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We supply proofs that are simple, and possibly partly new, for two theorems
that appear in Rankin's book [6].

1.

The first concerns subgroups of the inhomogeneous modular group. Let
F = SL(2, Z), the group of all 2 by 2 matrices with integer coefficients and with
determinant 1. For each positive integer n, let F(n) consist of those T in F such that
T = I modulo n. Let A(n) be the least normal subgroup of F that contains the

element /I n\
\0 I/"

THEOREM 1. (a) / / 1 g n g 5, then F(n) = A(n).
(b) For all n, the index o/T(n) in F is n(n) = n3 fIWn (1 - 1/p2).
(c) For n ^ y, the index of A(n) in F is infinite.

We first prove (b). Note that both F(n) and A(n) are normal in F; thus we may
write rn = F/F(n) and An = F/A(n). Observe that both | Fn | and n(n) are multi-
plicative functions of n; therefore it suffices to treat the case that n is a power of a
prime. The routine solution of a system of congruences shows that, under the
natural map, Fn s SL(2,Zn). A standard argument gives the order of the latter
group.

Clearly A(n) £ F(n), whence |F n | ^ |An|. Therefore, to establish (a) and (c)
it suffices to show that, for n ^ 5, | An| <; t](n) and that for n ^ 6, | An| = oo.
In the sequel we put aside the trivial case that n = 1.

Both F and An have center Z = { / , - /} . It is well known that P = F/Z has
the presentation

where A and B are given by the matrices | I and I I. Since (ABI (f is
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given by I I, the group Gn = An/Z obtained from P by imposing the further

relation {AB)n = 1 has the presentation

Gn = (A,B; A2 = 1,.B3 = 1, {ABJ = 1>.

These groups are well known, especially from the work of Coxeter (see [1]). It
remains to show that G2 has order r\{2), that 21 Gn | = r\{n) for n = 3,4,5, and that
Gn is infinite for n ^ 6.

For each n i> 2 we shall construct a graph Tn on the sphere (or better, for
n ^ 6, in the plane) such that each region is a triangle and that there are exactly n
edges at each vertex. For n = 2,3,4,5 we take Tn to be a triangle, the 1-skeleton
of a tetrahedron, of an octahedron, of an icosahedron. This reflects the fact that
the corresponding An are the symmetry groups of these figures.

Let n ^ 6. We begin with a triangle ABC and enclose it it a circle K not
touching it. Join A and B to a point C on K, join £ and C to a point A' on /£,
and join C and 4̂ to a point B' on K. Now join each of A, B, and C to additional
points on K until there are n edges at each of these three vertices. Clearly this can
be done so that each bounded region in the resulting figure is a (topological)
triangle. We now enclose the figure obtained so far in a larger circle K' not touching
it, and repeat the process. It is easy to see that this process can be iterated indef-
initely and will yield an infinite graph Tn with the required properties.

We now modify Tn to obtain a new graph Sn. We draw small circles about
the vertices of Tn (small enough that no two meet) and delete those parts of Tn

interior to these circles. In Sn each vertex lies on exactly three edges: two that are
arcs of the small circles and one that is 'straight', that is, the remnant of an edge
from Tn.

Let Q be the set of vertices of Sn. Define two permutations of Q as follows.
If P is any vertex, then oc(P) is the other vertex on the straight edge at P, while
y(P) is the other vertex on the circular arc proceeding counterclockwise out of P.
It is immediate that a2 = 1 and y" = 1. Moreover, inspection shows that, if jS = ay,
then /J3 = 1. If n is the group of permutations of Q. generated by a and y, it is
immediate that setting <j)(A) = a and <j>(B) = /? define a homomorphism <t> from
Gn onto n. (In fact <j) is an isomorphism, and Sn is a Cay ley diagram for Gn;
alternatively, that (j> is an isomorphism follows by a method known to Poincare
(see Macbeath [3]).

Since n acts regularly on Q, we have | n | = | Q | , whence |Gn | ^ |£2|. This
gives the desired inequality for | An| in both the finite and infinite cases.

2.

The second theorem is one of Nielsen [4]. We state it in a mildly modified
form.

THEOREM 2. Let Gu-,Gn be arbitrary groups, and let N be the kernel
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of the natural map from the free product G = G1*-*Gn onto the direct

product G = Gt x ••• x Gn. Then N is free group with a basis X consisting of

all non trivial elements of the form

x = ( a x •••a,-1ai+1 ••• anai)(a1 • •• a , , ) " 1

where a1eG1, •••, aneGn.

We begin the proof by showing that X generates N. Let H be the subgroup

generated by X. Clearly H c N. It will suffice to show that G = HGY •••Gn. For

this it suffices to show that , for all i = 1.2, •••, n one has HG1 ••• GnGi = HGt ••• Gn.

Now Hx = H for all xeX implies that HGl-Gi_1Gi+i-GnGi = HG1--Gn.

U s i n g t h i s r e l a t i o n w e find t h a t # G t ••• G , , ^ = / / G J L • •• G ^ G j - n ••• GnG;Gj

HG, - G^.G^, - GnGs = HGt ••• Gn.

It remains to show that X is a basis for N. Note that an element x as above
is not trivial just in case at # 1 and that aj ^ 1 for some j > i. We write x = UV'1

where U = al ••• ai_lai+l ••• anat and V = at ••• an. Then U and V have the same
length | U | = | V | = w g; n and | x | = 2m. (Here m is the number of non-trivial
factors at.) Let x ' = U'V'1 denote analogously another element of X.

We make several observations.
(1) If x and x' have the initial segment U in common, then x = x'. This

follows from the fact that ah as the first (non trivial) syllable of x with decreasing
subscript, must match the first such syllable of x'. This implies that U = U'
whence also V = V.

(2) If x " 1 and x ' " 1 have an initial segment longer than V in common, then
x = x'. Suppose they had such an initial segment in common, and hence the initial
segment Vaf1. Since a,"1 is the first syllable of x" 1 with decreasing subscript,
it must match the first such syllable of x'~l, whence Faj"1 = V'af1. From
V = V it follows that at = a[, ••-, an = a'n, and we have also that af1 = aJ-\
whence i = V. Thus U = U' and x = x'.

(3) If x " 1 and x' have the initial segment V in common, then they have no
longer initial segment in common, and the segment V is less than half of x' .
This follows from the facts that V, with increasing subscripts, must be a proper
initial segment of U', and that Ka,"1, containing two syllables at and af1

from G,, cannot be a segment of U'.
(4) In a product xx'e ^ 1, with e = + 1, at most the right half F " 1 of x

cancels. If e = + 1 this follows from (3), and if e = - 1 from (2).
(5) In a product x'ex ^ 1, with e = ± 1, not all of the left half U of x cancels.

If e = + 1 this follows from (3), and if e = - 1 from (1).
Now a classical argument of Nielsen [5] shows that in a product w =

XV • • • *** where A: ^ 1 and n o x i
e ' x i + 1

C | t l = 1, some part of each factor remains
after cancellation, whence w / 1 . This proves that AT is a basis. (It is curious that
Nielsen himself used at this point a different argument.)
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We conclude with two remarks. The first is a minor point, that Nielsen used
a slightly different basis consisting of elements of the form

x' = (al---al_1ai+1---aj_l)(aiaJa^1aJ1)(a1---ai_lai+1---aJ_1)-
1.

It is easy to pass from one basis to the other by Nielsen transformations. The
second point is that Nielsen treated only the case that the G, are all finite cyclic
groups, and in this case gave a formula for the rank r(N) = | X | of N. For the
slightly more general case that all the groups G, are arbitrary finite groups, and
hence that G is finite and N again of finite rank, a formula for r(N) can be recovered
easily by counting how many n-tuples al,---,an yield non trivial elements xeX.
The result can be stated as a generalization of Schreier's index theorem. Assuming
all the Gt finite, define the 'free rank' of Gt to be r(Gi) = 1 - 1 /1 G; | and r(G)
= riGi) H h r(Gn). Then one has

In Nielsen's case this is indeed a case of a classical formula for surface groups,
for which a combinatorial proof is given in [2]. One may conjecture that such a
formula holds for a subgroup N, not neccesarily normal, in a free product G of
some more extensive class of groups G,- for which a reasonable definition of r(Gi)
can be provided.

Postscript (August, 1972). Mr. I. Chiswell has established that for G and the
function r as defined above, the formula stated above holds for any subgroup
N of finite index in G, without the assumption that N is normal.
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