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Abstract We discuss the problem of the regularity-in-time of the map t �→ Tt ∈ Lp(Rd, R
d; σ), where

Tt is a transport map (optimal or not) from a reference measure σ to a measure µt which lies along an
absolutely continuous curve t �→ µt in the space (Pp(Rd), Wp). We prove that in most cases such a map
is no more than 1/p-Hölder continuous.
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1. Introduction

Starting from the pioneering work of Otto [8], much is known today about the Rie-
mannian structure of the Wasserstein space (P2(Rd), W2). One of the basic facts of the
theory is that, for any probability measure σ with bounded second moment, there is a
well-defined ‘exponential map’ from L2(Rd, Rd; σ) to P2(Rd) given by

v �→ (Id +v)#σ,

where Id is the identity map and (Id +v)#σ is the push-forward of σ through Id +v. The
trivial inequality

W2((Id +v)#σ, (Id +w)#σ) �
√∫

|v(x) − w(x)|2 dσ(x)

may be interpreted as the confirmation of the formal fact that (P2(Rd), W2) has non-
negative curvature, since the exponential map is non-expansive. If the measure σ is
absolutely continuous (this condition may be weakened; see, for example, [1] or [9] for
more general results), the exponential map has a natural right inverse: the function which
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associates to each µ ∈ P2(Rd) the vector field Tµ
σ − Id, where Tµ

σ is the optimal transport
map from σ to µ. The existence of such a map is given by the celebrated theorem of
Brenier [2].

A natural question then arises: which kind of regularity should we expect from the
map µ �→ Tµ

σ ?
A well-known result in this direction is that, under the assumption σ � Ld which

guarantees existence and uniqueness of the optimal transport map, from the so-called
‘stability of optimality’ it follows that the function P2(Rd) � µ �→ Tµ

σ ∈ L2(Rd, Rd; σ) is
continuous.

It is then natural to ask whether or not there is more regularity. A typical question is
the following: given an absolutely continuous curve t �→ µt ∈ P2(Rd), which regularity
does the map t �→ Tµt

σ ∈ L2(Rd, Rd; σ) have?
This question has been investigated by several authors, including Loeper and Ambrosio.

Loeper [7] obtained the following result: he assumed µt = (X(t, ·))#σ, with σ = Ld|U
for some open set U , and X(t, x) : [0, 1] × U → R

d with both X and ∂tX L∞ in space
and time, and he derived that the optimal transport map Tt from σ to µt satisfies the
condition

t �→ Tt is of bounded variation in L2(Rd, Rd, σ).

The results of Ambrosio are unpublished. With his permission, we report here his
result, which shows that, under certain conditions on σ and (µt) (similar to those of
Caffarelli’s regularity theory for the solutions of the Monge–Ampère Equation), the map
t �→ Tµt

σ ∈ L2(Rd, Rd; σ) is 1
2 -Hölder continuous.

The main result of this paper is that 1
2 -Hölder regularity is the most we can expect

(§ 3). We will also see that, for the same question asked in the space (Pp(Rd), Wp), the
maximum regularity is 1/p-Hölderianity, and that in general we cannot gain greater
regularity by dropping the requirement that the transport maps considered are optimal
(Theorem 5.1).

2. Notation

For a given 1 < p < ∞, the set Pp(Rd) ⊂ P(Rd) is the set of Borel probability measures
on R

d with bounded p moment, i.e.

Pp(Rd) :=
{

µ ∈ P(Rd) :
∫

|x|p dµ(x) < ∞
}

.

The Wasserstein distance Wp of order p is defined on Pp(Rd) as

Wp(µ, ν) := min p

√∫
|x − y|p dγ, (2.1)

where the minimum is taken among all admissible plans γ ∈ P(Rd × R
d) satisfying

π1
#γ = µ and π2

#γ = ν, where π1 and π2 are the projection onto the first and second
coordinate, respectively. An admissible plan is called optimal if it realizes the minimum
in (2.1).
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3. 1
2 -Hölder regularity is achievable

Here we report a proof (L. Ambrosio, personal communication) that under appropriate
hypotheses the 1

2 -Hölder regularity of t �→ Tµt
σ ∈ L2(Rd, Rd; σ) is achievable when (µt) is

an absolutely continuous curve in P2(Rd). The hypotheses we make about the measures
involved are far from being optimal: it is not our purpose here to look for maximum
generality, but just to show that 1

2 -Hölder continuity of the optimal transport map is
achievable. In particular, the regularity result due to Caffarelli [3–5], which is the key
ingredient of the proof, is not recalled here in its maximum generality.

Theorem 3.1 (Caffarelli’s regularity result). Let µ, σ ∈ P2(Rd). Assume that
supp(µ) and supp(σ) (i.e. the smallest closed sets on which µ and σ are concentrated) are
both C2 and uniformly convex. Also assume that both µ and σ are absolutely continuous
with C0,α densities on their supports, for some α ∈ (0, 1), satisfying

0 < c �
∥∥∥∥ dσ

dLd

∥∥∥∥
∞

� C,

0 < c̄ �
∥∥∥∥ dµ

dLd

∥∥∥∥
∞

� C̄.

Then the optimal transport map from µ to σ is the gradient of a C2,α function on
supp(µ).

Corollary 3.2 (uniform convexity of the optimal transport map). With the
same hypotheses as the previous theorem, let ϕ ∈ C2,α(supp(µ)) be a smooth function
whose gradient is the optimal transport map from µ to σ (ϕ is uniquely defined up to a
constant). Then ϕ is strictly uniformly convex.

Proof. By Brenier’s Theorem, we know that ϕ is convex; thus, the Monge–Ampère
Equation

dσ

dLd
(∇ϕ(x)) det(∇2ϕ(x)) =

dµ

dLd
(x)

holds. From the bound on the densities of µ and σ we get

c̄

C
� det(∇2ϕ(x)) for all x ∈ supp(µ).

Also, by Caffarelli’s regularity result we know that

sup
x∈supp(µ)

‖∇2ϕ(x)‖op < ∞,

where ‖A‖op is the operatorial norm of the linear map A : R
d → R

D. From this uniform
upper bound on the eigenvalues of ∇2ϕ(x) plus the uniform lower bound on det(∇2ϕ(x))
obtained before, we get the strict uniform convexity. �
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Proposition 3.3. Let µ and σ be as in Theorem 3.1, let ϕ ∈ C2,α(supp(µ)) be the
smooth function whose gradient is the optimal transport map from µ to σ, let λ > 0
be the modulus of uniform convexity of ϕ (i.e. λ is the supremum of λ′ such that x �→
ϕ(x)− 1

2λ′|x|2 is convex on supp(µ)) and let T := (∇ϕ)−1. Then for every transport map
S from σ to µ the following holds:

‖S − T‖2
σ � 2

λ
(‖S − Id‖2

σ − ‖T − Id‖2
σ).

Proof. We have

0 =
∫

ϕ(y) dµ(y) −
∫

ϕ(y) dµ(y)

=
∫

ϕ(S(x)) − ϕ(T (x)) dσ(x)

�
∫

〈∇ϕ(T (x)), S(x) − T (x)〉 dσ(x) + 1
2λ‖S − T‖2

σ.

Now observe that ∇ϕ(T (x)) = x for every x ∈ supp(σ); thus, the following holds:∫
〈∇ϕ(T (x)), S(x) − T (x)〉 dσ(x) =

∫
〈x, S(x) − T (x)〉 dσ(x)

= − 1
2‖S − Id‖2

σ + 1
2‖T − Id‖2

σ.

�

Corollary 3.4 (1
2 -Hölder regularity). Let σ ∈ P2(Rd) and let (µt) ⊂ P2(Rd) be a

Lipschitz curve of absolutely continuous measures. Assume that σ and µ := µ0 satisfy
the assumptions of Caffarelli’s Theorem (Theorem 3.1) and, for every t ∈ [0, 1], let Tt be
the optimal transport map from σ to µt. Then t �→ Tt ∈ L2(Rd, Rd; σ) satisfies

lim
t→0+

‖Tt − T0‖σ√
t

< ∞.

Proof. Let L be the Lipschitz constant of the curve t �→ µt ∈ P2(Rd). Apply Brenier’s
Theorem to get the existence of optimal transport maps St from µt to µ0. The map St◦Tt

maps σ into µ0. Thus, applying Proposition 3.3, we get

‖St ◦ Tt − T0‖2
σ � C(‖St ◦ Tt − Id‖2

σ − ‖T0 − Id‖2
σ) (3.1)

for every t ∈ [0, 1] and some constant C independent of t.
Now observe that

‖St ◦ Tt − Id‖σ � ‖St ◦ Tt − Tt‖σ + ‖Tt − Id‖σ

= ‖St − Id‖µt + W2(µt, σ)

� 2W2(µ0, µt) + W2(µ0, σ)

� 2Lt + W2(µ0, σ),
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and, similarly,

‖St ◦ Tt − T0‖σ � ‖Tt − T0‖σ − ‖St ◦ Tt − Tt‖σ � ‖Tt − T0‖σ − Lt.

Using these two inequalities in (3.1) and recalling that ‖T0 − Id‖σ = W2(µ0, σ), we
complete the proof. �

4. 1
2 -Hölder regularity is the best we can expect in general

Here we give an explicit example in P2(R2) which shows that in general 1
2 -Hölder regu-

larity is the best we can expect.
Let A := (−2, 1), B := (2, 1), C := (0,−2) and O := (0, 0). Since the strict inequality

|A − O|2 + |O − C|2 = 5 + 4 < 13 + 0 = |A − C|2 + |O − O|2

holds, where | · | is the Euclidean norm, we have that for r > 0 small enough the following
holds:

|A − O′|2 + |O − C ′|2 < |A − C ′|2 + |O − O′|2 for all O′ ∈ Br(O), C ′ ∈ Br(C). (4.1)

Fix such an r, with no loss generality assume r < 1, and define the measures

µ0 := 1
2 (δA + δO),

µ1 := 1
2 (δB + δO),

σ := (2πr2)−1(L2|Br(O)∪Br(C)).

Inequality (4.1) implies that the optimal transport map T0 from σ to µ0 satisfies
T0(Br(O)) = {A} and T0(Br(C)) = {O}. Symmetrically, for the optimal transport map
T1 from σ to µ1 it holds that T1(Br(O)) = {B} and T1(Br(C)) = {O}.

Now observe that, since

|A − O|2 + |O − B|2 = 5 + 5 < 16 + 0 = |A − B|2 + |O − O|2,

there is a unique optimal plan between µ0 and µ1 and this plan is induced by the map
S, seen from µ0, given by S(A) = O and S(O) = B. Observe that it holds that

S(T0(Br(O))) �= T1(Br(O)).

Let µt := ((1 − t) Id +tS)#µ0 and let Tt be the optimal transport map from σ to µt.
Let Dt := (1 − t)A and Et := tB, so that supp(µt) = {Dt, Et}.

We now present the main idea of the example. We claim that the map t → Tt ∈
L2(R2, R2; σ) is not Cα for α > 1

2 : we will argue by contradiction. Suppose that for some
α > 1

2 the map is Cα. Let σ̄ := (πr2)−1L2|Br(O) and observe that from σ̄ � 2σ we deduce∫
|Tt − Ts|2 dσ̄ � 2

∫
|Tt − Ts|2 dσ.
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Figure 1. Position of the masses.

Thus, any ‘regularity of t �→ Tt seen as a curve in L2(R2, R2; σ) is inherited by the curve
t �→ Tt seen as a curve with values in L2(R2, R2, σ̄)’. In particular, the map t �→ Tt ∈
L2(R2, R2; σ̄) is also Cα. Therefore, defining the measures

νt := (Tt)#σ̄,

and using the inequality

W 2(νt, νs) �
∫

|Tt − Ts|2 dσ̄,

we get that the curve t �→ νt ∈ (P2(Rd), W2) is Cα. The contradiction comes from the
fact that the mass of ν0 lies entirely on D0, while the mass of ν1 is on E1. To make
the contradiction evident, define the function f : [0, 1] → [0, 1] as f(t) := νt(Dt) and
observe that it holds that f(0) = 1 and f(1) = 0. Now we want to evaluate the distance
W (νt, νs): roughly speaking, the best way to move the mass from νt to νs is to move as
much mass as possible from Dt to Ds, as much mass as possible from Et to Es and then
to ‘adjust the rest’. More precisely, it can easily be checked that the optimal transport
plan between νt and νs is given by

min{f(t), f(s)}δ(Dt,Ds) + min{1 − f(t), 1 − f(s)}δ(Et,Es)

+ (f(t) − f(s))+δ(Dt,Es) + (f(s) − f(t))+δ(Et,Ds),

as its support is either {(Dt, Ds), (Et, Es), (Dt, Es)} or {(Dt, Ds), (Et, Es), (Et, Ds)}
(depending on whether f(t) � f(s) or vice versa, respectively) and both of these sets are
cyclically monotone. Therefore, we get

W 2
2 (νt, νs) = min{f(t), f(s)}|Dt − Ds|2 + min{1 − f(t), 1 − f(s)}|Et − Es|2

+ (f(t) − f(s))+|Dt − Es|2 + (f(s) − f(t))+|Et − Ds|2.
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Considering only the last two terms of the expression on the right-hand side and choosing
|s − t| < 1

2 , we get the bound

W2(νt, νs) �
√

5
2

√
f(t) − f(s).

From the fact that t �→ νt ∈ (P2(Rd), W2) is Cα we get√
f(t) − f(s) � c|t − s|α for all t, s such that |s − t| < 1

2 ,

for some constant c. The contradiction follows. Indeed, the above inequality and the fact
that α > 1

2 implies that f is constant on [0, 1], while we know that f(0) = 1 and f(1) = 0.

5. Generalization of the previous example

For any open set Ω ⊂ R
d × [0, 1], let Ωt ⊂ R

d be the section defined by

Ωt := {x ∈ R
d : (x, t) ∈ Ω}.

Theorem 5.1. Let (µt) ⊂ Pp(Rd) be an absolutely continuous curve and assume that
there exist two open sets Ω1, Ω2 ⊂ R

d × [0, 1] such that

(i) µt(Ω1
t ∪ Ω2

t ) = 1 and µt(Ω1
t ), µt(Ω2

t ) > 0 for any t ∈ [0, 1],

(ii) for every t ∈ [0, 1] there exists δt > 0 such that dt := infs∈[t−δt,t+δt] d(Ω1
t , Ω2

t ) > 0.

Also let σ ∈ Pp(Rd) and (Tt) ∈ Lp(Rd, Rd; σ) be any choice of Borel maps satisfying
(Tt)#ν = µt for any t ∈ [0, 1]. Assume that for some t0, t1 ∈ [0, 1] the following holds:

σ((T−1
t0 (Ω1

t0))∆(T−1
t1 (Ω1

t1))) �= 0, (5.1)

where ∆ stands for the symmetric difference. Then the map t �→ Tt ∈ Lp(Rd, Rd; σ) is
not α-Hölder continuous for any α > 1/p.

Proof. Without loss of generality we may assume t0 = 0 and t1 = 1. From µ0(Ω1
0) > 0

and (T0)#σ = µ0 we derive σ(T−1
0 (Ω1

0)) > 0. Define

σ̄ := cσ|T −1
0 (Ω1

0),

νt := (Tt)#σ̄,

where c is a normalization constant, and

f(t) := νt(Ω1
t ).

Observe that νt is concentrated on Ω1
t ∪Ω2

t for any t ∈ [0, 1]. From the absolute continuity
of the curve (µt) and the hypotheses (i) and (ii) it may immediately be verified that
µt(Ω1

t ) does not depend on t. Therefore, (5.1) implies f(1) < f(0).
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For any t, s ∈ [0, 1], let γs
t be any optimal plan from νt to νs; γs

t must be concentrated
on (Ω1

t ∪ Ω2
t ) × (Ω1

s ∪ Ω2
s ). From

γs
t (Ω2

t × Ω1
s ) = γs

t (Rd × Ω1
s ) − γs

t (Ω1
t × Ω1

s )

= f(s) − (γs
t (Ω1

t × R
d) − γs

t (Ω1
t × Ω2

s ))

= f(s) − f(t) + γs
t (Ω1

t × Ω2
s )

and the positivity of γs
t we deduce

γs
t (Ω2

t × Ω1
s ) � max{f(s) − f(t), 0},

γs
t (Ω1

t × Ω2
s ) � max{f(t) − f(s), 0}.

Thus, recalling (ii) we get

W p
p (νs, νt) =

∫
|x − y|p dγs

t (x, y)

�
∫

Ω1
t ×Ω2

s∪Ω2
t ×Ω1

s

|x − y|p dγs
t (x, y)

� dp
t |f(t) − f(s)| (5.2)

for every s ∈ [t − δt, t + δt].
To conclude the proof, we will argue by contradiction. Assume that t �→ Tt ∈

Lp(Rd, Rd; σ) is α-Hölder continuous for some α > p−1. Coupling the inequality

Wp(νt, νs) �
( ∫

|Tt − Ts|p dσ̄

)1/p

� c1/p

( ∫
|Tt − Ts|p dσ

)1/p

� C|s − t|α

with (5.2), we get

dt|f(s) − f(t)|1/p � C|s − t|α, s ∈ [t − δt, t + δt],

which may be written as

|f(s) − f(t)|
|s − t| � Cp

dp
t

|s − t|αp−1, s ∈ [t − δt, t + δt].

Since we assumed α > p−1, this equation implies that f is constant. This is contradictory,
as we know that f(1) < f(0). �

We conclude with some comments on this result.

Remark 5.2. An example of curve (µt) satisfying the assumptions of the theorem is
the restriction to [0, 1] of some geodesic defined in a larger interval (−ε, 1 + ε), such that
µ0 is concentrated on two distant sets and gives positive mass to each of them. Indeed,
in this case it is known that there exists a bi-Lipschitz map S such that

µt := ((1 − t)Id + tS)#µ0,

and from this fact it is easy to build open sets Ω1, Ω2 for which (i) and (ii) of the theorem
are satisfied.
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Remark 5.3. The fact that the maps Tt are optimal transport maps for the Wasser-
stein distance Wp is not one of the assumptions of the above theorem.

Remark 5.4 (independence of the geometry). It can immediately be verified
that the validity of Theorem 5.1 does not rely on the fact that we are working on R

d

rather than on a generic Polish space (X, d). A similar result holds when the curve (µt)
is contained on Pp(X), i.e. on the set of Borel probability measures µ on X such that∫

dp(x, x0) dµ(x) < ∞ for some x0 ∈ X.

The only thing we should address is the meaning of Hölder regularity for a time-
dependent transport map, as in this setting the transport maps no longer belong to a
Hilbert space. The natural generalization is to define the set Trµ of all transport maps
from µ ∈ Pp(X) as

Trµ :=
{

T : X → X : T is Borel and
∫

dp(x, T (x)) dµ(x) < ∞
}

,

to identify two maps in this set if they coincide µ-a.e. and to endow this space with the
distance D defined as

Dp(T, S) :=
∫

dp(T (x), S(x)) dµ(x).

Then the space (Trµ, D) is a metric space, and it makes sense to say that a map t �→
Tt ∈ Trµ is Hölder continuous.
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