|v(x) − w(x)|2 dµ(x). In other words, Otto’s Riemannian

structure [14] coincides with ours induced from Theorem 2.2.

Due to the compactness of M, the Taylor expansion immediately gives the follow-

ing lemma.

Lemma 4.4 For any h ∈ C∞(M) and any geodesic α : [0, l) → P(M), we have

∫

M

h dµt =

∫

M

h dµ + t

∫

M

〈v,∇h〉 dµ + Oh

(

W2(µ, µt )
2
)

,

where we set µ := α(0), µt := α(t), and v := α̇(0) ∈ Cµ[P(M)].

Let f : P(M) → (−∞,+∞] be as in Subsections 2.2, 4.1. Take µ ∈ P
∗(M) and let

ξ : [0,∞) → P
∗(M) be the unique complete gradient curve with ξ(0) = µ. Fix t > 0

and recall that ξ is right differentiable with ξ̇(t) = ∇− f (ξ(t)). For any h ∈ C∞(M),
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since the remainder term Oh in Lemma 4.4 is uniform in the choice of geodesics α,

we obtain

lim
δ↓0

1

δ

{
∫

M

h dµt+δ −
∫

M

h dµt

}

=

∫

M

〈∇− f (µt ),∇h〉 dµt ,

where we set µt := ξ(t). For each δ > 0, choose some νδ ∈ P
∗(M) attaining the

infimum of the function

P
∗(M) ∋ ν 7−→ f (ν) +

W2(µt , ν)2

2δ
.

Such νδ indeed exists, since P(M) is compact and f is lower semi-continuous. We

also choose a minimal geodesic βδ : [0, lδ] → P(M) from µt to νδ , where lδ :=

W2(µt , νδ). Then we know that (βδ, lδ/δ) ∈ Cµt
[P(M)] converges to ∇− f (µt ) as

δ tends to zero ([11, Lemma 6.4]). Thus Lemma 4.4 also shows that for any h ∈
C∞(M)

lim
δ↓0

1

δ

{
∫

M

h dνδ −
∫

M

h dµt

}

=

∫

M

〈∇− f (µt ),∇h〉 dµt .

Therefore we conclude that

(4.1) lim
δ↓0

1

δ

{
∫

M

h dµt+δ −
∫

M

h dνδ

}

= 0

holds for all h ∈ C∞(M).

Remark 4.5 If X has the nonnegative curvature, then the convergence of (βδ, lδ/δ)

to ∇− f (µt ) implies limδ↓0 W2(νδ, µt+δ)/δ = 0 (see [11, Lemma 6.4]). Thus the

Kantorovich–Rubinstein theorem yields (4.1) without using Lemma 4.4; moreover,

the convergence (4.1) is uniform for all 1-Lipschitz functions h.

For µ ∈ P(M), we define the relative entropy as

Ent(µ) :=

{

∫

M
ρ log ρ dvolg if µ = ρ · volg ,

+∞ otherwise.

Given V ∈ C∞(M), let fV : P(M) → (−∞,∞] be the associated free energy:

f (µ) := Ent(µ) +

∫

M

V dµ.

Note that fV is lower semi-continuous and the corresponding subset P∗(M) ⊂ P(M)

satisfies P∗(M) = P(M). Furthermore, the K-convexity of fV is known to be equiva-

lent to the lower bound of the Bakry-Émery tensor: Ric + Hess V ≥ K ([18]) (in par-

ticular, the K-convexity of Ent is equivalent to Ric ≥ K, [16]). Hence fV is K-convex

for some K ∈ R by virtue of the compactness of M.

The estimate (4.1) is enough to follow the proof of [11, Theorem 6.6] and yields

the following theorem.
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Theorem 4.6 Given V ∈ C∞(M), a gradient curve ξ = ρ · volg : [0,∞) → P
∗(M)

of fV produces a weak solution ρ to the associated Fokker–Planck equation

∂ρ

∂t
= ∆ρ + div(ρ · ∇V ).

In particular, the gradient flow of Ent coincides with the heat flow.

To be precise, for any h ∈ C∞(R × M) and 0 ≤ t1 < t2 < ∞, we have

∫

M

ht2
dµt2

−
∫

M

ht1
dµt1

=

∫ t2

t1

∫

M

{

∂ht

∂t
+ ∆ht − 〈∇ht ,∇V 〉

}

dµt dt,

where we set µt := ξ(t) and ht := h(t, ·).

Remark 4.7 At this point, it should be recalled that in the Riemannian setting there

are two ways to see the heat flow as gradient flow: as gradient flow of the relative en-

tropy with respect to the distance W2 as we just did, or as gradient flow of the Dirich-

let energy with respect to the L2-distance (associated with the volume measure). Re-

cently K.-T. Sturm and the second author [12] proved that these two approaches also

coincide in the Finsler setting.

For finite-dimensional Alexandrov spaces, the construction of the heat kernel via

the Dirichlet energy was performed in [6]. It has yet to be proven that such a heat ker-

nel coincides with the gradient flow of the entropy with respect to W2 in the genuine

Alexandrov setting.
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