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Abstract. We consider a class of operators that contains the strictly singular
operators SS and it is contained in the perturbation class of the upper semi-Fredholm
operators P�+. We show that this class is strictly contained in P�+, solving a question
of Friedman. We obtain similar results for the strictly cosingular operators SC and the
perturbation class of the lower semi-Fredholm operators P�−. We also characterize
SS in terms of P�+ and SC in terms of P�−. As a consequence, we show that SS and
SC are the biggest operator ideals contained in P�+ and P�−, respectively.

2010 Mathematics Subject Classification. 47A53.

1. Introduction. The strictly singular operators SS were introduced by Kato [14]
and he showed that they are contained in the perturbation class of the upper semi-
Fredholm operators P�+. It has been a long-standing open problem whether these two
classes coincide, until a negative solution was given in [9]. In [7], Friedman considered
the following condition (C) for an operator K ∈ L(X, Y ):

(C) S ∈ L(X, Y ), dim(X∗/(R(K∗) + R(S∗))) < ∞ ⇒ dim(X∗/R(S∗)) < ∞,

where K∗ is the conjugate operator of K . She showed that

K ∈ SS(X, Y ) ⇒ K satisfies (C) ⇒ K ∈ P�+(X, Y ),

proposing as a question whether condition (C) characterizes the operators in
P�+(X, Y ). Moreover, she characterized the strictly singular operators in terms
of P�+.
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Here, we give a negative answer to Friedman’s question and two refinements of
her characterization of SS in terms of P�+. As a consequence of the refinement, we
show that SS is the biggest operator ideal contained in P�+.

The strictly cosingular operators SC were introduced by Pełczyński [15], and
Vladimirskii [19] showed that they are contained in the perturbation class of the
lower semi-Fredholm operators P�−. We consider the following condition (D) for an
operator K ∈ L(X, Y ):

(D) S ∈ L(X, Y ), dim(Y/(R(K) + R(S))) < ∞ ⇒ dim(Y/R(S)) < ∞.

We prove that K ∈ SC(X, Y ) ⇒ K satisfies (D) ⇒ K ∈ P�−(X, Y ), and show that
condition (D) does not characterize the operators in P�−(X, Y ). Moreover, we give
two characterizations of the strictly cosingular operators in terms of P�− and, as a
consequence, we show that SC is the biggest operator ideal contained in P�−.

The questions whether conditions (C) and (D) characterize SS and SC,
respectively, remain open. We observe that to obtain negative answers we would
need new counterexamples to the perturbation classes problem. Indeed, SS(X, Y ) =
P�+(X, Y ) implies that condition (C) characterizes SS and P�+ for operators in
L(X, Y ), and the same happens with SC, P�− and condition (D). We refer to [9] and
[8] for two counterexamples and to [3, 8, 11, 12] for recent positive answers to the
perturbation classes problem.

For X, Y Banach spaces, we denote by L(X, Y ) the set of (continuous linear)
operators from X into Y , and for T ∈ L(X, Y ), T∗ ∈ L(Y∗, X∗) is the conjugate
operator of T . An operator T ∈ L(X, Y ) is upper semi-Fredholm if its kernel N(T)
is finite dimensional and its range R(T) is closed; and T is lower semi-Fredholm if
its range is finite codimensional; hence, closed by [18, Theorem IV.5.10]. We denote
respectively by �+ and �− the classes of all upper semi-Fredholm and lower semi-
Fredholm operators. It follows from the basic duality relations for operators that
T ∈ �+ if and only if T∗ ∈ �− and T ∈ �− if and only if T∗ ∈ �+. The class of
Fredholm operators is � := �+ ∩ �−. Given a class A of operators, we denote

A(X, Y ) := {T ∈ L(X, Y ) : T ∈ A}

and we write A(X) in the case X = Y .
Given a closed subspace M of X, let us denote by JM the inclusion of M into X, and

by QM the quotient map from X onto X/M. Recall that an operator T ∈ L(X, Y ) is said
to be strictly singular if a restriction TJE to a closed subspace E is an isomorphism only
if E is finite dimensional; T is said to be strictly cosingular if for every closed subspace
F of Y the composition QF T is surjective only if F is finite codimensional; and T is
said to be inessential if IX − ST ∈ �(X) for every S ∈ L(Y, X). We denote respectively
by SS, SC and In the classes of strictly singular, strictly cosingular and inessential
operators. It is easy to show that T∗ ∈ SS ⇒ T ∈ SC and T∗ ∈ SC ⇒ T ∈ SS, but
the converse implications do not hold [16, Examples 1 and 2].

Let A be any of the classes �+, �− or �. The perturbation class of A is defined by
its components:

PA(X, Y ) := {K ∈ L(X, Y ) : K + T ∈ A(X, Y ) for all T ∈ A(X, Y )},

when A(X, Y ) is non-empty.
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The components PA(X, Y ) have been studied by many authors, but there are no
good descriptions of them in general [2]. As we observed before, SS is contained in
P�+, SC is contained in P�− and both P�+ and P�− are contained in the ideal
In of inessential operators, which coincides with P�. We refer to [1] and [10] for an
exposition of these facts.

In [17, 26.6.12], it was observed that the equality P�+ = SS (or P�− = SC)
holds if and only if the components P�+(X) (or P�−(X)) determine an operator
ideal. Therefore, the examples in [9] show that neither P�+ nor P�− are operator
ideals; i.e., they fail the compatibility conditions stated in [17, 1.1.3].

2. On Friedman’s condition. Recall that K ∈ L(X, Y ) satisfies condition (C) if

S ∈ L(X, Y ), dim(X∗/(R(K∗) + R(S∗))) < ∞ ⇒ dim(X∗/R(S∗)) < ∞.

Next we give a reformulation of this condition, which is easier to compare with the
definitions of SS and P�+.

Given two operators S, T ∈ L(X, Y ), we consider the operator (S, T) ∈ L(X, Y ×
Y ) defined by (S, T)x := (Sx, Tx). Its conjugate operator (S, T)∗ ∈ L(Y∗ × Y∗, X∗)
is given by (S, T)∗(g, h) = S∗g + T∗h.

PROPOSITION 2.1. An operator K ∈ L(X, Y ) satisfies condition (C) if and only if for
every S ∈ L(X, Y ), (S, K) ∈ �+ implies S ∈ �+.

Proof. Suppose that K satisfies condition (C) and (S, K) ∈ �+(X, Y × Y ). Then
(S, K)∗ ∈ �−; hence, its range R((S, K)∗) = R(S∗) + R(K∗) is finite codimensional.
Thus, R(S∗) is finite codimensional by condition (C), and [18, Theorem IV.5.10] implies
that R(S∗) is closed. Thus, S∗ ∈ �− and hence S ∈ �+.

Conversely, suppose that for every S ∈ L(X, Y ), (S, K) ∈ �+ implies S ∈ �+. If
R(K∗) + R(S∗) is finite codimensional, then (S, K)∗ ∈ �−, hence (S, K) ∈ �+. Our
hypothesis implies S ∈ �+; hence R(S∗) is finite codimensional. �

The previous characterization allows us to give an easier proof of the following
result of Friedman.

PROPOSITION 2.2. [7, Theorems 3 and 4] For an operator K ∈ L(X, Y ),

K ∈ SS ⇒ K satisfies (C) ⇒ K ∈ P�+.

Proof. For the first implication, note that K ∈ SS(X, Y ) implies (0,−K) ∈
SS(X, Y × Y ), because SS is an operator ideal [17, 1.9.4 Theorem]. Thus, (S, K) ∈
�+(X, Y × Y ) implies (S, 0) = (S, K) + (0,−K) ∈ �+; hence S ∈ �+.

For the second implication, suppose that K satisfies (C) and S ∈ �+(X, Y ). Then
S∗ ∈ �−; hence R(S∗ + K∗) + R(K∗) is finite codimensional. By condition (C), R(S∗ +
K∗) is finite codimensional; hence (S + K)∗ ∈ �− and S + K ∈ �+. �

The following example shows that the answer to Friedman’s question in [7, p. 350]
is negative.

EXAMPLE 2.3. Let Z be the infinite dimensional, reflexive, hereditarily
indecomposable Banach space constructed in [13] and let M be a closed subspace
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of Z with

dim M = dim Z/M = ∞.

Denoting by J : M → Z the inclusion, we consider the operator K : M × Z → M × Z
defined by K(m, z) := (0, Jm).

It was proved in [9] that K ∈ P�+(M × Z). Let us apply Proposition 2.1 to show
that K does not satisfy condition (C). Indeed, if we consider the operator S : M × Z →
M × Z defined by S(m, z) := (0, z), then S 	∈ �+ but (S, K) ∈ �+(M × Z, (M × Z) ×
(M × Z)).

Next we give a dual version of the previous results for SC and P�−. Recall that
K ∈ L(X, Y ) satisfies condition (D) if

S ∈ L(X, Y ), dim(Y/(R(K) + R(S))) < ∞ ⇒ dim(Y/R(S)) < ∞.

Given two operators S, T ∈ L(X, Y ), we consider the operator [S, T ] ∈ L(X ×
X, Y ) defined by [S, T ](x, z) := Sx + Tz.

PROPOSITION 2.4. An operator K ∈ L(X, Y ) satisfies condition (D) if and only if for
every S ∈ L(X, Y ), [S, K ] ∈ �− implies S ∈ �−.

Proof. Suppose that the operator K satisfies condition (D) and [S, K ] ∈ �−(X ×
X, Y ). Then R([S, K ]) = R(S) + R(K) is finite codimensional. Thus, R(S) is finite
codimensional by condition (D); hence S ∈ �−.

Conversely, suppose that for every S ∈ L(X, Y ), [S, K ] ∈ �− implies S ∈ �−. If
R(K) + R(S) is finite codimensional, then [S, K ] ∈ �−. Our hypothesis implies S ∈ �−;
hence R(S) is finite codimensional. �

The next result is a dual version of [7, Theorems 3 and 4].

PROPOSITION 2.5. For an operator K ∈ L(X, Y ),

K ∈ SC ⇒ K satisfies (D) ⇒ K ∈ P�−.

Proof. For the first implication, note that K ∈ SC(X, Y ) implies [0,−K ] ∈ SC(X ×
X, Y ), because SC is an operator ideal [17, 1.10.4 Theorem]. Thus, [S, K ] ∈ �−(X ×
X, Y ) implies [S, 0] = [S, K ] + [0,−K ] ∈ �−; hence S ∈ �−.

For the second implication, suppose that K satisfies (D) and S ∈ �−(X, Y ).
Then R(S + K) + R(K) is finite codimensional. By condition (C), R(S + K) is finite
codimensional; hence S + K ∈ �−. �

The following example shows that the converse to the second implication in the
previous result fails.

EXAMPLE 2.6. Let K be the operator in Example 2.3. Then K∗ ∈ P�−(M × Z) but
K∗ does not satisfy condition (D). Indeed, if we consider the operator S : M × Z →
M × Z in Example 2.3, then S∗ 	∈ �− but (S, K)∗ = [S∗, K∗] ∈ �−. By Proposition
2.4, K∗ does not satisfy condition (D).

The results of this section leave open the following questions.

QUESTION 1. Does condition (C) characterize the strictly singular operators?

QUESTION 2. Does condition (D) characterize the strictly cosingular operators?
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Our impression is that the answer to both questions should be negative. However,
we observe that in order to obtain such negative answers we would need new
counterexamples to the perturbation classes problem different from those in [8]
and [9].

3. On strictly singular and strictly cosingular operators. Here we give some
characterizations of strictly singular operators and strictly cosingular operators in
terms of perturbation classes for semi-Fredholm operators.

DEFINITION 3.1. Let X denote a Banach space. The density character dens(X) of
X is the least cardinal κ for which X has a dense subset of cardinality κ.

Given a non-empty set �, we denote by |�| the cardinal of � and by �∞(�) the
space of all bounded scalar families (ai)i∈� with index in �. Note that �∞(�), endowed
with the supremum norm ‖(ai)i∈�‖∞ := supi∈� |ai|, is a Banach space.

Let � be a set satisfying |�| ≥ dens(X). Then there is a natural isometric embedding
of X into �∞(�). Indeed, let {xi : i ∈ �} be a dense subset of X . For each i ∈ � we select
a norm-one fi ∈ X∗ such that fi(xi) = ‖xi‖. Clearly,

J(x) := (fi(x))i∈� for all x ∈ X,

defines an isometric embedding J : X −→ �∞(�). In particular, J ∈ �+(X, �∞(�)).

The following result improves [7, Theorem 6].

THEOREM 3.2. For T ∈ L(X, Y ), the following statements are equivalent:
(i) T ∈ SS(X, Y );
(ii) given Z for which �+(X, Z) 	= ∅, ST ∈ P�+(X, Z) for every S ∈ L(Y, Z);
(iii) given a set � satisfying |�| ≥ dens(X), ST ∈ P�+(X, �∞(�)) for every S ∈

L(Y, �∞(�)).

Proof. (i) ⇒ (ii) Note that T ∈ SS(X, Y ) and S ∈ L(Y, Z) imply ST ∈ SS(X, Z),
and SS(X, Z) ⊆ P�+(X, Z).

(ii) ⇒ (iii) Observe that |�| ≥ dens(X) implies �+(X, �∞(�)) 	= ∅.
(iii) ⇒ (i) Suppose that T /∈ SS. Clearly, we can assume ‖T‖ = 1. We take an

infinite dimensional closed subspace M of X such that TJM is an isomorphism. So
there exists a constant 0 < C ≤ 1 such that ‖Tm‖ ≥ C‖m‖ for each m ∈ M.

Let � be a set satisfying |�| ≥ dens(X). We consider two disjoint subsets �1 and �2

of � such that |�1| = |�2| = |�| and � = �1 ∪ �2. Clearly we can identify each �∞(�i)
(i = 1, 2) with a subspace of �∞(�). In this way, we get a decomposition �∞(�) =
�∞(�1) ⊕∞ �∞(�2). Since dens(T(M)) ≤ |�1|, we can take a dense subset {yi : i ∈ �1}
of T(M) and norm-one elements gi ∈ Y∗ (i ∈ �1) such that gi(yi) = ‖yi‖. We take
gi = 0 in Y∗ for i ∈ �2 and define

S(y) := (gi(y))i∈� for all y ∈ Y.

Then S ∈ L(Y, �∞(�)) is a norm-one operator with R(S) ⊂ �∞(�1) and SJT(M) is an
isometry; thus ‖STm‖ ≥ C‖m‖ for each m ∈ M.

Similarly, since dens(X/M) ≤ |�2|, we can take a dense subset {zi : i ∈ �2} of X/M
and norm-one elements hi ∈ (X/M)∗ (i ∈ �2) such that hi(zi) = ‖zi‖. We take hi = 0 in
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(X/M)∗ for i ∈ �1 and define

U(z) := (hi(z))i∈� for all z ∈ X/M.

Then U ∈ L(X/M, �∞(�)) is an isometric embedding and R(U) ⊂ �∞(�2).
Let us show that V := UQM + ST is an isomorphic embedding. Let x ∈ X

with ‖x‖ = 1. Then either ‖QMx‖ = dist(x, M) ≥ C/3 or ‖QMx‖ < C/3. In the
latter case, we can write x = m + z with m ∈ M and ‖z‖ < C/3; hence ‖STx‖ ≥
‖STm‖ − ‖STz‖ > C/3. Therefore,

‖Vx‖ = max{‖UQMx‖, ‖STx‖} ≥ (C/3)‖x‖ for every x ∈ X .

Thus, UQM + ST ∈ �+(X, �∞(�)). Since UQM /∈ �+(X, �∞(�)), we conclude ST /∈
P�+(X, �∞(�)), and the proof is complete. �

COROLLARY 3.3. Let X be a Banach space and let � be a set with |�| ≥ dens(X).
Then P�+(X, �∞(�)) = SS(X, �∞(�)).

Proof. As we mentioned before, |�| ≥ dens(X) implies that �+(X, �∞(�)) is
non-empty. Thus P�+(X, �∞(�)) is well defined, and the equality follows from the
equivalence of (i) and (iii) in Theorem 3.2 for Y = �∞(�). �

REMARK 3.4. We observe that the coincidence of SS(X, Y ) and P�+(X, Y ) in
some cases is related with the different positions in which a Banach space can be
embedded as a subspace of another Banach space, as studied in [6].

Indeed, in the counterexample given in [9] an infinite dimensional, hereditarily
indecomposable Banach space Z and a closed subspace M of Z with dim M =
dim Z/M = ∞ were considered. A key fact for the construction is that, in the product
space M × Z, the position of M as M × 0 is non-equivalent with the position as a
subspace of 0 × X .

Conversely, it was proved in [5] that all the closed subspaces of �∞(�) isomorphic
to a Banach space X with |�| ≥ dens(X) are in equivalent positions, in the sense that
given two of them, there exists an automorphism of �∞(�) that takes one onto the
other. This is the reason behind the result in Corollary 3.3.

The following maximality result follows from Theorem 3.2.

PROPOSITION 3.5. The class of strictly singular operators SS is the biggest among the
operator ideals A that satisfy A(X, Y ) ⊂ P�+(X, Y ) for every couple of Banach spaces
X, Y for which �+(X, Y ) is non-empty.

Proof. It is easy to check that the class P�+ is injective in the sense that given an
operator K ∈ L(X, Y ) and an isomorphic embedding J ∈ L(Y, Z), JK ∈ P�+ ⇒ K ∈
P�+. Therefore, if an operator ideal A is contained in P�+, the same happens with its
injective hull Ainj [17, 4.6.1].

Suppose that A is an injective operator ideal contained in P�+ and K ∈ A(X, Y ).
Then part (iii) of Theorem 3.2 implies that K is strictly singular. �

We consider the space �1(�) of all absolutely summable scalar families (ai)i∈� with
index in �. Note that �1(�), endowed with the summing norm ‖(ai)i∈�‖1 := ∑

i∈� |ai|,
is a Banach space.

The unit vector basis of �1(�) is {ej : j ∈ �}, where ej = (δij)i∈�.
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Let � be a set satisfying |�| ≥ dens(X). Then there is a natural quotient map from
�1(�) onto X . Indeed, if {xi : i ∈ �} is a dense subset of the unit ball BX , then

Q((ai)i∈�) :=
∑

i∈�

aixi for all (ai)i∈� ∈ �1(�)

defines a quotient map Q : �1(�) −→ X . In particular, Q ∈ �−(�1(�), X).

THEOREM 3.6. For T ∈ L(X, Y ), the following statements are equivalent:
(i) T ∈ SC(X, Y );
(ii) given Z for which �−(Z, Y ) 	= ∅, TS ∈ P�−(Z, Y ) for every S ∈ L(Z, X);
(iii) given a set � satisfying |�| ≥ dens(Y ), TS ∈ P�−(�1(�), Y ) for every S ∈

L(�1(�), X).

Proof. (i) ⇒ (ii) Note that T ∈ SC(X, Y ) and S ∈ L(Z, X) imply TS ∈ SC(Z, Y ),
and SC(Z, Y ) ⊆ P�−(Z, Y ).

(ii) ⇒ (iii) Observe that |�| ≥ dens(Y ) implies �−(�1(�), Y ) 	= ∅.
(iii) ⇒ (i) Suppose that T /∈ SC. We take an infinite codimensional closed subspace

N of Y such that QNT is surjective. Thus, Y = R(T) + N.
Let � be a set satisfying |�| ≥ dens(Y ). We consider two disjoint subsets �1 and

�2 of � such that |�1| = |�2| = |�| and � = �1 ∪ �2. Clearly, we can identify each
�1(�i) (i = 1, 2) with a subspace of �1(�). In this way, we get a decomposition �1(�) =
�1(�1) ⊕1 �1(�2).

Since dens(Y/N) ≤ |�1|, we can take a dense subset {zi : i ∈ �1} in the unit ball of
Y/N. Moreover, since QNT is surjective, we can select a bounded family {xi : i ∈ �1}
in X such that QNTxi = zi for each i ∈ �1. We define S ∈ L(�1(�), X) by Sei := xi for
i ∈ �1 and Sei := 0 for i ∈ �2.

Similarly, since dens(N) ≤ |�2|, we can take a dense subset {yi : i ∈ �2} in the unit
ball of N and define V ∈ L(�1(�), N) by Vei := 0 for i ∈ �1 and Vei := yi for i ∈ �2.
Clearly, R(V ) = N.

Now, since QNTS is surjective, R(TS) + N = Y . Thus, the operator U := JNV +
TS is surjective. Since JNV /∈ �−(�1(�), Y ), we get TS /∈ P�−(�1(�), Y ), and the proof
is complete. �

COROLLARY 3.7. Let Y be a Banach space and let � be a set with |�| ≥ dens(Y ).
Then P�−(�1(�), Y ) = SC(�1(�), Y ).

Proof. As we mentioned before, |�| ≥ dens(Y ) implies that �−(�1(�), Y ) is
non-empty. Thus, P�−(�1(�), Y ) is well defined, and the equality follows from the
equivalence of (i) and (iii) in Theorem 3.6 for X = �1(�). �

Similar to Proposition 3.5, we can derive a maximality result from Theorem 3.6.

PROPOSITION 3.8. The class of strictly cosingular operators SC is the biggest among
the operator ideals A that satisfy A(X, Y ) ⊂ P�−(X, Y ) for every couple of Banach
spaces X, Y for which �−(X, Y ) is non-empty.

Proof. It is easy to check that the class P�− is surjective in the sense that given
an operator K ∈ L(X, Y ) and a surjective operator Q ∈ L(Z, X), KQ ∈ P�− ⇒ K ∈
P�−. Therefore, if an operator ideal A is contained in P�−, the same happens with its
surjective hull Asur [17, 4.7.1].

Suppose that A is a surjective operator ideal contained in P�− and K ∈ A(X, Y ).
Then part (iii) of Theorem 3.6 implies that K is strictly cosingular. �
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Given a semi-Fredholm operator T ∈ �+(X, Y ) ∪ �−(X, Y ), the index ind(T) of
T is defined by

ind(T) := dim N(T) − dim
Y

R(T)
∈ � ∪ {±∞}.

It is well known that the index is constant on the connected components of the
semi-Fredholm operators [1]. Therefore, the following weakenings of condition (ii) in
Theorems 3.2 and 3.6 imply that T ∈ L(X, Y ) is inessential:

(a) for every S ∈ L(Y, X), ST ∈ P�+(X);
(b) for every S ∈ L(Y, X), TS ∈ P�−(Y ).

Indeed, if T satisfies (a), then IX − tST ∈ �+(X) for every t > 0. Since IX is
a Fredholm operator with index equal to 0, we conclude that for every S ∈ L(Y, X),
IX − ST is a Fredholm operator; hence T ∈ In. For (b) we can give a similar argument.

However, we will give examples below showing that neither of the two conditions
is a characterization of the inessential operators. Observe that it is enough to show a
Banach space Z for which In(Z) 	= P�+(Z) and In(Z∗) 	= P�−(Z∗).

Recall that T ∈ L(X, Y ) is weakly compact if it sends bounded sets into relatively
weakly compact subsets, and it is completely continuous if it sends weakly compact
sets into norm-compact sets. A Banach space X has the Dunford–Pettis property (in
short, X has the DPP) if every weakly compact operator T ∈ L(X, Y ) is completely
continuous. The C(K) spaces, the L1(μ) spaces and their dual spaces have the DPP.
For these results and additional information, we refer to [4].

The following result is essentially known. We give a proof for completeness.

PROPOSITION 3.9. (a) Suppose that X has the DPP. Then every weakly compact
operator U : X → Y is strictly singular.

(b) Suppose that Y∗ has the DPP. Then every weakly compact operator U : X → Y
is strictly cosingular.

Proof. (a) Suppose that U : X → Y is weakly compact, M is a closed subspace
of X and UJM is an isomorphism. Since UJM is weakly compact, M is reflexive.
Therefore, JM is weakly compact and U is completely continuous, which implies that
UJM is compact; hence M is finite dimensional; thus U ∈ SS.

(b) Suppose that U : X → Y is weakly compact. Then U∗ : Y∗ → X∗ is weakly
compact. By part (a), U∗ is strictly singular; hence U ∈ SC. �

It follows from Proposition 3.9 that the inclusion i1 : L2[0, 1] → L1[0, 1] is strictly
cosingular because it is weakly compact and L1[0, 1]∗ has the DPP. However, it
is not strictly singular because it is an isomorphism on the subspace generated by
the Rademacher functions (rn) [4, Theorem 6.2.3]. Note that (rn) is an orthonormal
sequence in L2[0, 1].

The inclusion j∞ : L∞[0, 1] → L2[0, 1] is strictly singular, but not strictly
cosingular. Indeed, since j∞ is weakly compact and L∞[0, 1] has the DPP, j∞ ∈ SS
(see Proposition 3.9). Moreover, j∞ is the conjugate operator of i1. Hence, i1 /∈ SS ⇒
j∞ /∈ SC.

Examples 3.10. There exists a Banach space Z and an operator T ∈ L(Z) such
that T ∈ P�+(Z) \ In(Z) and T∗ ∈ P�−(Z∗) \ In(Z∗).
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Let S : L2[0, 1] → L2[0, 1] denote an isomorphism from L2[0, 1] onto the subspace
generated by the Rademacher functions (rn).

We take Z = L2[0, 1] × L1[0, 1] × L1[0, 1] and define T ∈ L(Z) by

T(f, g, h) := (0, i1Sf, 0).

Note that Z∗ = L2[0, 1] × L∞[0, 1] × L∞[0, 1] and the conjugate operator T∗ ∈
L(Z∗) is given by T∗(f, g, h) := (S∗j∞g, 0, 0).

Since In is an operator ideal, T ∈ In(Z) and T∗ ∈ In(Z∗). Let us see that T =
IZT /∈ P�+(Z) and T∗ = T∗IZ∗ /∈ P�−(Z∗).

We consider the operator U ∈ L(Z) defined by U(f, g, h) := (0,−i1Sf, φ), where
φ(t) := g(2t) for 0 ≤ t ≤ 1/2 and φ(t) := h(2t − 1) for 1/2 < t ≤ 1.

Clearly, U ∈ �+(Z) and U + T /∈ �+(Z); hence T /∈ P�+(Z). Similarly, U∗ ∈
�−(Z∗) and U∗ + T∗ /∈ �−(Z∗); hence T∗ /∈ P�+(Z∗).

Observe that

- P�+(L2[0, 1], L1[0, 1]) = SS(L2[0, 1], L1[0, 1]) [12, Theorem 15];
- P�−(L∞[0, 1], L2[0, 1]) = SC(L∞[0, 1], L2[0, 1]) [12, Corollary 17].
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16. A. Pełczyński, On strictly singular and strictly cosingular operators II. Strictly singular
and strictly cosingular operators in L(ν)-spaces, Bull. Acad. Polon. Sci. 13 (1965), 37–41.

17. A. Pietsch, Operator ideals (North-Holland, Amsterdam, 1980).
18. A. E. Taylor and D. C. Lay, Introduction to functional analysis, 2nd ed. (Wiley, New

York, 1980).
19. J. I. Vladimirskii, Strictly cosingular operators, Soviet Math. Doklady 8 (1967), 739–740.

https://doi.org/10.1017/S0017089511000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089511000346

