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NEW CLASSES OF RANDOM TESSELLATIONS
ARISING FROM ITERATIVE DIVISION OF CELLS

RICHARD COWAN,∗ University of Sydney

Abstract

We present new ideas about the type of random tessellation which evolves through
successive division of its cells. These ideas are developed in an intuitive way, with many
pictures and only a modicum of mathematical formalism—so that the wide application of
the ideas is clearly apparent to all readers. A vast number of new tessellation models, with
known probability distribution for the volume of the typical cell, follow from the concepts
in this paper. There are other interesting models for which results are not presented (or
presented only through simulation methods), but these models have illustrative value.
A large agenda of further research is opened up by the ideas in this paper.
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1. Tessellations in RRR
d with dividing cells

In the planar case, the class of tessellations that we study can be loosely described as follows.
Commence at time t = 0 with a bounded convex windowW0 ⊂ R

2, having area 1 and centroid
located at the origin. At time t = 1, we divide W0 by a chord using a random mechanism (yet
to be defined) and dilate the window and its contents by a linear factor

√
2, using the origin as

the dilation centre; the dilated W0, now a domain of area 2, is called W1. We select randomly
one of the two cells inW1 (via methods discussed below). At time t = 2, we divide the selected
cell by our random mechanism applied to that cell and dilate W1 and its contents to create a
domainW2 of area 3. Cell divisions of a selected cell (from the t cells that are extant inWt−1)
continue in this way at the discrete times t = 3, 4, . . . , with a planar dilation too at each of
these epochs. Thus, we create a sequence of increasing domains W3,W4, . . . . The amount of
dilation at each stage is chosen to preserve the mean cell area as 1; so at each time t > 0, we
dilate by a linear factor of

√
t + 1/

√
t .

Heuristically, this iterative construction should often lead in the limit to a locally finite
stationary tessellation of R

2—at least in cases where fractal considerations or other degeneracies
do not arise (see later). A similar definition, involving cell division by planes or hyperplanes,
applies to higher dimensions.

2. Some selection and division rules

We can see that there is a cell selection rule and a cell division rule in the specification of
the process. Unless stated otherwise, all random applications of these rules are assumed inde-
pendent. Regarding cell selection, some possible rules for the planar case are as follows.
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Equally-likely rule. All extant cells have an equal chance of selection.

Area-weighted rule. If the t cells in Wt−1 under consideration for selection have areas a1, a2,

. . . , at , then the chance of cell j being selected is aj /
∑
i ai (which equals aj /t).

Perimeter-weighted rule. If cell j has perimeter bj , it is chosen with probability bj /
∑
i bi .

Corner-weighted rule. If cell j has cj corners, its chance of selection is cj /
∑
i ci .

The STIT model of Nagel and Weiss [13], named for its stable (ST) properties under a certain
type of iteration (IT), employs the perimeter-weighted rule. The evolution of their process is
actually in continuous time, with each cell being given an exponentially distributed lifetime
whose mean is inversely proportional to the cell’s perimeter. Viewed at the division epochs,
their process fits into our discrete-time framework—and it is due to this inverse proportionality
that the process has our perimeter-weighted selection rule. The properties of the exponential
distribution, including the strong Markov feature which implies that residual lifetimes of all
cells at any moment in time are exponentially distributed, ensure this.

Although we shall view the models of this paper on a discrete-time scale, with t measuring
both division epochs and ‘the number of cells minus one’, there always exists a convenient
continuous-time version based on the appropriate exponentially distributed lifetimes.

Regarding cell division of our polygonal cells, three possible rules are illustrated in Figure 1.
These rules lead to a diversity of models and also provide a point of departure for discussing
slightly variant ways to divide cells.

The method given in Figure 1(a) will be used most often in the theories we present below—
and for this reason we place it first in Figure 1. The method of Figure 1(b) is, however, viewed
in the stochastic-geometry literature as the most natural way to construct a random chord. In
Figure 1(b), the line L (and the chord it creates) are called ‘uniformly random’ (UR). The STIT
models use this UR rule.

θ
P

φ

Q

S

(a) (b) (c)

Figure 1: (a) A point P is uniformly distributed within the cell and a chord with slope given by an angle
θ , uniformly distributed on [0, π), is drawn. (b) A line L uniformly distributed in the space of lines which
hit the cell C is chosen. The division chord is L ∩ C. A practical implementation of this ‘uniformly
random’ method is: choose a point Q uniformly distributed on the boundary and draw the line at an
angle φ to the boundary—using the probability density function 1

2 sin φ for φ’s distribution on [0, π).
(c) Randomly choose a point S on the boundary of the cell, using the uniform distribution, and draw the
chord to a randomly chosen ‘opposite’ corner of the cell. A corner A is ‘opposite’ S if the chord SA
divides the cell into two polygons, each of positive area. If this rule is applied to a triangular starting

window W0, as in [4], the resulting tessellation has only triangular cells.
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3. Pictorial representations in RRR
2

In Figure 2, a square window is divided into 100 cells using some of the selection and
division rules described above; see the figure caption. The tessellations we see are of different

(a) (e)

(b)

(c)

(d)

(f)

(g)

(h)

Figure 2: Pictures of W99. In (a)–(d), the division rule of Figure 1(a) is applied with (a) area-weighted,
(b) perimeter-weighted, (c) corner-weighted, and (d) equally-likely selections. In (e)–(h), the UR rule
defined in Figure 1(b) is used—with the selection rule for each case being the same as in the picture
directly to the left. Note that, in the corner-weighted and equally-likely cases at the bottom of the figure,
many of the 100 cells are too small to be seen. Perhaps the limiting structures here are fractals? At least

one suspects that the limiting tessellation ‘frame’, the union of all edges, is not locally finite.
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character even in these pre-limit pictures at time t = 99, with greater variability of cell areas
as we move from area-weighting at the top to equally likely at the bottom. As for theoretical
knowledge of these eight models, little is known, except in case (f). In the limit as t → ∞, this
case corresponds with the STIT model of Nagel and Weiss [13]. The STIT model has some
known properties; various mean values and some distributions for certain line segments which
appear in the tessellation’s ‘frame’ [12]. Importantly, any property of the typical cell’s interior
in the STIT model has the same distribution as the same property of a typical cell’s interior in
the Poisson line process.

Figure 3 shows tessellations of the window with only quadrilateral cells. In Figure 3(a)–(c),
all the quadrilaterals are rectangles and, although these are less interesting visually, they offer
relatively easy mathematical analysis. The cell division rule in Figure 3(a)–(c) has the dividing
line chosen uniformly from the set of all lines which hit the rectangular cell and divide it
into two rectangles. This can be viewed as an adaptation of the rule in Figure 1(b), with φ
always equal to π/2 (instead of being sampled from the 1

2 sin φ law). Cases (a), (b), and (c) of
Figure 3 have differing selection rules (see the figure caption), and these produce tessellations
of different character.

Once again, we see greater variability in cell areas as we move from Figure 3(a) to (c). Due
to the geometric simplicity of rectangles, we can perform calculations that capture this trend
(and we shall briefly present these in the next section).

Planar tessellations comprising only triangular cells arise from the division rule of Fig-
ure 1(c), applied to a triangular window W0. Tessellations at t = 99 are shown in Figure 4(a)
and (b) for perimeter- and area-weighted selections, respectively. The perimeter-weighted case
is developing degenerate (and perhaps fractal-like) qualities even at this early stage of the

(a) (c)

(b) (d)

Figure 3: Some tessellations with only quadrilateral cells, these being rectangles in the first three pictures:
(a) area-weighted; (b) perimeter-weighted; (c) equally-likely. Note that corner-weighted and equally-
likely selection rules are equivalent here. In (d), there is perimeter-weighted selection and a UR division

rule censored by the condition that two quadrilateral daughters result.
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(a) (b) (c) (d)

Figure 4: In all four pictures, t = 99, so the initial triangleW0 has been divided into 100 cells. In (a) and
(b), a uniformly distributed point on the cell’s boundary is joined to the opposite corner: (a) perimeter-
weighted selection; (b) area-weighted selection. In (c) and (d), a uniformly distributed point on the
longest side of the triangular cell is joined to the opposite corner: (c) perimeter-weighted selection;

(d) area-weighted selection.

evolution. Perhaps the same can be said about Figure 4(c), where perimeter-weighted selection
was used and where the point S was distributed uniformly on the longest side of the triangle
(in an attempt to lessen the degenerate tendency). Figure 4(d) also distributes S in this way,
although in this case area-weighted selection was used; we see rather well-behaved shapes for
the triangular cells, somewhat less elongated than those in Figure 4(b), at least in these early
pictures.

4. Illustrating the trend in cell variability

In this section we focus on the tessellations comprising only rectangular cells. The structure
in Figure 3(b) is the rectangular-celled version of the STIT model. So the area of its typical cell
has the same distribution as that for the Poisson line process having only vertical and horizontal
lines. Therefore, using the latter model for simplicity of calculation, the typical cell area has a
distribution like the product of two independent and identically distributed exponential random
variates. Using parameters of the Poisson line process chosen to yield cells of mean area 1, we
can write down the distribution of cell areas for this process, and, consequently, for our model
of Figure 3(b):

F(x)perim = 1 − 2
√
xK1(2

√
x),

f (x)perim = K0(2
√
x)− 1√

x
K1(2

√
x)+K2(2

√
x),

for x > 0. Here F and f are the distribution and density functions of cell area, andKn(·) is the
modified Bessel function (see [1, p. 374]). The subscript ‘perim’ indicates perimeter-weighted
selection; such notation will be used where an emphasis is helpful, but generally omitted in
later mathematical calculations where the context is clear.
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We shall prove in Section 6.2 that the typical cell area of the rectangles in Figure 3(a) has the
exponential distribution F(x)area = 1 − e−x, x > 0. So a comparison of the two distributions
arising from Figure 3(a)–(b) can be made. Case (b) has variance 3, three times that of (a), whilst
the chance that the typical cell has an area greater than 10 is about 130 times higher in (b) than
in (a). The chance ratio for areas less than 1

10 is about 2.45. So there is much more probability
mass in the upper and lower tails for case (b).

Regarding the equally-likely case of Figure 3(c), a later analysis (in Section 6.1 and
Appendix A) shows degeneracy of the area distribution. When the mean cell area is held
at 1 by the dilational scaling, the probability that the typical cell of the Figure 3(c) model has
area greater than x tends to 0 for all positive x; the occasional huge cell is insignificant in
number compared with the number of cells which have vanishingly small area. Cell areas have
infinite variance in these cases.

The models of Figure 4(a) and (c) have a similar look to that of the Figure 3(c) model,
appearing to converge to a tessellation with the typical cell having area 0 with probability 1.

5. Geometry-independent apportionment of volume

In R
2, each of the chords can be given a direction assigned by coin toss. The two daughter

cells can now be classified as ‘left’ or ‘right’ of the directed chord which divided their mother.
The two daughters have identical statistical properties because a chord having a certain direction
is as likely as the same chord with the opposite direction. A similar partition of polytopes in
R
d , d > 2, also yields two identically distributed daughter cells: one in the left half-space, the

other in the right.
Consider now a division rule in R

d that, when applied at time t , apportions the volume of
the mother cell between her two daughters in a manner which is independent of all geometric
features within Wt−1—except (perhaps) the volume of the mother cell.

Division rules with this geometry-independent apportionment (GIA) have the following
structure. In R

d , division creates left daughters whose volume is a proportion U of the
mother cell, where U has the distribution function G(· | v), say, on [0, 1]. Here, v is the
volume of the mother (though in most examples this conditioning argument will be dropped
because U is independent of the mother’s volume). The distribution must be symmetric,
that is, G(x | v) = 1 − limu↑(1−x) G(u | v), and we shall apply the regularity condition that
U ∈ (0, 1), so G(0 | v) = 0 and limx↑1G(x | v) = 1.

Consider the triangular-celled model in R
2, which is illustrated and defined in Figure 5. It is

clear that the chord drawn at each time t > 0 has geometry-independent isotropy (GII) (that is,
the chord has uniformly distributed orientation on [0, π) independently of the geometry within
Wt−1). But does it have the GIA property?

Suppose that the corner which L hits has an internal angle ψ . This angle is split uniformly
by the GII chord that L defines, but the area apportionment is more complicated. Calculations
show that area apportionment U has conditional probability density function, for 0 < u < 1,
as follows:

g(u | ψ, r) = 1

2ψ

(
r sinψ

r2(1 − u)2 + 2ru cosψ(1 − u)+ u2

+ r sinψ

r2u2 + 2ru cosψ(1 − u)+ (1 − u)2

)
,

where r is the relative length of the two sides (shorter/longer) which subtend ψ . So, clearly,
there is geometry dependence in the area apportionment; therefore, the model is not GIA.
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(a) (b)

Figure 5: Triangles constructed using ‘geometry-independent isotropic’ chords. We sample an angle
uniformly distributed on [0, π) and use the unique line L having this angle as slope and dividing the
triangular cell C into two triangles. The dividing chord is L ∩ C. The two cases are: (a) perimeter-

weighted selection; (b) area-weighted selection.

Are there models which have GIA?Yes; we have encountered some already. Those illustrated
in Figure 3(a)–(c) are applicable; they have U distributed uniformly on (0, 1). Likewise, all
the models in Figure 4.

But most importantly, the division rule introduced in Figure 1(a) has GIA—and obviously
GII too. So all models which employ the rule of Figure 1(a) provide further examples of this
area apportionment that is independent from the geometry. We shall prove this fact in the next
two sections.

6. Mapping into a process on an interval in RRR

Consider the unit interval I0 := [− 1
2 ,

1
2 ] in R. It has length measure of 1, just as W0 ⊂ R

d

has volume measure of 1. When a hyperplane (or chord/plane if d ≤ 3) dividesW0, yielding a
left daughter having volume v, we place a point in I0 dividing this interval in the same left-to-
right proportion v : 1 − v. Thus, a link is created between the left daughter of W0 and the left
daughter of I0, and likewise between the right daughters. We dilate bothW0 and I0, so that the
mean cell measure in both situations is 1. The interval I0 becomes I1 := [−1, 1] at time t = 1
post dilation, whilst W0 becomes W1.

When the second cell-dividing hyperplane is placed in W1, we also place a point in I1
dividing the linked interval in the same left-to-right proportions given by the division event in d
dimensions. We continue in this way, with a linkage established between the cells inWt ⊂ R

d

at time t and the subintervals of It := [−(t + 1)/2, (t + 1)/2] ⊂ R.
Whilst much of the geometric information of the d-dimensional tessellation is lost in this

‘mapping’, the volume of a d-dimensional cell is measured by the length of its linked one-
dimensional interval. This is an important idea, with some startling consequences.

In particular, GIA constructions in R
d which use either a volume-weighted or equally-likely

selection rule can be analysed using the one-dimensional linkage. For example, if volume
weighting is employed in cell selection (and GIA applies), this situation can be emulated
within the one-dimensional analogue by using length-weighted interval selection.
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So our mathematical analysis becomes one-dimensional, focusing on the windows I0, I1,

I2, . . . ⊂ R. We find that a simple equation links the distribution function Lt of the left
daughter’s length (after the cell division and dilation which occurs at time t) with the distribution
function St−1 of length for the cell selected (from those in It−1) to be the mother:

Lt(x) = St−1

(
tx

t + 1

)
+

∫ v=t

v=tx/(t+1)
G

(
tx

(t + 1)v

∣∣∣∣ v
)

dSt−1(v), t ≥ 1. (1)

The same distribution function describes the length of the right daughter.
When the selection rule is perimeter-weighted or corner-weighted, an analysis using only

the one-dimensional linkage is not possible, but some considerable progress can be made in the
volume-weighted and equally-likely cases. We explore these two cases now.

6.1. Equally-likely selection

In the case where the equally-likely selection rule is applied, St−1 takes a trivial form, namely
St−1 = Ft−1, whereFt(x)—written more formally asFt(x)equal in our feature results—denotes
the probability that a typical segment of It has length less than or equal to x. Here a typical
segment is one randomly chosen from those extant. Also, it is easy to see that St−1, defined as
the distribution function for the length of a cell given that it is not selected, equals Ft−1 too. We
are then able to relate Ft to Ft−1. Clearly, Ft(x) = 0 for x ≤ 0 and Ft(x) = 1 for x ≥ (t + 1),
whilst F0(x) = 0 for 0 < x < 1. For 0 < x < (t + 1) and t ≥ 1,

Ft(x) = 1

t + 1

[
2Lt(x)+ (t − 1)St−1

(
tx

t + 1

)]

= 1

t + 1

[
2Ft−1

(
tx

t + 1

)
+ 2

∫ v=t

v=tx/(t+1)
G

(
tx

(t + 1)v

∣∣∣∣ v
)

dFt−1(v)

+ (t − 1)Ft−1

(
tx

t + 1

)]

= Ft−1

(
tx

t + 1

)
+ 2

t + 1

∫ v=t

v=tx/(t+1)
G

(
tx

(t + 1)v

∣∣∣∣ v
)

dFt−1(v). (2)

Theorem 1. When G(· | v) does not depend on v, (2) has a unique solution given by

Ft(x)equal =
t∑

n=1

pn(t)Gn

(
x

t + 1

)
, t ≥ 1, 0 < x < t + 1, (3)

where pn(t) is the coefficient of zn in 2z�(2z+ t)/(t + 1)!�(2z+ 1), which equals (2z/t (t +
1))

∏t−1
i=1(1 + 2z/i) when t > 1, and Gn is calculated as follows:

G1(x) = G(x),

Gn(x) = Gn−1(x)+
∫ v=1

v=x
G

(
x

v

)
dGn−1(v), n ≥ 2. (4)

Corollary 1. Let Vt be the length of a typical cell extant at time t , that is, a cell randomly
selected from the cells of It . Then var(Vt ) = (t+1)2

∑t
n=1 pn(t)(EU

2)n − 1 → ∞ as t → ∞.
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Proofs of Theorem 1 and Corollary 1 are given in Appendix A, as the necessary detail
involved detracts from the broad themes we are outlining.

One example where the sequence of functions Gn, n ≥ 1, defined by (4), can be explicitly
calculated is known from the early work of Halmos [6] on random splitting of the unit interval.
This is the case where U is uniformly distributed on [0, 1]; then Gn and its density gn are as
follows. For 0 < x < 1,

Gn(x) = x

n−1∑
j=0

(− log x)j

j ! , gn(x) = (− log x)n−1

(n− 1)! .

So, in this case we can easily write Ft , or better still the density ft , as

ft (x)equal =
t∑

n=1

pn(t)(log(t + 1)− log x)n−1

(t + 1)(n− 1)! , 0 < x < t + 1. (5)

A graph of the density function is plotted in Figure 6(a). Another example is illustrated in
Figure 6(b), this being the division rule least likely to create the abundance of small cells seen
in other cases. Here a selected cell is always divided into two daughters of equal area.

In Figure 6(b), the distribution function Ft is plotted for 0 < x < 1 and various values
of t . At small x, we note that F200(x) > F75(x) > F30(x) > F10(x). This, combined with
the infinite variance finding in Corollary 1, suggests that segment lengths (cell volumes) are
becoming concentrated at 0. We now show this formally.

Theorem 2. When the selected cell is always divided into two daughters of equal volume,
Ft(x)equal → 1 for all x ≥ 0 as t → ∞.

Theorem 2, which is proved in Appendix A, suggests intuitively that the equally-likely
selection rule leads to structures which are degenerate in the sense of the theorem. We have not
proved this style of degeneracy for all G, but it is easy to show that var(Vt ) is minimal when

1 2 3
x

1

2

0.5 1.0
x

0.2

0.4

0.6

0.8

0
0

f t
(x

) e
qu

al

f t
(x

) e
qu

al

0.0
0.0

Figure 6: (a) The probability density function ft (shown in (5)) when U is distributed uniformly on
(0, 1) for t = 2, 5, 20. The three curves are identified by the ordering f2(1) > f5(1) > f20(1)). (b) The
distribution function Ft for t = 10 (lower solid line), t = 30 (dashed line), t = 75 (upper solid line)
and t = 200 (dotted line) in the case where selected segments are always divided exactly in half—that is,

when G(x) = 0, x < 1
2 , and G(x) = 1, x ≥ 1

2 .
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cells split in the manner of Theorem 2 (see the proof of Corollary 1 in Appendix A). So the
rule of Theorem 2 has the ‘least degenerate’G in at least one sense.

Further work is needed to establish if the limiting structure has fractal dimension and, if so,
what the dimension is.

6.2. Volume-weighted selection

In the case where a volume-weighted selection rule is applied, results in R
d can be captured

by an analysis of the length-weighted process in R. Using standard ideas concerning length-
weighted sampling (and a notation whereFt(x)volume is implied wheneverFt(x) is used), we see
that St−1(x) = ∫

u≤x u dFt−1(u) = xFt−1(x)− ∫ x
0 Ft−1(u) du. (Readers will be more familiar

with this assertion in the case where the distribution functions have densities s and f—then
st−1(x) = xft−1(x)/E(typical cell length), and here the typical cell has mean length equal
to 1.)

Because Ft−1 = [St−1 + (t − 1)St−1]/t , we have St−1 = [tFt−1 − St−1]/(t − 1). Now,
by applying (1), the relationship between Ft and Ft−1 is, for 0 < x < (t + 1),

Ft(x) = 1

t + 1

[
2Lt(x)+ (t − 1)St−1

(
tx

t + 1

)]

= 1

t + 1

[
2St−1

(
tx

t + 1

)
+ 2

∫ v=t

v=tx/(t+1)
G

(
tx

(t + 1)v

∣∣∣ v
)

dSt−1(v)

+ tFt−1

(
tx

t + 1

)
− St−1

(
tx

t + 1

)]

= 1

t + 1

[
t

(
1 + x

t + 1

)
Ft−1

(
tx

t + 1

)
−

∫ tx/(t+1)

0
Ft−1(u) du

+ 2
∫ v=t

v=tx/(t+1)
G

(
tx

(t + 1)v

∣∣∣ v
)
v dFt−1(v)

]
. (6)

For example, if U is uniformly distributed on [0, 1] then G(x) = x, 0 ≤ x ≤ 1, and so

Ft(x) = 1

t + 1

[
t

(
1 + x

t + 1

)
Ft−1

(
tx

t + 1

)
−

∫ tx/(t+1)

0
Ft−1(u) du

+ 2tx

t + 1

(
1 − Ft−1

(
tx

t + 1

))]

= 1

t + 1

[
t

(
1 − x

t + 1

)
Ft−1

(
tx

t + 1

)
−

∫ tx/(t+1)

0
Ft−1(u) du+ 2tx

t + 1

]
. (7)

We actually know a great deal about this one-dimensional partitioning and rescaling of the
interval I0 without getting too involved with (7), because the combination of (a) the length-
weighted selection of a subinterval of It and (b) the uniform proportion splits of the chosen
subinterval can both be achieved by simply sampling a uniformly random point in It . So the
one-dimensional process is just the sequential accumulation of uniformly distributed points
P1, P2, P3, . . . in I0, with progressive dilation to preserve the mean interval length.

It is well known that this collection of points converges in distribution to the stationary
Poisson point process on R of intensity 1, and the typical interval length in the limit has the
exponential distribution 1 − e−x, x > 0. Immediately, we can state the following theorem.
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Theorem 3. In any of our iterative tessellations of R
d using volume-weighted selection and a

division rule which yields daughter volumes as a uniformly distributed proportion of mother
volumes, typical cell volumes converge in distribution as t → ∞ to a random variable having
F(x)volume = 1 − e−x, x > 0.

Proof. The discussion above will be proof enough for most readers, but those unfamiliar
with this type of convergence to a Poisson process can prove the theorem by solving (7) for
finite t . The unique solution for all t ≥ 0 is

Ft(x)volume =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x ≤ 0,

1 −
(

1 − x

t + 1

)t
, 0 < x < t + 1,

1, x ≥ (t + 1).

Substitution into (7) will prove this. The genesis of the exponential limit as t → ∞ is therefore
clear.

Corollary 2. The R
2 examples shown in Figures 3(a), 4(b), 4(d), and, most importantly, 2(a),

have exponentially distributed cell areas.

The first three examples mentioned in Corollary 2 obviously comply with the conditions of
Theorem 3, as do many other area-weighted tessellation models. For example, we can vary the
division rule in the rectangular model of Figure 3(a) by censoring the mechanism to only allow
chords which hit the longer side of a rectangular cell (or on a random side if the rectangle is
a square); see Figure 7(a). This division rule still apportions area uniformly, as it does in the
other examples captured in Figure 7 (see the figure caption).

The conformity of the most important example in Corollary 2—that based on Figure 2(a)—
with the conditions of Theorem 3 is less obvious. Naturally, it depends on the division rule
from Figure 1(a) creating daughter cells whose area is a uniformly distributed proportion of
their mother cell’s area. We now discuss this division rule (or a generalised version of it) in
greater detail.

(a) (b) (c)

Figure 7: Using area-weighted selection in all three cases, we see the effects of different division rules.
(a) The chord is uniformly distributed from those that orthogonally hit the long side of the cell selected for
division. (b) A point P is placed uniformly in the selected cell and the direction of the chord, horizontal
or vertical, is decided by tossing a balanced coin. (c) The chord is uniformly distributed from those
that orthogonally hit the chord which divided the mother of the selected cell. So sister cells will have a
geometric dependency: parallel dividing chords. Despite this dependency, the area apportionments of the

two sisters are independent random variables.
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7. Division rules generalising that of Figure 1(a)

Let us firstly generalise the rule by allowing the angle θ to be chosen by any method, random
or not, geometry independent or not, isotropic or not. Then, after θ has been chosen, the pointP
is placed uniformly in the cell—an action obviously independent of θ . This (P, θ) pair defines
the chord.

Theorem 4. If this (P, θ) construction is applied to any mother cell in R
2, the left daughter

has an area which, proportional to that of its mother, is uniformly distributed on (0, 1). The
right daughter has the same distribution. A similar statement holds in R

d for volumes, where
the angle θ is replaced by the orientation specifications of an arbitrary hyperplane—and areas
are replaced by volumes.

Proof. For simplicity, let us say that the mother cell M ⊂ R
d is a connected set (as in all

of our examples to date). Consider the projection of M onto a line orthogonal to hyperplanes
of the chosen orientation (or, in R

2, orthogonal to lines having slope θ ). The projection, a
line segment, is labelled LR (i.e. left end, right end) and the projection of the random point P
is labelled P⊥. Let X be the random length LP⊥, and define H(x) := P{X ≤ x}. Because
P is uniformly distributed in M , H(x) = V (x)/V , where V is the volume of M and V (x)
is its volume to the left of a hyperplane through P of the chosen orientation. Note that H is
a continuous function; this means that the random variable H(X) is distributed uniformly on
[0, 1]. But H(X) = V (X)/V , so V (X)/V ∼ Unif(0, 1).

It is important to note that the orientation of the dividing plane (line) can be arbitrarily
decided. This opens up a vast repertoire of tessellation models more complicated than that
illustrated in Figure 2(a)—and, for each such model, the cell volume (area) is exponentially
distributed. Using planar examples for simplicity, we can have a dependence of θt (the slope
for the cell division at epoch t) on θt−1, θt−2, . . . , say, or on various geometric features of the
tessellation constructed up to time t − 1, and still have exponentially distributed areas. For
example, the slope θ for a given cell might be chosen to be at a random angle κ to the line
which divided that cell from its sister, where (say) κ is distributed with mean π/2 and some
small variance. (Biological cells in two-dimensional epithelia have a tendency to divide in this
way, roughly orthogonal to their mother cell’s dividing line—exact orthogonality resulting in
the picture seen already in Figure 7(c).) Or the slope θ for a chosen cell might equal the slope
of that cell’s sister if the sister has already divided; otherwise, it is sampled randomly.

8. Other considerations

We started this paper with many different selection rules and division rules, but our theory—
after introducing the concept of GIA and showing via Theorems 1 and 2 that equally-likely
selection rules lead to degenerate tessellations—has narrowed its focus to just one selection
rule, namely volume-weighted selection. In this context, Theorems 3 and 4 become the major
findings of this paper. These theorems are simply proved, but it is their recognition, and the usage
that they have in combination, which is profound. They provide explicit volume distributions
for an enormous class of tessellation models, and the amazingly simple exponential distribution
is the common form in most cases that we have discussed.

Along the way, the reader will have seen slight variations on the theme and will undoubtedly
have imagined many more. There are also many theoretical issues not yet discussed.

In the remainder of this paper we discuss four of these issues. The first takes us to a selection
rule which lies beyond those that have guided our paper to date. It demonstrates that many of
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the ideas extend to quite complicated selection rules. The second issue involves a departure
from uniformly distributed volume apportionment. An example is explicitly solved and this
provides hope that the methods can be applied fairly generally. The third issue is about cell
shape; it will already have been noted that some pictures have rather rotund shapes whilst others
have many very elongated shapes. It would be worthwhile to establish if, in the context (say)
where cell volumes converge in distribution to the exponential law, there is a stable distribution
of shapes, or if shapes become degenerate as t → ∞. The fourth issue is the convergence of
our iterative cell division process. The increasing windows W0,W1,W2, . . . cover R

d in the
limit, but does the structure within converge to a locally finite stationary tessellation, or can it
sometimes be a fractal? We do not resolve this question in the current paper, but some comment
is given.

8.1. Selecting the cell with the largest volume

The linkage between cells of Wt ⊂ R
d and segments on the interval It , discussed in

Section 6, can be exploited in any situation where the properties of the segments are able
to be analysed. To illustrate this, we consider models where we always select the cell having
the largest volume (dividing it in a manner so that the ratio of left daughter to mother volumes is
uniformly distributed). The segments formed in the one-dimensional setting can be analysed;
experimentation using simulation leads to the conjecture of a very simple result for segment
lengths.

Using the GII and GIA division rules of Figure 1(a), we draw in Figure 8(a) a typical planar
realisation of the model at the stage where the window is partitioned into 200 cells. The picture
seems very ‘well behaved’, with no cells of extremely large or extremely small area.

A simulation of the equivalent segmentation of I0 can be conducted very easily. The results
of this at the stage where 50 000 segments exist yield the rather simple histogram of segment
length shown in Figure 8(b). It appears that the distribution of cell areas is converging to the
Unif[0, 2] law.

21

1000

2000

Fr
eq

ue
nc

y

0
0

(a) (b)

Figure 8: (a) The division rule is that of Figure 1(a), but now the cell selected is the one with largest
area. (b) A histogram of segment lengths arising from segmentation of the unit interval I0 into 50 000
segments, dilation being applied progressively after dividing the longest segment uniformly at each stage.
Only those segments of length less than or equal to 2 are displayed; there were 35 segments greater than 2,

the sample maximum being 2.001 01.
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Conjecture 1. If I0 := [− 1
2 ,

1
2 ] is segmented by the sequential placement of points, each being

uniformly distributed in the longest segment from those extant at each stage, then the typical
segment length (scaled to keep its mean as 1) converges in distribution to the Unif[0, 2] law.

This conjecture has not yet been proved, but, if it is true then the typical cell area seen in
Figure 8(a) also converges to this distribution. A similar result applies to volumes in higher-
dimensional tessellations of this type, as it does whenever the linkage ideas hold.

8.2. Volume-weighted selection with U not uniform

We have shown that (6) has a simple solution when U is uniformly distributed. A solution
of (6) may also be possible in other cases and in this subsection we provide it when U has a
simple symmetric beta distribution whose probability density function is g(u) := 6u(1 − u),
0 < u < 1. The derivation details, which are very lengthy, are omitted.

Planar tessellations that apportion area in this way are easy to construct; Figure 9(a) shows
two cases, one with rectangular cells that divide with a line orthogonal to the longer side (and
apportionment governed by g) and another with triangular cells and a division line from a
g-distributed point on the longest side to the opposite corner.

We can show that the solution of (6) for finite t takes the following form using this g, that
is, using G(u) := u2(3 − 2u), 0 < u < 1. For all t ≥ 1 and 0 ≤ x ≤ t + 1,

Ft(x)volume = (A(t)x3 + B(t)x4 + C(t)x5) log

(
x

t + 1

)
+

t+1∑
n=2

an(t)x
n, (8)

where

A(t) := 2t (t − 1)(2 − 5t + 5t2)

(t + 1)4
, B(t) := 15t (t − 1)3(t − 2)

2(t + 1)5
,

C(t) := t (t − 1)2(t − 2)2(t − 3)

(t + 1)6
, a2(t) := t (5t2 + 1)

(t + 1)3
,

these entities converging to finite limits as t → ∞. Some coefficients take divergent forms,
namely

a3(t) := 12 − 68t + 139t2 − 100t3 + 5t4

3(t + 1)4
+ A(t)

t∑
n=1

1

n
,

a4(t) := 3(t − 1)(40 − 122t + 61t2 + 60t3 − 35t4)

8(t + 1)5
+ B(t)

t∑
n=1

1

n
,

a5(t) := (t − 1)(t − 2)(90 − 66t − 250t2 + 243t3 − 53t4)

15(t + 1)6
+ C(t)

t∑
n=1

1

n
,

whilst, for n ≥ 6, we have the set of convergent coefficients

an(t) :=
(

t

n− 1

)
12(−1)n+1(n− 1)(5 − 4n+ n2 + 10t − 5nt + 5t2)

(t + 1)n+1n(n− 3)(n− 4)(n− 5)
.

From (8), it is easy to establish the limiting distribution F as t → ∞. We find that, as t → ∞,

an(t) → 60(−1)n+1

n(n− 2)! (n− 3)(n− 4)(n− 5)
, n ≥ 6,
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f1

f5

e–x

0.0
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(b)

Figure 9: (a) In both tessellations, a point is randomly placed on the longer (or longest) side of the
selected cell according to the distribution G whose density is g(u) = 6u(1 − u), 0 < u < 1. In the
case of rectangular cells, the dividing line passes through this point, orthogonal to the long side. In the
triangular case, the chord passes from the random point to the opposite corner. (b) The dashed curve
shows the function f , as defined in (9), together with f1, f5, and e−x . The area of typical cells in both

pictures are distributed with probability density f , in the limit.

and

t+1∑
n=6

an(t)x
n → 120 − 600x2 − 200x3 + 1575x4 + 424x5

120

− e−x

2
(2 + 2x − 9x2 − 13x3 − 2x4)

− x3

2
(20 + 15x + 2x2)

(
γ + log x +

∫ ∞

x

e−v

v
dv

)
,

where γ is Euler’s constant. Obviously, A(t) → 10, B(t) → 15
2 , C(t) → 1, and a2(t) → 5.

These facts combined with the known convergence of (
∑t+1

1 1/n− log(t + 1)) to γ , which
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implies that (
∑t

1 1/n− log(t + 1)) also converges to γ , yields

a3(t)− A(t) log(t + 1) → 10γ + 5
3 , a4(t)− B(t) log(t + 1) → 15

2 γ − 105
8 ,

a5(t)− C(t) log(t + 1) → γ − 53
15 .

This leads to an interesting limiting distribution and corresponding density function:

F(x)volume = 1 − e−x

2
(2 + 2x − 9x2 − 13x3 − 2x4)− x3

2
(20 + 15x + 2x2)

∫ ∞

x

e−v

v
dv,

f (x)volume = 5xe−x(2 + 5x + x2)− 5x2(6 + 6x + x2)

∫ ∞

x

e−v

v
dv. (9)

The function f is the dashed curve plotted in Figure 9(b) alongside the exponential density
e−x, f5, and the curve f1. These are shown for comparative purposes.

8.3. The distribution of cell shapes

Addressing shape issues when the cells can take any polyhedral form is immensely difficult,
because the space of shapes for general polyhedra is extraordinarily complicated (see [8]
and [15]). In the R

2 case where a domain is triangular (see [7], [9], [10], [11], and [16])
or rectangular (see [2], [5], and [11]), the shape space is more easily managed—as it also is for
rectangular prisms in R

d (see [3]).
We focus here on the rectangular case in R

2, where the equilibrium distribution of shape in our
iteratively dividing models is the most amenable to analysis. Following [2] and [5], we define the
shape of a rectangle as the ratio of the shorter side to the longer side, a number in the range (0, 1].

Consider the process illustrated in Figure 7(a): area-weighted selection with the dividing
chord uniformly chosen from those orthogonal to the longer side of the rectangle. We let
Ft(a, σ ) := P{a randomly chosen cell at time t has area less than or equal to a and shape less
than or equal to σ }, where 0 < a ≤ t + 1 and 0 < σ ≤ 1. We define ft as the joint density, if
this exists.

It is easier to understand the technique if we derive our equation in the density form, but
unfortunately the density does not exist for any finite t in this model, which starts with the 1×1
square. At time 0, all probability is concentrated on (a, σ ) = (1, 1). At t = 1, the randomly
chosen cell will have area equal to twice its shape. At t > 1, there is positive probability mass
on the line a = (t + 1)σ , because there is a chance that one of the two cells born at time 1 has
not divided again by time t . If this occurs then this cell’s area is equal to (t+1) times its shape.

To sidestep this problem, we modify the selection of the cell to be divided at t = 3; we force
the choice of the cell whose sister divided at t = 2. So all four cells at t = 3 will be second
generation, with identical joint probability density function, f3(a, σ ) = 1/4σ, 0 < a ≤ 4σ,
0 < σ ≤ 1. Then we let the process evolve according to the rules of Figure 7(a). The limiting
distribution is not dependent on the state at time t = 3; so our modified process has the same
limiting distribution as the original Figure 7(a) process.

Furthermore, following the logic and symbolism which led to (6), but now adapted to be
bivariate and in density form, we obtain the following equation. For t > 3,

ft (a, σ ) = 1

t + 1

[
2	t (a, σ )+ (t − 1)

t

t + 1
st−1

(
ta

t + 1
, σ

)]

= 1

t + 1

[
2	t (a, σ )+ t

t + 1

[
tft−1

( ta

t + 1
, σ

)
− st−1

(
ta

t + 1
, σ

)]]
, (10)

using st−1 = [tft−1 − st−1]/(t − 1). Due to the area-biased selection and the dilation which
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conserves the mean area as 1, we know that st (a, σ ) = aft (a, σ ). Also, we can derive 	t in
terms of st−1, as follows:

	t (a, σ ) = t

t + 1

[∫ 1

√
a/σ(t+1)

st−1

(
ta

(t + 1)z
, σz

)
dz

+ 1

σ 2

∫ σ

√
aσ/(t+1)

st−1

(
ta

(t + 1)z
,
z

σ

)
dz

]

= t2a

(t + 1)2

[∫ 1

√
a/σ(t+1)

ft−1

(
ta

(t + 1)z
, σz

)
dz

z

+ 1

σ 2

∫ σ

√
aσ/(t+1)

ft−1

(
ta

(t + 1)z
,
z

σ

)
dz

z

]
. (11)

Combining (10) and (11) gives a recurrence relationship in ft . For t > 3, 0 < a ≤ (t + 1)σ ,
and 0 < σ ≤ 1,

ft (a, σ ) = 2t2a

(t + 1)3

[∫ 1

√
a/σ(t+1)

ft−1

(
ta

(t + 1)z
, σz

)
dz

z

+ 1

σ 2

∫ σ

√
aσ/(t+1)

ft−1

(
ta

(t + 1)z
,
z

σ

)
dz

z

]

+ t2

(t + 1)2

(
1 − a

t + 1

)
ft−1

(
ta

t + 1
, σ

)
, (12)

whilst f3(a, σ ) = 1/4σ, 0 < a ≤ 4σ, 0 < σ ≤ 1.
A MATHEMATICA® routine was used to calculate from (12) the sequence ft algebraically

for t ≤ 20, integrating out with respect to a to get the marginal density of shape (denoted by
ht say) for each t . For example, h4(σ ) = 2

15 (8 − σ), h5(σ ) = 1
135 (149 − 34σ + 9σ 2), and so

on, always a polynomial of degree t − 3. Although the limiting density has not yet been found,
the plot in Figure 10 gives an indication of how the shape density behaves as t increases.

0.2 0.4 0.6 0.8 1.0
σ

0.9

1.1

ht(σ)

Figure 10: The probability density function ht of rectangular cell shape σ plotted for t = 4, 5, 7,
10, 14, 20. The curves can be identified by the fact that ht (0) increases with t . Note that, since ht lies in
the range [0.9, 1.2] for those values of t used, we show the plot only in this range (allowing all curves to

be seen more clearly).
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We note that the densities shown are not uniform, but curiously a result in [3] shows that
the shape of a cell, with one corner that is also a corner of Wt , converges to the uniform
distribution on (0, 1] as t → ∞; see also [2]. Indeed, if we randomly sample from the 2n cells
of generation n that are eventually seen as the iterative process evolves, the shape σn which is
observed converges to the Unif(0, 1] law as n → ∞. (See Appendix A for the formal definition
of ‘generation’.) There are subtle differences between this generationally sampled cell and the
cell whose sampling is time based.

8.4. Convergence of tessellations

The author has not yet converted the intuitive notions of tessellation convergence presented
in this paper into formal theorems. Further work will proceed on this, aiming to characterise
precisely the conditions for a limiting locally finite stationary tessellation to exist. We have
seen examples where the limiting structure has degenerate cell volume distributions, suggesting
strongly that the limit in those examples is not locally finite.

The finite tessellations (in W1,W2, . . .) are not stationary, so the methods to achieve this
characterisation will not follow exactly those used by Nagel and Weiss in their STIT studies,
where each member of the sequence is stationary. It is anticipated however that their methods
will readily convert into appropriate theorems for our perimeter-weighted UR chord models.

In general, we anticipate that the convergence of our ‘pictorially well-behaved’ sequences of
tessellations will be established by consideration of the sequence of random closed sets (RACS)
formed by the tessellations’ frames; see [13] and [14].

Appendix A. Proofs of Theorems 1 and 2

Cells live for random times. The first cell is born at time t = 0, whilst a later cell is born
when its mother divides. A cell dies at its own epoch of division. When the equally-likely
selection rule is used, a cell which is alive at time s will still be alive at time t > s if it is not
selected for division at times (s + 1), (s + 2), (s + 3), . . . , t . This has probability

s

s + 1

s + 1

s + 2

s + 2

s + 3
· · · t − 1

t
= s

t
.

This probability applies to each of the two cells which are born at time s, so the expected
number of cells born at s who are still alive at t is 2s/t . Therefore, the probability that a
randomly chosen cell, from the (t + 1) cells alive at time t > 0, was born at time s ≤ t is
2s/t (t + 1).

The ancestor cell is of generation 0, whilst a later cell is said to be of generation n if and
only if its mother was of generation n − 1. Let pn(t) denote the probability that a randomly
chosen cell at time t belongs to generation n ≤ t . Clearly, p0(0) = 1 and p0(t) = 0, t > 0.
Also, for t > 0,

pn(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2

t (t + 1)
, n = 1,

2

t (t + 1)

t∑
s=n

spn−1(s − 1), n ≥ 2.
(13)
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Figure 11: The probability mass function pn(t) for the generation number of a randomly sampled cell
at time t . The two cases are t = 10 and t = 100, which have mean values 4.04 and 8.39, respectively,

computed from the exact formula (15).

This can be written, when n ≥ 2, as

pn(t) = 2

t (t + 1)

[
tpn−1(t − 1)+

t−1∑
s=n

spn−1(s − 1)

]

= 2

t + 1
pn−1(t − 1)+ t − 1

t + 1
pn(t − 1). (14)

Standard methods for the solution of difference equations reveals that pn(t) is the coefficient
of zn in the power series 2z�(2z+ t)/(t + 1)!�(2z+ 1), which equals (2z/t (t + 1))

∏t−1
i=1(1+

2z/i) when t > 1. From this probability generating function we can easily find the first two
moments of a random variable Nt having this distribution:

ENt = 2

( t+1∑
j=1

1

j
− 1

)
≈ 2(log(t + 1)+ γ − 1), (15)

varNt = 2

(
3 +

t+1∑
j=1

1

j
− 2

t+1∑
j=1

1

j2

)
≈ 2

(
1 + 2 log(t + 1)+ 2γ − π2

3

)
. (16)

The approximations are for large t . Here γ is Euler’s constant. Figure 11 shows the variation
of Nt , described by pn(t).

Proof of Theorem 1. We note that all cells of generation n are the result of n divisions.
Initially, consider these divisions in the absence of dilation. The first division (at time t = 1)
creates daughter cells each with volume distribution G1. The second creates daughters with
distribution G2, the third G3, and so on. So, in a process where dilation is absent, the volume
distribution at time t is a mixture,

∑
1≤n≤t pn(t)Gn(x) for 0 ≤ x ≤ 1.

Now adjusting for the dilation (which can be achieved by one single dilation ofW0 to create
Wt whose volume is (t + 1), instead of progressive dilations at each division epoch), result (3)
in Theorem 1 follows:

Ft(x) =
t∑

n=1

pn(t)Gn

(
x

t + 1

)
. (17)

A proof of Theorem 1 can also be achieved by the formal substitution of (3) into (2). The
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right-hand side is

Ft−1

(
tx

t + 1

)
+ 2

t + 1

∫ v=t

v=tx/(t+1)
G

(
tx

(t + 1)v

)
dFt−1(v)

=
t−1∑
n=1

pn(t − 1)Gn

(
x

t + 1

)
+ 2

t + 1

∫ v=t

v=tx/(t+1)
G

(
tx

(t + 1)v

) t−1∑
j=1

pj (t − 1) dGj

(
v

t

)

=
t−1∑
n=1

pn(t − 1)Gn

(
x

t + 1

)

+ 2

t + 1

t−1∑
j=1

pj (t − 1)
∫ u=1

u=x/(t+1)
G

(
x

(t + 1)u

)
dGj(u) (where u = v/t)

=
t−1∑
n=1

pn(t − 1)Gn

(
x

t + 1

)

+ 2

t + 1

t−1∑
j=1

pj (t − 1)

[
Gj+1

(
x

t + 1

)
−Gj

(
x

t + 1

)]
(from (4))

= t − 1

t + 1

t−1∑
n=1

pn(t − 1)Gn

(
x

t + 1

)
+ 2

t + 1

t∑
n=2

pn−1(t − 1)Gn

(
x

t + 1

)

= t − 1

t + 1
p1(t − 1)G1

(
x

t + 1

)

+ 1

t + 1

t−1∑
n=2

[2pn−1(t − 1)+ (t − 1)pn(t − 1)]Gn
(

x

t + 1

)

+ 2

t + 1
pt−1(t)Gt

(
x

t + 1

)

=
t∑

n=1

pn(t)Gn

(
x

t + 1

)
= Ft(x) (using (13) and (14)).

The proof that (3) is a solution of (2) is now complete (by two different arguments). The
uniqueness of this solution is clear; once G and F0 are given, (2) is a function mapping to just
one member F1 in the space of distribution functions. Similarly, once F1 is established, F2 is
specified by a functional mapping, and so on.

Proof of Corollary 1. A typical cell with length Vt and belonging to generation Nt is sam-
pled. Obviously, E(V 2

t | Nt = n) = (t+1)2(EU2)n; so E(Vt ) = (t+1)2
∑t
n=1 pn(t)(EU

2)n.
The variance follows using EVt = 1. The infinite limit as t → ∞ follows because EU2 ≤ 1 and∑
n pn(t) = 1. Note also that EU2 ≥ 1

4 , the lower bound being achieved when P{U = 1
2 } = 1.

Proof of Theorem 2. We aim to show that Ft(x) given in (17) tends to 1 as t → ∞ for all
x > 0—which implies the same result for x = 0, due to the right continuity of Ft .

Recall thatGn(x) = 0 when x<1/2n andGn(x)=1 otherwise. Take a particular fixed x>0.
Define n(t) := max(n : x/(t + 1) < 1/2n). That is, n(t) = [(log(t + 1) − log(x))/ log(2)],
where [·] denotes the integer part. From (17), Ft(x) = ∑

n>n(t) pn(t) = 1 − ∑
1≤n≤n(t) pn(t).
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We now show that
∑

1≤n≤n(t) pn(t), which equals P{Nt ≤ n(t)}, tends to 0, using Cheby-
shev’s inequality. This inequality tells us that, for a > 0,

P{|Nt − ENt | ≥ a} ≤ varNt
a2 .

Therefore, setting a = ENt − n(t), we obtain

P{Nt ≤ n(t)} = P{Nt − ENt ≤ n(t)− ENt }
≤ P{Nt − ENt ≤ n(t)− ENt } + P{Nt − ENt ≥ ENt − n(t)}
= P{|Nt − ENt | ≥ ENt − n(t)}
≤ varNt
(ENt − n(t))2

, (18)

provided that ENt − n(t) > 0. So, if there exists a number tx such that ENt − n(t) > 0 for all
t > tx , then (18) will provide the proof we need (see below).

To find firstly if tx exists, we note that

n(t) =
[

log(t + 1)− log(x)

log 2

]
≤ log(t + 1)− log(x)

log 2
= B1(t) (say) (19)

and ENt > 2(log(t + 1)+ γ − 1) = B2(t). (20)

The inequality in (20) follows from the equality in (15) because ct , defined as
∑t+1
j=11/j −

log(t + 1), is a monotone decreasing sequence (as confirmed by ct+1 − ct = 1/(t + 2) +
log[1 − 1/(t + 2)] < 0). So ct > limn→∞ cn = γ .

Elementary algebra shows that the lower boundB2(t) in (20) is greater than the upper bound
B1(t) in (19), implying that ENt > n(t), if

t >

(
4(1−γ )

x

)1/(log 4−1)

− 1 ≈ 4.56

x2.59
− 1.

This lower bound for t plays the role of tx .
Returning to (18), now known to be valid for t > tx ,

P{Nt ≤ n(t)} ≤ varNt
(ENt − n(t))2

<
varNt

(B2(t)− B1(t))2
. (21)

Note that varNt ∼ log(t + 1) and the denominator grows like (log(t + 1))2, because we can
easily show thatB2(t)−B1(t) ∼ log(t+1). Therefore, the bound in (21) tends to 0 as t → ∞.

So the proof of Theorem 2 is complete.
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