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Abstract. Sather-Wagstaff et al. proved in [8] (S. Sather-Wagsta, T. Sharif and
D. White, Stability of Gorenstein categories, J. Lond. Math. Soc.(2), 77(2) (2008), 481–
502) that iterating the process used to define Gorenstein projective modules exactly
leads to the Gorenstein projective modules. Also, they established in [9] (S. Sather-
Wagsta, T. Sharif and D. White, AB-contexts and stability for Goren-stein at modules
with respect to semi-dualizing modules, Algebra Represent. Theory 14(3) (2011), 403–
428) a stability of the subcategory of Gorenstein flat modules under a procedure to build
R-modules from complete resolutions. In this paper we are concerned with another
kind of stability of the class of Gorenstein flat modules via-à-vis the very Gorenstein
process used to define Gorenstein flat modules. We settle in affirmative the following
natural question in the setting of a left GF-closed ring R: Given an exact sequence of
Gorenstein flat R-modules G = · · · −→ G2 −→ G1 −→ G0 −→ G−1 −→ G−2 −→ · · ·
such that the complex H ⊗R G is exact for each Gorenstein injective right R-module
H, is the module M := Im(G0 → G−1) a Gorenstein flat module?

2000 Mathematics Subject Classification. 13D02, 13D05, 13D07, 16E05, 16E10

1. Introduction. Throughout this paper, R denotes an associative ring with
identity element. All modules, if not otherwise specified, are assumed to be left R-
modules. Let M(R) denote the category of (left) R-modules and let F(R) stand for the
subcategory of flat R-modules.

The development of the Gorenstein homological algebra has reached an advanced
level since the pioneering works of Auslander and Bridger (cf. [1, 2]). One of the
key points of this theory is its ability to identify Gorenstein rings. In the Gorenstein
homological algebra one replaces projective and injective modules, the elementary
entities on which the classical homological algebra is based, with the Gorenstein
projective and the Gorenstein injective modules. Recall that an R-module M is said to
be Gorenstein flat (G-flat for short) if there exists an exact sequence F of flat modules,
called a complete flat resolution, with

F = · · · −→ F2 −→ F1 −→ F0 −→ F−1 −→ F−2 −→ · · ·

such that the complex I ⊗R F is exact for each injective right R-module I (see [5,
6]), and M = Im(F0 → F−1). Let GF(R) denote the class of Gorenstein flat modules
over R.

In [8], Sather-Wagstaff et al. investigated the modules that arise from an iteration
of the very procedure that leads to the Gorenstein projective modules. Indeed, let P(R)
and GP(R) denote the subcategories of projective modules and Gorenstein projective
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modules, respectively. For each subcategory X of the category of R-modules, they
denoted by G1(X ) the category of all R-modules isomorphic to Coker(δX

1 ) for some
exact complex X in X such that the complexes HomR(X ′, X) and HomR(X, X ′) are
exact for each module X ′ in X . Inductively, they set Gn+1G(X) = G(Gn(X )) for each
integer n ≥ 1. They answered a question from the folklore of the subject by proving,
when R is commutative, the next equality

Gn(GP(R)) = GP(R)

for each integer n ≥ 1 (Theorem A in [8]) as well as its dual version for Gorenstein
injective R-modules. Moreover, in [9], they studied the properties of the subcategory of
GC-flat R-modules, where C is a semi-dualising module over a commutative Noetherian
ring R. In this context, they proved that if C is a semi-dualising module over a
commutative Noetherian ring R and n ≥ 1 is an integer, then

Gn(GFC(R) ∩ BC(R)) = GFC(R) ∩ BC(R) (Theorem II(a) in [9]),

where BC(R) is the Bass class associated to C and GFC(R) denotes the category of
GC-flat modules. Thus, in the particular case where C = R, this yields

Gn(GF(R)) = GF(R)

for each integer n ≥ 1, which explicits a certain stability of GF(R) under the above-
introduced Gorenstein procedure G.

On the other hand, in [3], Bennis defined and studied the notion of left GF-
closed rings. These are rings for which GF(R) is closed under extension, that is
for any exact sequence 0 −→ A −→ B −→ C −→ 0 of R-modules if A, C ∈ GF(R),
then B ∈ GF(R). It is worthwhile to note in this respect that the class of left GF-
closed rings includes (strictly) right coherent rings together with rings of finite weak
global dimension. Bennis showed that over a left GF-closed ring R, GF(R) is actually
projectively resolving Theorem 2.3 in [3]. Also, he transfers in [3] all properties and
characteristics of the Gorenstein flat modules over right coherent rings established in
[6] to the case of left GF-closed rings.

The main purpose of this paper is to establish, in the setting of a left GF-closed
ring R, the stability of the Gorenstein flat modules under the very process used to
define these entities. Denote by G(2)F(R) (resp., G(2)

i F(R)) the subcategory of M(R)
for which there exists an exact sequence of Gorenstein flat R-modules G = · · · −→
G2 −→ G1 −→ G0 −→ G−1 −→ G−2 −→ · · · such that the complex H ⊗R G is exact
for each Gorenstein injective right R-module H (resp., I ⊗R G is exact for each injective
right R-module I) and M = Im(G0 → G−1). It is routine to check that

GF(R) ⊆ G(2)F(R) ⊆ G(2)
i F(R).

Our main theorem proves that these inequalities turn out to be equalities when R is a
left GF-closed ring as is stated next.

1.2. Main theorem. Let R be a left GF-closed ring. Then

GF(R) = G(2)F(R) = G(2)
i F(R).
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2. Proof of the main theorem. First, let us call the Gorenstein G-flat module any
element of G(2)

i F(R), which is defined above.
For their simple characteristics the strongly Gorenstein flat modules were

introduced and studied in [4]. Recall that an R-module M is called a strongly Gorenstein
flat (SG-flat for short) module if there exists an exact sequence of R-modules,

0 −→ M −→ F −→ M −→ 0

such that F is a flat R-module and I ⊗R − leaves this sequence exact whenever I is an
injective right module over R (Definition 3.1 in [4]). It is proved in this respect that
each Gorenstein flat module is a direct summand of a strongly Gorenstein flat module
(Theorem 3.5 in [4]). The proof of our main theorem relies heavily on the use of these
new entities and cast light on the crucial role they play in the Gorenstein homological
algebra.

Next, we introduce strongly Gorenstein G-flat modules.

DEFINITION 2.1. An R-module M is called a strongly Gorenstein G-flat module if
there exists an exact sequence of R-modules 0 −→ M −→ F −→ M −→ 0 such that
F is Gorenstein flat over R and I ⊗R − leaves this sequence exact for each injective
right R-module I .

PROPOSITION 2.2. (1) Any strongly Gorenstein G-flat module is Gorenstein G-flat.
(2) The family of Gorenstein G-flat modules is stable under arbitrary direct sums.

Proof. (1) It is straightforward.
(2) It is straightforward, since any direct sum of Gorenstein flat modules

is Gorenstein flat (Proposition 3.2 in [6]) and since, for each positive integer n,
TorR

n (B,
⊕

i
Ai) ∼= ⊕

i
TorR

n (B, Ai) for any family of modules Ai and any right module B

(Theorem 8.10 in [7]). �
PROPOSITION 2.3. Let M be an R-module. Then the following statements hold.

(1) Given an exact sequence of R-modules

0 −→ K −→ G1 −→ G2 −→ · · · −→ Gn −→ M −→ 0

such that G1, G2, ..., Gn are Gorenstein flat modules, then

TorR
n+i(Q, M) ∼= TorR

i (Q, K)

for each right R-module Q with finite injective dimension and each integer i ≥ 1.
(2) If M is a Gorenstein G-flat R-module, then TorR

i (Q, M) = 0 for each right R-
module Q with finite injective dimension and each integer i ≥ 1.

Proof. (1) It suffices to handle the case n = 1. So, let 0 −→ K −→ G −→ M −→ 0
be an exact sequence such that G is Gorenstein flat. Let Q be a right R-module with
finite injective dimension. Applying the functor Q ⊗R − to this sequence yields the
following exact sequence:

TorR
i+1(Q, G) = 0 −→ TorR

i+1(Q, M) −→ TorR
i (Q, K) −→ TorR

i (Q, G) = 0

for each integer i ≥ 1. This ensures that TorR
i+1(Q, M) ∼= TorR

i (Q, K) for each integer
i ≥ 1, as desired.
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(2) We proceed by induction on s := idR(QR) < +∞. Let M be a Gorenstein G-flat
module. Then there exists a short exact sequence 0 −→ K −→ G −→ M −→ 0 such
that G is a Gorenstein flat module, K is a Gorenstein G-flat module and

0 −→ Q ⊗R K −→ Q ⊗R G −→ Q ⊗R M −→ 0

is exact whenever Q is an injective right R-module. Hence, TorR
1 (Q, M) = 0 for each

injective right module Q. Reiterating this process and using (1), we get TorR
i (Q, M) = 0

for each injective right module Q and each integer i ≥ 1. Then the case s = 0 holds. So
let s ≥ 1 and let Q be a right R-module of injective dimension s. Let 0 −→ Q −→ I −→
Q′ −→ 0 be an exact sequence of right R-modules such that I is injective. Tensoring
with M yields the following exact sequence, for each integer i ≥ 1:

· · · → TorR
i+1(I, M) = 0 → TorR

i+1(Q′, M) → TorR
i (Q, M) → TorR

i (I, M) = 0 → · · · ,

by the first step so that, by inductive assumptions, TorR
i (Q, M) ∼= TorR

i+1(Q′, M) = 0
for each integer i ≥ 1, as claimed. �

The next result establishes an analog version of Proposition 3.6 in [4] for the
Gorenstein G-flat notion.

PROPOSITION 2.4. Let M be an R-module. Then the following statements are
equivalent:

(1) M is a strongly Gorenstein G-flat module.
(2) There exists an exact sequence 0 −→ M −→ G −→ M −→ 0 such that G is a

Gorenstein flat module, and TorR
1 (Q, M) = 0 for any injective right R-module Q.

(3) There exists an exact sequence 0 −→ M −→ G −→ M −→ 0 such that G is a
Gorenstein flat module, and TorR

1 (Q, M) = 0 for any right R-module Q with finite
injective dimension.

(4) There exists an exact sequence 0 −→ M −→ G −→ M −→ 0 such that G is
a Gorenstein flat module and, for any right R-module Q with finite injective
dimension, the following sequence is exact

0 −→ Q ⊗R M −→ Q ⊗R G −→ Q ⊗R M −→ 0.

Proof. (1) ⇒ (2) holds by Proposition 2.3(2).
(2) ⇒ (3), it is similar to the proof of Proposition 2.3(2).
(3) ⇒ (4) and (4) ⇒ (1) are straightforward, completing the proof. �
The following result is analog to Theorem 3.5 in [4].

PROPOSITION 2.5. Let M be a Gorenstein G-flat R-module. Then M is a direct
summand of a strongly Gorenstein G-flat module.

Proof. Let M be a Gorenstein G-flat module and G = · · · −→ G2
d2−→ G1

d1−→
G0

d0−→ G−1
d−1−→ G−2

d−2−→ · · · be a complete Gorenstein flat resolution such that M =
Im(d0). Let Mi := Im(di) for each integer i. As GF(R) is stable under direct sums, it is
easily seen that the following sequence is a complete Gorenstein flat resolution:

G′ = · · · −→
⊕

i∈ZZ

Gi
⊕idi−→

⊕

i∈ZZ

Gi
⊕idi−→

⊕

i∈ZZ

Gi
⊕idi−→

⊕

i∈ZZ

Gi
⊕idi−→

⊕

i∈ZZ

Gi
⊕idi−→ · · ·
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such that Im(⊕idi) = ⊕
i

Mi. Then
⊕

i
Mi is a strongly Gorenstein G-flat module

so that M is a direct summand of a strongly Gorenstein G-flat module, as
contended. �

For brevity, we adopt the following definition.

DEFINITION 2.6. Let M be a strongly Gorenstein G-flat module. An R-module
N is called an M-type module if there exists an exact sequence 0 −→ M −→ N −→
H −→ 0 such that H is a Gorenstein flat module.

Proposition 2.7 and Corollary 2.8 start the proof of the Main Theorem.

PROPOSITION 2.7. Let M be a strongly Gorenstein G-flat module and N an M-type
module. Then,

(1) TorR
i (Q, N) = 0 for each injective right R-module Q and for each integer i ≥ 1.

(2) If R is a left GF-closed ring, then there exists an exact sequence 0 −→ N −→
F −→ L −→ 0 such that F is a flat module and L is an M-type module.

Proof. (1) If 0 −→ M −→ N −→ H −→ 0 is an exact sequence such that H is a
Gorenstein flat R-module, then, by considering the corresponding long exact sequence
and by Proposition 2.3, we have TorR

i (Q, N) ∼= TorR
i (Q, M) = 0 for each injective right

module Q and each integer i ≥ 1.
(2) Assume that R is a left GF-closed ring. Let 0 −→ M −→ G −→ M −→ 0 and

0 −→ M −→ N −→ H −→ 0 be exact sequences such that G and H are Gorenstein
flat R-modules. Consider the following pushout diagram:

0 0
↓ ↓

0 → M → G −→ M → 0
↓ ↓ ‖

0 → N → T − → M → 0
↓ ↓
H = H
↓ ↓
0 0

Since G and H are Gorenstein flat modules, we get, as R is left GF-closed, T is
Gorenstein flat over R by Theorem 2.3 in [3]. Then there exists a short exact sequence
0 −→ T −→ F −→ K −→ 0 such that F is a flat R-module and K is a Gorenstein flat
R-module. Hence, we get the following pushout diagram:

0 0
↓ ↓

0 → N −→ T → M → 0
‖ ↓ ↓

0 → N − → F → L → 0
↓ ↓
K = K
↓ ↓
0 0

as desired. �
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COROLLARY 2.8. Let R be a left GF-closed ring. Let M be a strongly Gorenstein
G-flat module and N an M-type module. Then N is a Gorenstein flat R-module.

Proof. First, observe that by Proposition 2.7 there exist a flat module F0 and an
M-type module L such that the following sequence 0 −→ N −→ F0 −→ L −→ 0 is
exact and stays exact after applying the functor Q ⊗R − for each injective right module
Q. Then, it suffices to iterate Proposition 2.7(2) to get a resolution

0 −→ N −→ F0 −→ F1 −→ F2 −→ · · ·
of flat modules, which remains exact after applying the functor Q ⊗R − for each
injective right R-module Q. Now, Proposition 2.7(1) completes the proof. �

Proof of the main theorem. In view of the inclusions GF(R) ⊆ G(2)F(R) ⊆
G(2)

i F(R), it suffices to prove that G(2)
i F(R) ⊆ GF(R). Since R is left GF-closed, by

Corollary 2.6 in [3], GF(R) is stable under direct summands. Thus, it suffices, by
Proposition 2.5, to prove that any strongly Gorenstein G-flat module is Gorenstein
flat. Then, let M be a strongly Gorenstein G-flat module. There exists an exact
sequence 0 −→ M −→ G −→ M −→ 0 such that G is a Gorenstein flat module
and TorR

i (Q, M) = 0 for each injective right module Q and each integer i ≥ 1 by
Proposition 2.4. As G is Gorenstein flat, there exists an exact sequence of R-modules
0 −→ G −→ F −→ G1 −→ 0 such that F is a flat module and G1 is a Gorenstein flat
module. Then we get the following pushout diagram:

0 0
↓ ↓

0 → M −→ G → M → 0
‖ ↓ ↓

0 → M − → F → M1 → 0
↓ ↓

G1 = G1

↓ ↓
0 0

Hence, M1 is an M-type R-module. It follows from Corollary 2.8 that M1 is a
Gorenstein flat module. As R is left GF-closed and G1 is Gorenstein flat, we get
M is a Gorenstein flat R-module, as desired. �
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