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The master stability function is a powerful tool for determining synchrony in high-dimensional

networks of coupled limit cycle oscillators. In part, this approach relies on the analysis of a

low-dimensional variational equation around a periodic orbit. For smooth dynamical systems,

this orbit is not generically available in closed form. However, many models in physics,

engineering and biology admit to non-smooth piece-wise linear caricatures, for which it is

possible to construct periodic orbits without recourse to numerical evolution of trajectories. A

classic example is the McKean model of an excitable system that has been extensively studied

in the mathematical neuroscience community. Understandably, the master stability function

cannot be immediately applied to networks of such non-smooth elements. Here, we show how

to extend the master stability function to non-smooth planar piece-wise linear systems, and

in the process demonstrate that considerable insight into network dynamics can be obtained.

In illustration, we highlight an inverse period-doubling route to synchrony, under variation

in coupling strength, in globally linearly coupled networks for which the node dynamics is

poised near a homoclinic bifurcation. Moreover, for a star graph, we establish a mechanism

for achieving so-called remote synchronisation (where the hub oscillator does not synchronise

with the rest of the network), even when all the oscillators are identical. We contrast this with

node dynamics close to a non-smooth Andronov–Hopf bifurcation and also a saddle node

bifurcation of limit cycles, for which no such bifurcation of synchrony occurs.

Key words: General applied mathematics, Synchronisation, Non-smooth equations, Complex

networks, Neural networks

1 Introduction

Real world networks such as those found in the brain, heart, World Wide Web, geo-

economic structures and ecologies show wonderfully rich emergent behaviour. The ob-

served complex patterns of network activity reflect both the connectivity and the non-

linear dynamics of the network components. The new science of networks [1] has proven

especially fruitful in probing the role of connectivity, yet has very little to say about

the role of dynamics, and this has mainly focused on the properties of synchronisation
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in complex networks [2, 3]. This is perhaps not too surprising given the challenge of

understanding even low-dimensional dynamical systems. However, there has been an ap-

preciation for some time in the applied sciences, particularly in engineering and biology,

of the benefits of studying caricature systems built from piece-wise linear (pwl) and

possibly discontinuous dynamical systems. An example from mechanical engineering is

the Lazer–McKenna suspension bridge model which has been used to explain the large

oscillations seen in the Tacoma Narrows bridge collapse [4], using a pwl restoring force

model for bridge stays. Indeed there is a very strong history of pwl modelling across

all of engineering [5], and particularly in electrical engineering [6], that has now begun

to pervade other disciplines, including the social sciences, finance and biology [7]. In a

neuroscience context, the McKean model [8] is a classic example. This replaces the cubic

nullcline of the FitzHugh–Nagumo model [9] for action potential generation with a pwl

function that preserves the original shape, allowing explicit calculations that could not

otherwise be performed in the smooth case. At heart, pwl modelling allows analytical in-

sight to be obtained for a non-linear model by breaking down the phase space into zones

where trajectories obey simple linear dynamical systems, and patching these together

across the boundaries between the zones. The approach can also handle discontinuous

dynamical systems, such as those that arise naturally when modelling impacting mech-

anical oscillators [10], integrate-and-fire models of spiking neurons [11] and caricatures

of cardiac oscillators [12] with both state and time-dependent switching. Although a

beautifully simplistic modelling perspective, the necessary loss of smoothness precludes

the use of many results from the standard toolkit of smooth dynamical systems, and one

must be careful to correctly determine conditions for existence, uniqueness and stability

of solutions [13].

Given the considerable challenge of understanding the dynamics of real world networks,

it is of interest to develop a new mathematical framework for understanding networks

of pwl dynamical elements. The expectation being that the existing success of such an

approach at the single node level, in disciplines ranging from engineering to biology, will

reap similar benefits for understanding network states. As a first step in this direction, we

will focus on networks of identical units with linear coupling. Specifically, we will show

how to extend the powerful machinery developed by Pecora and Carroll [14] to analyse

synchrony in an oscillatory network of coupled pwl non-smooth dynamical systems.

Namely, we augment the master stability function (MSF) approach to treat networks of

non-smooth dynamical elements.

In Section 2, we introduce the class of pwl linear planar dynamical models that we

treat throughout the rest of this paper. This is sufficiently broad that we can discuss

three distinct oscillator models that exemplify (i) a saddle node bifurcation of limit cycles,

(ii) a non-smooth Andronov–Hopf bifurcation and (iii) a homoclinic bifurcation. The

extension of standard Floquet theory is developed in Section 3, providing a method to

determine the stability of periodic orbits in a non-smooth setting. A similar approach is

used in Section 4 to construct the appropriate MSF for studying networks of non-smooth

dynamical elements. As an application of this new form of MSF, we consider global

and star linearly coupled networks in Section 5 and contrast the stability properties of

the synchronous state for each of the oscillator models (i)–(iii). Finally, in Section 6, we

discuss natural extensions of the work in this paper.

https://doi.org/10.1017/S0956792516000115 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792516000115


906 S. Coombes and R. Thul

2 Piece-wise linear models

As well as providing useful caricatures of systems in engineering and biology, non-smooth

pwl models can also be viewed as the uniform limit of smooth non-linearities. As such,

the global dynamics of smooth models can sometimes be approximated by pwl models

and vice versa. For a very readable review of pwl dynamical systems, we refer the reader

to the tutorial by Ponce [15]. Here, we will treat only planar systems, though higher

dimensional systems may be studied with a similar approach. Our main interest will be

in the construction of periodic orbits.

Consider the system described by z = (v, w) ∈ �2 with ż = F(z) and

F(z) =

{
FL ≡ ALz + cL v < a

FR ≡ ARz + cR v > a
. (2.1)

Here, AL,R ∈ �2×2 and cL,R ∈ �2. We define an indicator function h as

h(z) = v − a, (2.2)

so that the switch in the system occurs when h(z) = 0. We shall refer to the line v = a as

the switching manifold, call FL (FR) the left (right) half-system of (2.1) and call the region

of the plane where

SL : v < a (SR : v > a), (2.3)

the left (right) zone. If an equilibrium exists in the left (right) zone, then its stability is

determined by the eigenvalues of AL (AR). These are easily calculated as λ±(AL) (λ±(AR)),

where

λ±(A) =
TrA ±

√
(TrA)2 − 4 detA

2
. (2.4)

We may then classify each half-system of (2.1) in the trace-determinant plane, for which

there are five types of linear system: saddle, attracting node, repelling node, attracting

focus and repelling focus.

Piece-wise linear systems of the type (2.1) may support bifurcations that do not exist

in smooth systems [16]. For example, if an equilibrium crosses a switching manifold

as a system parameter is continuously varied, we expect the eigenvalues to change

discontinuously because of the discontinuity in the Jacobian. In this case, the equilibrium

may disappear or its stability may change, and this is often termed a discontinuous

bifurcation. Many bifurcations caused by discontinuities have been previously studied, and

are often referred to as “C” bifurcations (after the Russian word švejnye for “sewing”) [17].

Examples of C-bifurcations include discontinuous saddle-node bifurcations (that have an

analogue in smooth systems), grazing bifurcations, where a periodic orbit touches a

switching manifold, and sliding bifurcations, where a trajectory moves for some time

along the switching manifold. A recent example of a sliding homoclinic orbit in a pwl

neural mass model can be found in [18].

In general, it is hard to find closed form solutions for periodic orbits in non-linear

dynamical systems. The exception to this rule being pwl systems, in which case solutions of

local linear systems may be glued together to find global trajectories. In essence, we solve
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the system in each of its linear regimes and demand continuity of solutions to construct

orbits of the full non-linear flow. To see how to do this, we denote a trajectory on SL (SR)

by zL (zR) and integrate (2.1) to obtain zL(t, t0) = z(AL, cL; t, t0) (zR(t, t0) = z(AR, cR; t, t0)),

for t > t0, where

z(A, c; t, t0) = G(A; t − t0)z(t0) + K(A; t − t0)c, (2.5)

where

G(A; t) = eAt, K(A; t) =

∫ t

0

G(A; s)ds = A−1[G(A; t) − I2], (2.6)

and I2 is the 2 × 2 identity matrix. If A has real eigenvalues λ± (calculated from (2.4)),

such that Aq± = λ±q± with q± ∈ �2, then we may diagonalise and write G(A; t) in the

computationally useful form G(A; t) = P eΛtP−1, where Λ = diag(λ+, λ−), P = [q+, q−],

and q± = [(λ± − a22)/a21, 1]T , where aij denote the components of A with i, j = 1, 2. If A

has complex eigenvalues ρ ± iω, then the associated complex eigenvector is q such that

Aq = (ρ + iω)q, q ∈ �2. In this case, G(A; t) = eρtPRωtP
−1, where

Rθ =

[
cos θ − sin θ

sin θ cos θ

]
, P = [Im(q),Re(q)] =

[
0 1

ω̂ ρ̂

]
, (2.7)

with ω̂ = ω/a12 and ρ̂ = (ρ − a11)/a12. Note that ρ and ω may be written using the

invariance of Tr and det as ρ = (a11 + a22)/2, ω2 = a11a22 − a12a21 − ρ2 > 0. Imagine

now a closed orbit built from connecting two trajectories, starting from initial data

z(0) = (a, w(0)), in each of the half-systems according to

z(t) =

{
zR(t, 0) t ∈ [0, ΔR]

zL(t, ΔR) t ∈ (ΔR, Δ]
, (2.8)

for some Δ > ΔR > 0. A periodic orbit may be found by demanding that z be Δ-periodic.

Thus, we must simultaneously solve the three equations:

a = v(ΔR), a = v(Δ), w(Δ) = w(0), (2.9)

for the three unknowns (Δ,ΔR, w(0)). This may be done using Matlab (which readily

implements matrix exponentials using expm and can solve systems of algebraic equations

with fsolve). The functions (v(t), w(t)) are constructed from (2.5) and (2.8) with z(ΔR) =

zR(ΔR, 0). We shall refer to ΔR and ΔL = Δ − ΔR as the time-of-flight on SR and SL,

respectively.

We shall now consider three different pwl models, each of which supports oscillatory

behaviour, and utilise the above analysis to construct periodic orbits.

2.1 The McKean model

Like the FitzHugh–Nagumo [9] model that of McKean [8] is a model for action-potential

generation – though its voltage nullcline has an infinitely steep middle branch. The

equations of motion take the form

v̇ = −γv + μH(v − a) − w, ẇ = bv, (2.10)
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Figure 1. Nullclines and illustration of the convex differential inclusion for the McKean model

(v̇ = 0 in blue and ẇ = 0 in magenta). The stable fixed point (in red) is at (0, 0). Parameters are

γ = 1, μ = 3, a = 0.3 and b = 2.

where H is the Heaviside step function. Thus, the model may be written in the form (2.1)

with AL = A = AR , where

A =

[
−γ −1

b 0

]
, cL =

[
0

0

]
, cR =

[
μ

0

]
. (2.11)

The vector field of the model is not defined if v = a, and we have some freedom on how

to extend the vector field to this surface. The widely accepted way to resolve this freedom

is to consider a set valued extension (see e.g. [19]) and write

ż ∈ F(z) =

⎧⎪⎪⎨⎪⎪⎩
FL(z) z ∈ SL

co
(
{FL(z), FR(z)}

)
z ∈ Σ

FR(z) z ∈ SR

, (2.12)

where Σ = {z | v = a} so that �2 = SL
⋃
Σ

⋃
SR and co(S) denotes the smallest closed

convex set containing S . In this particular case,

co
(
{FL(z), FR(z)}

)
= {FS ∈ �2 : FS = (1 − κ)FL + κFR, κ ∈ [0, 1]}. (2.13)

The extension (or convexification) of a discontinuous system (2.10) into a convex dif-

ferential inclusion (2.12) is known as the Filippov convex method [20]. The function

κ = κ(w) is chosen so as to fix v̇ = 0 along v = a for w ∈ [−γa,−γa + μ], giving

κ(w) = (γa + w)/μ, see Figure 1. For a > 0, the fixed point at (v, w) = (0, 0) has eigenval-

ues λ± = (−γ±
√

γ2 − 4b)/2. Hence, for b, γ > 0, the fixed point is stable. For γ2 −4b > 0,

the fixed point is globally attracting. When γ2 − 4b < 0, the fixed point is a focus, and

periodic behaviour may be possible. As a trajectory spirals in to the fixed point, it may

hit the section Σ. At this point, there are two possibilities: (a) the trajectory exits Σ and

enters into either SL or SR; (b) the trajectory remains in Σ and slides.

Using the approach described in Section 2, we may construct periodic orbits, such

as those illustrated in Figure 2. Interestingly, stable periodic orbits can co-exist with

the stable fixed point, separated by an unstable periodic orbit. In the case that this is
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Figure 2. Periodic orbits in the McKean model. Stable limit cycle (green full line) and unstable

limit cycle (red-dashed line) marking the boundary with the domain of attraction of (0, 0). Solid

black lines are typical trajectories. Left: Parameters are γ = 0.1 = μ, a = 0.22 and b = 1 (Δ = 6.3).

Right: Parameters are γ = 1, μ = 3, a = 0.3 and b = 2 (Δ = 4.8).

comprised of the union of an unstable sliding mode on Σ together with a trajectory on SL,

we may construct the orbit by considering evolution in backward time. Under the exchange

t → −t, the signs of v̇ in Figure 1 are reversed and sliding motion along Σ is now stable.

Given that ẇ = −ba (remembering that we are evolving backward in time) along Σ, then

trajectories will slide down (with v̇ = 0) until they hit the point where κ(w) = 0, at which

point they will be subject to dynamics with v̇ < 0 and will spiral out in SL until they

return and hit Σ. If this is below the point where w = −γa + μ, then the trajectory will

slide down again, resulting in a periodic orbit. The time-of-flight in SL can be calculated

using v(ΔL) = a, where zL(t, 0) = z(AL, cL; −t, 0), with z(0) = (a,−γa) for t ∈ [0, ΔL].

Hence, the unstable periodic orbit is the union of zL(t, 0) and the vertical line joining

(a, wL(ΔL)) and (a,−γa). Given that the model can naturally support a co-existing stable

and unstable periodic orbit, we should expect a saddle node bifurcation of limit cycles

under parameter variation. We shall not pursue the construction of bifurcation diagrams

here, though it is useful to mention that the annihilation of periodic orbits is very easily

achieved if we allow the slopes of the voltage nullcline to vary on either side of Σ and use

the ratio of these as a bifurcation parameter. For a further exposition of the model, we

refer the reader to [21] and for an alternative approach to the construction of periodic

orbits see [22]. It is worth emphasising here that the advantage of studying the McKean

model, as opposed to the FitzHugh–Nagumo model, is that it can be solved explicitly.

Moreover, the generalisation of the model to describe an axon with the inclusion of a

spatial diffusion term also admits to a level of analysis for the shape, speed and stability

of waves that would be otherwise be hard to achieve [23].

2.2 The absolute model

In contrast to the McKean model, the absolute model has a continuous v-nullcline and

the equations of motion are written in the form

v̇ = |v − a| − w, ẇ = v − v0 − g(w − w0), (2.14)
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Figure 3. A stable periodic orbit in the absolute model – solid (green) line. Parameters: a = 0,

v0 = 0.1, w0 = −0.1 and g = 0.5. Solid black lines show example trajectories. Nullclines: v̇ = 0 in

blue and ẇ = 0 in magenta. The fixed point lies in SR and is unstable.

with a � 0, 0 < g < 1 and w0 + (a − v0)/g < 0. Thus, the model may be written in the

form (2.1) with

AL =

[
−1 −1

1 −g

]
, AR =

[
1 −1

1 −g

]
, cL =

[
a

gw0 − v0

]
, cR =

[
−a

gw0 − v0

]
. (2.15)

For v > a, the fixed point is at (v, w) = (gw0 − v0 + ga, gw0 − v0 + a)/(g − 1) with stability

determined by the eigenvalues of AR:

λ±(AR) =
1 − g ± i

√
4 − (1 + g)2

2
. (2.16)

Hence, the fixed point for v > a is an unstable focus. In contrast if the fixed point lies

to the left of v = a, with (v, w) = (ga + v0 − gw0, a − v0 + gw0)/(1 + g), then stability is

determined by the eigenvalues of AL:

λ±(AL) =
−(1 + g) ± i

√
4 − (1 − g)2

2
. (2.17)

In this case, the fixed point is a stable focus. The absolute model can thus support

a non-smooth Andronov–Hopf bifurcation that arises when an equilibrium encounters

a switching manifold. This occurs when the equilibrium moves from v < a to v > a

and crosses the switching manifold in such a way that its eigenvalues “jump” across

the imaginary axis. For a more thorough discussion of this bifurcation, we refer the

reader to [24]. An example of a stable periodic orbit, that can emerge from a non-smooth

Andronov–Hopf bifurcation, is shown in Figure 3, together with the nullcline structure for

the model. It is an interesting exercise to check, that in contrast to a smooth Andronov–

Hopf bifurcation, emergent periodic orbits have a period that is independent of g and

whose amplitude scales linearly with g.
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Figure 4. A stable periodic orbit in the homoclinic model (Δ � 25.54), close to a homoclinic

bifurcation – solid (green) line. Nullclines: v̇ = 0 in blue and ẇ = 0 in magenta. The fixed point

in SR is a repelling focus, and the fixed point in SL is a saddle. Parameters: a = 0, τL = −0.6333,

τR = 1/2, δL = −0.3667 and δR = 2.

2.3 A model with a homoclinic loop

Consider a scenario with a saddle for z ∈ SL and a repelling focus for z ∈ SR . In this case,

it is possible to construct a homoclinic orbit that is tangential to the stable and unstable

eigen directions of the saddle in SL, and also manages to enclose the repelling focus in

SR . An example of such an orbit is shown in Figure 4 for the pwl model defined by

AL =

[
τL −1

δL 0

]
, AR =

[
τR −1

δR 0

]
, cL =

[
0

−1

]
= cR, (2.18)

where v̇ and ẇ are chosen to be continuous at v = a (by fixing a = 0). Here, we see that

Tr Aμ = τμ and detAμ = δμ for μ ∈ {L,R}. If we denote λ±(AL) = λ± and λ±(AR) = α± iβ,

with λ− < 0 < λ+ and β > 0, then a (non-degenerate) homoclinic exists if and only if

Λ = 0 [25], where

Λ =
1

2
ln

λ2
−(λ2

+ − 2αλ+α
2 + β2)

λ2
+(λ2

− − 2αλ−α2 + β2)

− α

β

(
2π − tan−1 λ−α − (α2 + β2)

λ−β
− tan−1 α2 + β2 − λ+α

λ+β

)
. (2.19)

Moreover, the existence of a limit cycle or a homoclinic loop requires τLτR � 0 [25]. These

conditions are merely the result of demanding that straight line trajectories in the (v, w)

plane leaving and terminating on the saddle in SL along its unstable and stable manifolds

(which because of linearity are tangent to the eigendirections q+ and q−, respectively)

can form a continuous global trajectory after matching to curved trajectories in SR at the

switching manifold, where v = a. It is also possible to construct homoclinic orbits when

the fixed point in SR is a centre (α = 0), and see [26] for a further discussion. In this case,

it is easy to see that Λ = 0 for the choice Tr AR = 0 = Tr AL and detAR = 1 = − detAL,

although in this special case there are also an infinite number of periodic orbits residing

within the homoclinic loop.
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3 Floquet theory

One may naturally ask how the determination of stability of periodic orbits has been

performed in the above. For the case the vector field is not differentiable or even continuous

one must be careful not to invoke standard Floquet theory without further thought. For

a smooth planar dynamical system, one of the Floquet exponents is equal to zero,

corresponding to perturbations along the periodic orbit, and the other, σsmooth, is given

by

σsmooth =

∫ Δ

0

Tr DF(z(s))ds, (3.1)

where z(t) denotes the Δ-periodic orbit, and DF is the Jacobian of the vector field. However,

much like the construction of continuous periodic orbits can be readily achieved for pwl

planar systems, so too does the Floquet theory simplify. In Appendix A, we show that

the Floquet exponent for the pwl models considered here takes the form

σ =
1

Δ

∑
μ∈L,R

[
Δμ TrAμ + log

v̇(T+
μ )

v̇(T−
μ )

]
, (3.2)

where TR = ΔR and TL = Δ are the switching times defined by h(z(Tμ)) = 0. Here,

T±
μ = limx→0+

Tμ ± x. We note that if v̇ is continuous across the switching manifold, as

is the case for the absolute model, then σ reduces to σsmooth as expected. Periodic orbits

are stable if σ < 0 and unstable if σ > 0. For a more general discussion of the stability of

periodic orbits in planar Filippov system with exactly one switching line (not restricted to

pwl models), see [27]. Interestingly, the result (3.2) was probably first discovered by Leonid

Shilnikov during his Master’s thesis sometime in the 1950s and subsequently discussed in

papers with Neimark1 [29, 30].

For the McKean model, we have that

σ = −γ +
1

Δ
log

(−γa − w(ΔR))

(−γa + μ − w(ΔR))

(−γa + μ − w(Δ))

(−γa − w(Δ))
. (3.3)

Given that the green orbit in the left plot of Figure 2 has a nearly continuous gradient

the formula above shows that it is stable, since σ � −γ < 0. The stability of the other

orbits is found by the numerical calculation of the full formula for σ. For the absolute

model, we have that

σ = −g − ΔL − ΔR

ΔL + ΔR

, (3.4)

and for the homoclinic model

σ =
1

Δ
[ΔRτR + ΔLτL]. (3.5)

1 We are indebted to Andrey Shilnikov for pointing this out and for providing electronic scans of

original print versions of the papers, as well as the observation that his father “. . . quickly became

disillusioned with the whole field, which was too crowded and oriented to narrow engineering

applications” [28].
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4 Extending the master stability function

Synchrony is an important network state due to its relevance in both real world applica-

tions and the foundations of non-linear dynamics [31]. The MSF technique has proven a

very powerful tool for understanding synchrony in coupled systems of identically coupled

oscillators [14] in terms of the eigenstructure of the network connectivity matrix. However,

as it assumes that the underlying oscillation (or even chaotic time-series) is generated by

a smooth dynamical system, we cannot directly employ the MSF approach for the models

considered here. The reason being that, as for the Floquet theory described above in Sec-

tion 3, one must be careful when propagating perturbations through switching manifolds.

However, we may easily incorporate the Floquet treatment of non-smooth systems within

the MSF framework for oscillators. As such, it is first convenient to review the MSF

approach for smooth systems.

To introduce the MSF formalism, it is convenient to consider N nodes (oscillators)

and let zi = (vi, wi) ∈ �2 be the two-dimensional vector of dynamical variables of the

ith node with isolated (uncoupled) dynamics żi = F(zi), with i = 1, . . . , N. The output for

each node is described by a vector function H ∈ �2. For a given connectivity matrix with

components wij and a global coupling strength ε, the network dynamics of N coupled

identical systems, to which the MSF formalism applies, is specified by

d

dt
zi = F(zi) + ε

N∑
j=1

wij

[
H(zj) − H(zi)

]
≡ F(zi) − ε

N∑
j=1

GijH(zj). (4.1)

Here, the matrix G ∈ �N×N with entries Gij has the graph-Laplacian structure Gij =

−wij + δij
∑

k wik . The N − 1 constraints z1(t) = z2(t) = . . . = zN(t) = s(t) define the

(invariant) synchronisation manifold, with s(t) a solution in �2 of the uncoupled system,

namely ṡ = F(s). To assess the stability of this state, we perform a linear stability analysis

expanding a solution as zi(t) = s(t) + δzi(t) to obtain the variational equation

d

dt
δzi = DF(s)δzi − εDH(s)

N∑
j=1

Gijδzj . (4.2)

Here, DF(s) and DH(s) denote the Jacobian of F(s) and H(s) around the synchronous

solution respectively. The variational equation has a block form that can be simplified

by projecting δz into the eigenspace spanned by the (right) eigenvectors of the matrix G.

This yields a set of N decoupled equations in the block form

d

dt
ξl = [DF(s) − ελlDH(s)] ξl , l = 1, . . . , N,

where ξl is the lth (right) eigenmode associated with the eigenvalue λl of G (and DF(s)

and DH(s) are independent of the block label l). Since
∑

j Gij = 0, there is always

a zero eigenvalue, say λ1 = 0, with corresponding eigenvector (1, 1, . . . , 1), describing

a perturbation parallel to the synchronisation manifold. The other N − 1 transverse

eigenmodes must damp out for synchrony to be stable. For a general matrix G, the
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eigenvalues λl may be complex, which brings us to consideration of the system

d

dt
ξ = [DF(s) − αlDH(s)] ξ, αl = ελl ∈ �. (4.3)

For given s(t), the MSF is defined as the function which maps the complex number α to

the greatest Floquet exponent of (4.3). The synchronous state of the system of coupled

oscillators is stable if the MSF is negative at αl = ελl , where λl ranges over the eigenvalues

of the matrix G (excluding λ1 = 0). For a further discussion about the use of the MSF

formalism in the analysis of synchronisation of oscillators on complex networks, we refer

the reader to [3, 32], and for the use of this formalism in spiking neural networks of

non-linear integrate-and-fire type see [11, 33]. This approach has recently been extended

to cover the case of cluster states by making extensive use of tools from computational

group theory to determine admissible patterns of synchrony [34] in unweighted networks.

We now restrict our attention to pwl node dynamics with linear coupling in the v-

component so that H(z) = (v, 0), which is often referred to as diffusive coupling [35]. In

this case, both Jacobians, DF(s) and DH(s), are piece-wise constant matrices. Thus, we

may solve (4.3) using matrix exponentials, since time-ordering is easily handled, being

careful to treat how perturbations evolve through the switching manifold. Using the

techniques developed for constructing the Floquet exponent, as in Appendix A, we find

that after one period ξ(Δ) = Γ (l)ξ(0), where

Γ (l) = KLGL(l)KRGR(l) ∈ �2×2, l = 1, . . . , N, (4.4)

with

Gμ(l) = G(Aμ − αlJ;Δμ), Kμ = K(Tμ), μ ∈ {L,R}, (4.5)

and

K(t) =

[
v̇(t+)/v̇(t−) 0

(ẇ(t+) − ẇ(t−))/v̇(t−) 1

]
, J =

[
1 0

0 0

]
. (4.6)

Here, the matrices Gμ(l) describe the evolution of a system linearised around a periodic

orbit between switching events, whilst the saltation matrices Kμ describe how to map

perturbed trajectories through a switching manifold. We note that for a continuous vector

field the matrices Kμ reduce to I2 as expected. Thus, the synchronous solution will be

stable if the periodic orbit of a single node is stable (in the absence of coupling) and the

eigenvalues of Γ (l) for l = 2, . . . , N lie within the unit disc.

It is worth noting that the MSF formalism can be applied to chaotic systems where,

instead of Floquet exponents, one would calculate Liapunov exponents. In this case, one

must also be careful in treating dynamics at switching events, and for a further discussion

of the calculation of Liapunov exponents in discontinuous dynamical systems see [11,36].

5 Global and star graph connectivities

Although the MSF approach (and its extension to non-smooth systems) is valid for

an arbitrary network, it is informative to consider an application to a globally coupled

network with ε > 0. In this case, the eigenvalues of the graph-Laplacian are easily

calculated since for the choice wij = N−1 we have that Gij = −N−1 +δij , and the non-zero
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(N − 1 degenerate) eigenvalue is +1. In this case, we need only consider the eigenvalues

of M1(ε) = KLG(AL(ε);ΔL)KRG(AR(ε);ΔR), where G(A; t) is given in (2.6) and

Aμ(ε) = Aμ − εJ. (5.1)

We note that the condition for an instability is independent of the system size, since

neither Aμ(ε) nor Kμ depend on N.

The condition for eigenvalues to cross the unit circle along the real axis is det[M1(ε) ±
I2] = 0, and off of the real axis we have the condition detM1(ε) = 1. For the McKean

and absolute models discussed earlier, and specifically the models with parameters as

in Figures 2 and 3, we find that the synchronous state is stable for weak coupling and

that this stability persists with increasing ε. However, for the homoclinic node model,

the synchronous state is unstable for weak ε and can restabilise with increasing ε when

det[M1(ε)+ I2] = 0, namely via an inverse period-doubling bifurcation. For the parameters

of Figure 4, this occurs at ε = εpd � 2.36, and is found to be in excellent agreement with

direct numerical network simulations. Below the point of instability where 0 < ε < εpd

simulations further show that the network typically exhibits quasi-periodic behaviour.

This is expected since the associated network eigenvectors have components that sum to

zero, describing perturbations that act to push the oscillations apart pairwise. To quantify

this, we introduce the mean field variables (�(v),�(w)), where

�(X) =
1

N

N∑
i=1

Xi, (5.2)

and trace the mean field signal for a typical large network simulation in Figure 5. Here, it

can be seen that the mean field trajectory does not settle down, and moreover is repelled

away from the synchronous solution (also plotted). For ε just less than εpd, we see a period

doubled orbit as expected. For large values of ε, it is also possible that a tangent bifurcation

can occur, where det[M1(ε) − I2] = 0, leading to the formation of a cluster state. For the

parameters of Figure 4, this is found to occur at εt � 4.45, with an instability occurring as

ε is increased through εt. We note that for large N the system may support a splay state

with a constant mean field. In this case, one may use the techniques in [37] to determine

the period and stability of this network state, though we shall not pursue this here.

It is also informative to consider a hub and spoke model of N nodes, with a central

oscillator connected to N − 1 other leaf nodes (which are not connected to each other),

describing a star network. These arise very naturally in computer network topologies

where one central computer acts as a conduit to transmit messages (providing a common

connection point for all nodes through a hub). This star graph architecture is described

by a connectivity matrix that we write in the form

w =

⎡⎢⎢⎢⎢⎢⎣
0 1/K 1/K · · · 1/K

1 0 0 · · · 0

1 0 0 · · · 0
...

...
...

1 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎦ . (5.3)
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Figure 5. Simulation of a globally linearly coupled network of homoclinic node models with

ε = 0.3 and N = 100. Other parameters as in Figure 4. The solid green line shows the unstable

synchronous orbit, whilst the thin black line shows the mean field trajectory (�(v),�(w)).

If we make the convenient choice K = N −1, then the eigenvalues of the graph-Laplacian

are 2, 0 and 1 (with N − 2 degeneracy), then any instabilities will be independent of

the system size. Thus, the spectrum of eigenvalues that determines stability is the same

as that for the globally coupled system together with the eigenvalues of the matrix

M2(ε) = KLG(AL(2ε);ΔL)KRG(AR(2ε);ΔR). Thus, if synchrony is stable in a globally

coupled network, then it will also be stable in a star network (since M1(ε) and M2(ε)

are equivalent under a simple re-scaling of ε). If we consider a network of homoclinic

node models then the critical value of ε determined from M2(ε) for a period doubling

instability is precisely εpd/2. This would not be met before the inverse period doubling

bifurcation at εpd (defined by det[M1(ε) − I2] = 0) when decreasing ε. Since the associated

network eigenvector is (0, u2, . . . , uN) with
∑N

i=2 ui = 0, the instability at ε = εpd will excite

a mode in which the leaf nodes desynchronise. However, a tangent bifurcation, where

det[M2(ε) − I2] = 0 is also possible. In this case, the associated network eigenvector is

(−1, 1, . . . , 1) and we would expect the network to break into a cluster state in which the

leaf nodes are synchronised with each other, but not with the hub. This is sometimes

referred to as remote synchronisation [38]. For the parameters of Figure 4, a cluster

bifurcation is found to occur at εt � 2.23, with an instability occurring as ε is increased

through εt. Thus, the synchronous state is always unstable, being unstable to both

a tangent and period-doubling bifurcation for εt < ε < εpd and unstable only to a

period doubling instability for ε < εt and only unstable to a tangent bifurcation for

ε > εpd. An example of an emergent network state in each of these last two parameter

regimes is shown for a star graph with six nodes in Figure 6. Given that, in this

example, εt and εpd are so close we would expect to see the network state that is

most close to synchrony in the parameter window ε ∈ (εt, εpd), and this is confirmed in

simulations. It is interesting to note that although remote synchronisation, as illustrated

in Figure 6 (right), has previously been seen in star networks of Stuart–Landau oscillators

[39], this has required a frequency mismatch between the hub oscillator and the leaf

ones. For the homoclinic node model considered here, no such frequency mismatch is

required.
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Figure 6. Simulation of a linearly coupled star network of six homoclinic node models. Parameters

as in Figure 4. The solid green line shows the unstable synchronous orbit. Blue lines are trajectories

of the hub node, and other lines those of the leaf nodes (colour coded according to the star graph

inset). Left: ε = 1, where the system is only unstable to a period doubling instability. Right: ε = 4,

where the systems is only unstable to a tangent bifurcation. Here, we see an example of a cluster

state exhibiting remote synchronisation.

6 Discussion

In this paper, we have extended the MSF approach for analysing synchrony to treat struc-

tured networks of identical planar non-smooth oscillators. To illustrate the application of

the theory, we have considered global linearly coupled networks and used this to highlight

the importance that local node dynamics can have on network states. In particular, we

have shown that when the local dynamics is poised near a homoclinic bifurcation that

synchrony can be unstable for weak to moderate values of the coupling strength for a

globally coupled network.

As well as local node dynamics, it is now increasingly recognised that there is a major

role to be played by motifs in the synchronisation of complex networks [40]. Motifs are

specific patterns of network connections (either direct or indirect) that occur at a rate

significantly higher than in randomised versions of the network [41]. In the framework

presented here, the critical value of coupling strength to ensure the stabilisation of the

synchronous state is determined in terms of the eigenvalues of a finite set of 2×2 matrices,

each dependent on the eigenvalues of the graph-Laplacian for the network motif. We have

utilised this approach for a star graph to establish that remote synchronisation can also

arise when the choice of local node dynamics is that of an oscillator close to a homoclinic

bifurcation.

The matrix formalism that we have employed is equally well suited to studying higher

dimensional pwl node dynamics, and represents one natural extension of the work in this

paper. We now reflect briefly on other extensions.

The synchronous state is a very special network solution, especially when compared

to more exotic ones, such as phase-locked clusters, chimeras (mixing synchronous and

asynchronous states), chaos and death (where the dynamics of some nodes is silenced), as

recently reviewed in [42] from a neuroscience perspective. Although the tools of weakly

coupled oscillator theory have shed some light on these states, as for example described

in the book by Hoppensteadt and Izhikevich, [43], we currently lack a general theory
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of network dynamics valid for strong coupling. However, for the explicit forms of pwl

models that we have discussed in this paper, we further expect to be able to develop an

explicit theory valid for strong coupling. We have already realised this for synchronous

states (in networks built from identical units), and we advocate for a push to develop

this methodology further to treat more exotic network states, including those expected in

the presence of noise [44]. Moreover, it seems very fruitful to classify emergent dynamics

based upon the group of structural symmetries of the network [45], as has recently been

done in [34] to determine cluster states.

Importantly, the framework that we have presented here, and illustrated for linear coup-

ling, is particularly well suited to studying the type of event driven synaptic interactions

that arise naturally in models of biological neural networks. Indeed the techniques for

constructing the relevant saltation matrices for handling synaptic dynamics with pulsatile

forcing as well as discontinuous reset in non-linear integrate-and-fire systems have recently

been described by Ladenbauer et al. [33]. The combination of this with pwl caricatures

of Izhikevich style integrate-and-fire models [46], such as described in [47], opens the

door for a very thorough examination of network states in biologically realistic spiking

networks.

The above are all topics of current interest and will be reported upon elsewhere.
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Appendix A Floquet theory

If we denote the periodic orbit by z(t) and linearise the equations of motion by considering

z(t) = z(t) + δz(t), for small perturbations δz(t) = (δv, δw), then we find

dδz

dt
= DF δz. (A 1)

Here, the Jacobian DF is a piece-wise constant matrix, independent of the periodic orbit:

DF =

{
AL v < a

AR v > a
. (A 2)

Suppose that we have two trajectories: an unperturbed trajectory z(t) and a perturbed

trajectory z̃(t) such that δz(t) = z̃(t) − z(t). Moreover, let us consider the unperturbed

trajectory to pass through the switching manifold, where v = a, at times Tμ > 0, μ ∈ �,

prescribed by h(z(Tμ)) = 0. Similarly, we shall consider the perturbed trajectory to switch

at times T̃μ = Tμ+δTμ. The indicator function for the perturbed trajectory may be Taylor

expanded as

h(z̃(T̃μ)) = h(z̃(Tμ + δTμ)) = h(z(Tμ + δTμ) + δz(Tμ + δTμ))

� h(z(Tμ) + z′(T−
μ )δTμ) + ∇zh(z(Tμ + δTμ)) · δz(Tμ + δTμ)

� h(z(Tμ)) + ∇zh(z(Tμ)) · z′(T−
μ )δTμ + ∇zh(z(Tμ)) · δz(Tμ). (A 3)
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Here, we have introduced the notation z(T±
μ ) = limε↘0 z(Tμ ± ε), to make sure that

derivatives are well defined. Using the fact that h(z(Tμ)) = 0 = h(z̃(T̃μ)), we obtain

∇zh(z(Tμ)) ·
[
δz(Tμ) + z′(T−

μ )δTμ

]
= 0. (A 4)

Using the result that ∇zh(z) = (∂v, ∂w)(v− a) = (1, 0), the above can be re-arranged to give

the perturbation in the switching time in terms of the difference between the perturbed

and unperturbed trajectories as

δTμ = − δv(t)

dv(t)/dt

∣∣∣∣
t=T−

μ

. (A 5)

We now construct the deviation between the two trajectories at the perturbed switching

time as

δz(Tμ + δTμ) = z̃(Tμ + δTμ) − z(Tμ + δTμ) � z̃(Tμ) + z̃′(T−
μ )δTμ − [z(Tμ) + z′(T−

μ )δTμ]

= δz(Tμ) + [z̃′(T−
μ ) − z′(T−

μ )]δTμ. (A 6)

If δTμ > 0, then the unperturbed trajectory will already have switched, in which case the

two trajectories are on either side of the switching manifold. A similar argument holds

for δTμ < 0. Thus, we may write

δz(Tμ + δTμ) � δz(Tμ) +

[
dz

dt

∣∣∣∣
t=T−

μ

− dz

dt

∣∣∣∣
t=T+

μ

]
δTμ. (A 7)

Combining (A 5) and (A 7) gives[
δv(Tμ + δTμ)

δw(Tμ + δTμ)

]
=

[
δv(Tμ)

δw(Tμ)

]
− δv(Tμ)

v̇(T−
μ )

[
v̇(T−

μ ) − v̇(T+
μ )

ẇ(T−
μ ) − ẇ(T+

μ )

]
, (A 8)

where

v̇(T±
μ ) =

dv(t)

dt

∣∣∣∣
t=T±

μ

, ẇ(T±
μ ) =

dw(t)

dt

∣∣∣∣
t=T±

μ

. (A 9)

We may write the above in matrix form as

[
δv(Tμ + δTμ)

δw(Tμ + δTμ)

]
=

⎡⎣1 − v̇(T−
μ )−v̇(T+

μ )

v̇(T−
μ )

0

− ẇ(T−
μ )−ẇ(T+

μ )

v̇(T−
μ )

1

⎤⎦[
δv(Tμ)

δw(Tμ)

]
, (A 10)

or equivalently as δz(Tμ + δTμ) = K(Tμ)δz(Tμ) with

K(Tμ) =

[
v̇(T+

μ )/v̇(T−
μ ) 0

(ẇ(T+
μ ) − ẇ(T−

μ ))/v̇(T−
μ ) 1

]
. (A 11)

From (A1), between switching events at ΔR and Δ, the perturbations evolve according to

Gμ(t)δz0, where Gμ(t) ≡ G(Aμ; t) = eAμt and δz0 is the perturbation at the switching time.
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Thus, after one period of oscillation we may put this all together to obtain

δz(Δ) = Mδz(0), M = K(Δ)GL(Δ − ΔR)K(ΔR)GR(ΔR). (A 12)

The periodic orbit will be stable if the eigenvalues of M lie within the unit disc. Note

that one of the Floquet multipliers is equal to one, corresponding to perturbations along

the periodic orbit. Let us denote the other eigenvalue by eσΔ and use the result that

detM = eσΔ × 1. Hence,

eσΔ = detM = det[K(Δ)GL(Δ − ΔR)K(ΔR)GR(ΔR)]

= detK(Δ) detK(ΔR) detGL(Δ − ΔR) detGR(ΔR)

=
v̇(Δ+)

v̇(Δ−)

v̇(Δ+
R )

v̇(Δ−
R )

det eAL(Δ−ΔR ) det eARΔR . (A 13)

Using the fact that det eAt = eTrA t, we find

σ =
1

Δ

∑
μ∈L,R

[
Δμ TrAμ + log

v̇(T+
μ )

v̇(T−
μ )

]
, (A 14)

where TR = ΔR , TL = Δ and ΔL = Δ − ΔR .
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