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RESUMEN 

Someramente se bosquejan cuatro maneras de estudiar la dinamica de sistemas triples, 
a saber: procedimiento analitico, cualitativo, numerico y observacional. Una discusi6n de 
la estabilidad de triples clasicas (con rotacion y jerarquia) basada en la aplicacion del me-
todo de von Zeipel al problema general de tres cuerpos y en experimentation numerica, 
resume el resultado de los avances analiticos. 

Finalmente, se da un resumen de investigaciones recientes relativas a la dinamica de 
triples que no sean sistemas en revolution. 

ABSTRACT 

Four ways of studying the dynamics of triple systems are outlined, namely the analyt­
ical, the qualitative, the numerical, and the observational approach. A discussion of the 
stability of classical (revolutional, hierarchical) triples summarizes the results of analytical 
developments, based on the application of von Zeipel's method to the general three-body 
problem, and of numerical experimentation. Finally, a summary is given of recent investi­
gations concerning the dynamics of triples other than the revolutional systems. 

The study of the dynamics of triple stars requires 
the solution of one of the classic problems of celestial 
mechanics —the general three-body problem. That 
is, triple stars consist of three bodies, of arbitrary 
masses, with arbitrary spacing, which generally can 
be considered as point gravitational sources; it is 
the motion in this kind of system that we want to 
determine. Note that, since we are considering point 
masses (spherical symmetry), there is a lower limit 
on separations, of approximately 10-20 stellar radii. 
Also, the effects of field stars and the general galactic 
field are neglected, which imposes an upper limit 
of perhaps 100000 astronomical units on the sep­
arations. 

There are several ways available to us to learn 
something about such a problem. First, there is the 
analytical approach. In this approach, we set up 
the differential equations governing the motions in 

*the system and attempt to find the solution to the 

equations. Often, restrictive assumptions are impos­
ed, and the solutions are in the form of infinite 
series rather than being closed. For the general three-
body problem, there are no such solutions available. 

Second, there is the qualitative approach. This 
approach also attacks the equations of motion ana­
lytically, but, rather than searching for formal so­
lutions, only general properties, such as conditions 
for escape, limits to the motion, and so forth, are 
obtained. This is an approach Szebehely (e.g., 1974), 
among others, has used very successfully. 

A third approach is the numerical one. Here we 
use a computer to solve the equations of motion 
numerically for a given system with specified masses 
and initial conditions. This approach is very po­
pular now, with the advent of large, high-speed 
machines, and it allows us to consider systems that 
are intractable analytically. However, because we 
can only integrate one system at a time, and that 
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for only a finite time interval, it is very difficult to 
establish, with confidence, any general properties of 
the motion valid for all time. This is an approach 
used by many investigators, some of whom are re­
porting later in these proceedings. Besides the lim­
itations of finite time intervals, there are problems 
of truncation and round-off errors that affect the 
solutions and may make them increasingly unrealistic 
with time. 

A fourth approach is observational. This is a point 
often over-looked by the theoretician, but there is 
much dynamical information available just by look­
ing up. As should by now be quite apparent, the 
universe is full of triple stars; hence there must be 
solutions of the three-body problem that are stable 
against dynamical decay. (Of course no system has 
been observed to time equals infinity, but I am 
willing to take 1010 years as a first approximation). 
However, virtually all of the triple stars that are not, 
for other reasons, thought to be young systems are 
arranged in a hierarchical pattern. That is, two of 
the stars are close together compared to the distance 
of either from the third, and this should tell us 
something about the region in phase-space that con­
tains stable systems. These systems, containing a 
close binary and an always distant tertiary, are the 
"classical" triple stars, the kind with which we are 
concerned here. 

•Unfortunately, there has not been much work 
done on the dynamics of these systems, mostly be­
cause there is very little to do. To a first approxi­
mation the motion can be decoupled into 2-body 
motion in the binary, plus 2-body motion of the 
binary barycenter and the tertiary. Most of the nu­
merical work mentioned earlier, on the other hand, 
has been directed toward studies of dynamically 
decaying systems or toward finding periodic orbits 
in the general case. Neither type of configuration 
qualifies as "classical", and indeed being classical 
is an indication of being uninteresting. In addition, 
from an obervational point of view, the perturbative 
effects of the 3-body motion are generally undetec­
table and do not need to be considered in the orbit 
computation. Indeed, there are only two cases known 
so far —Xi Ursae Majoris (Heintz 1967) and Zeta 
Aquarii (Harrington 1968)— in which the 3-body 
effects have even been observed at all. 

What more can be said about the dynamics of 

classical triples? Fortunately, because these systems 
are arranged in a hierarchical pattern, an analytic 
development is possible. Because the distance sep­
arating the components of the binary is small 
compared to the distance of the binary-barycenter 
from the tertiary, one of the canonical transforma­
tion/averaging techniques, such as that due to von 
Zeipel, can be applied. In this procedure, the force 
function in the equations of motion for the system 
is expanded in a power series in the small parameter 
(in this case, the distance ratio). For application, 
the series can be truncated at some desired power of 
the small parameter; carrying the series to higher 
power produces greater accuracy but also consider­
ably more work in the analysis. A canonical trans­
formation is sought that (a) identifies certain ad­
ditional constants (integrals) of the motion, at the 
same time eliminating certain angular variables, and 
(b) produces expressions for the elements as func­
tions of time, these expressions also being power 
series in the small parameter. 

In the stellar problem, the distinguishing char­
acteristic is that the masses have to be considered 
as comparable. Because the small parameter is the 
distance ratio, a feature in common with the lunar 
theory, early developments attempted to generalize 
that theory to the non-small-mass case. However, 
the lunar theory assumes small eccentricities and in­
clinations, clearly not the case for multiple stars, 
so a fresh start would seem appropriate. 

Performing the required von Zeipel expansion 
for the general 3-body problem (see Harrington 
1969 for a complete discussion), the first term pro­
duces the 2-body motion of the binary, the second 
term the 2-body motion of the tertiary and binary 
barycenter, and the remaining terms the perturba­
tions from the various 2-body motions. For remain­
ing developments, only the third term has been car­
ried through the entire procedure analytically, while 
the fourth term has been treated numerically. 

When the above procedure is carried out, several 
significant results emerge. First, both semi-major 
axes can be expressed as a constant (an integral of 
the motion) plus purely periodic functions of time, 
with the coefficients of the periodic functions con­
taining at least the first power of the small param­
eter. That is, the semi-major axes have only small 
periodic variations— no secular variation. This in , 
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turn means a classical triple, by itself, has always 
been, and will always remain, a classical triple; it 
can neither break-up by dynamical decay nor could 
have envolved from a trapezium system without 
some additional external influence. This is what 
makes a classical system fundamentally different from 
a trapezium system —dynamical decay has termi­
nated. 

Second, if only the first perturbative term is con­
sidered, the eccentricity of the tertiary's orbit is also 
a constant plus small periodic variations. However, 
the eccentricity of the binary and the mutual in­
clination of the two orbits show large, coupled va­
riations, such that the eccentricity increases as the 
inclination decreases. The most extreme case is when 
the two orbits are perpendicular most of the time; 
then, because periodically the inclination rapidly ap­
proaches zero and the binary eccentricity approaches 
unity, the periastron separation in the binary ap­
proaches someting comparable to typical stellar di­
ameters, and the binary experiences a very close 
approach if not a collision. In any case the binary 
would be violently disrupted, so systems with a mu­
tual inclination just over 90° are unstable. 

Third, if the second perturbative term is included, 
the tertiary eccentricity is no longer constant on 
average. Indeed, it can be shown numerically that 
there is no other equivalent constant, and thus there 
is no other isolating integral of the motion. Since 
this additional isolating integral is necessary if the 
motion is ever to be expressed completely in analyt­
ical terms, we know that the dynamics of even clas­
sical triples can not be described, in complete gen­
erality, entirely analytically. 

There is a limitation to the above procedure, a 
limitation imposed by the question of convergence. 
That is, there is the question of the limit on the 
small parameter (the distance ratio) that will make 
this process work. This is equivalent to asking what 
the limit on the small parameter might be to insure 
stability of the system, i.e., that it is truly a classical 
triple. 

The best way to approach this problem is by numer­
ical experimentation. A large number of 3-body 
systems, with masses and initial conditions suitably 
chosen, have been numerically integrated, and the 
semi-major axes and eccentricities monitored to es­

tablish stability (Harrington 1975). By suitable 
variations of initial elements from one system to 
the next, the parameters pertinent to stability, and 
their limiting values, can be determined. It has 
been found that the most significant parameter is 
the ratio of the semi-major axis of the binary orbit 
(a^ to the periastron distance of the tertiary (qz). 
This is not surprising, since the major perturbation 
from the tertiary comes at closest approach, while 
the relatively high orbital frequency of the binary 
makes a measure of the average separation more 
meaningful. Further, there is a bifurcation into two 
classes —the co-revolving and counter-revolving 
systems—• with the separation coming at the per­
pendicular instability. Within each class the limiting 
value of ai/q2 is constant and does not depend on 
the relative inclination of the orbits. The dependence 
on the masses is relatively weak for the mass ratios 
normally encountered in triple stars. Quantitatively, 
the following sufficient condition for stability has 
been suggested: 

a i / q 2 < K log (3/2) /log , 2 -
L mx + m2 J 

= Klog(3 /2) / log[" l + ™3 1 
L m1 + m2J 

The masses of the components of the binary are 
mi and m2; that of the tertiary is m3. For co-
revolving systems, K is approximately 0.28, while 
for counter-revolving systems it is approximately 0.36. 
For all observed triples for which ai/q2 is known, 
it is less than 0.2, consistent with the assumption that 
the observed classical triples are stable. Note that the 
above is an average upper limit, established by a 
random statistical sampling of possible initial con­
ditions. It is possible to have stable systems with 
larger values of aj/q2 (e.g., in periodic orbits), but 
the probability of finding such is probably small. 

Until recently it has been assumed that all triples 
observed to be in a hierarchical arrangement were 
classical triples, and that the only stable stellar 
configuration was a hierarchical one. Neither of 
these assumptions need be true. First, consider the 
observed hierarchical systems. Szebehely (1971) has 
listed 6 types of motion possible in a 3-body system; 
the revolutional type is the one that we have been 
considering here. There are two stages of motion 

https://doi.org/10.1017/S0252921100052581 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100052581


142 R. S. HARRINGTON 

in unstable systems prior to escape, known as inter­
play and ejection. In interplay, all separations are 
of the same order, motions are rapid, and pertur­
bations are strong. In ejection, one component has 
left the other two in a very extended orbit, but 
without positive energy, so it must eventually return 
to the pair. These ejection orbits may be very 
extended, however, and therefore have very long 
periods. Further, most of the time the tertiary is 
on the more remote parts of the ejection orbit, 
making the system appear to be classical if the 
elements are not known. In addition, the system can 
go through many cycles of interplay and ejection, 
with different components ejecting at different times, 
giving very extensive life-times for such apparently 
stable systems. Numerical experiments have shown, 
for instance, that if the separations are of the order 
of 103 AU, the time to decay can be as large as 
109 years. 

Because of time reversibility, capture of a single 
star by a binary is one way to lead to motion as 
has just been described. The probability of capture 
is small, but it is not zero, since the binary can at 
least temporarily absorb energy from the field star. 
We know, however, from the discussion of the lack 
of secular terms in the semi-major axes, that capture 
can not lead to a stable classical system. Therefore, 
there must be sequences of ejection and interplay 
leading ultimately to escape of one component. 
However, as before, the escaper need not be the 
one originally captured; that is, the remaining binary 
may consist of two stars that previously had lead 
astrophysically independent lives. This could be a 
possibility for something like the Sirius system, 
where the less massive star is apparently older, but 
the separation is too great to permit mass exchange. 

As for other modes of stability, much work has 

been done very recently on establishing periodic 
orbits in the general 3-body problem. Many such 
orbits have been found, and they are not all of the 
classical type. Further, some of these appear to be 
stable, and again they spend some of their lifetime 
in an apparently hierarchical configuration. While 
the probability of achieving such an orbit is small, 
it is not zero. Thus, there exists the possibility that 
at least a few of the systems that have been classified 
as classical on appearances alone are either unstable, 
or stable but non-classical. 

Something should be said about systems of higher 
multiplicity. As with triples, all presumably old 
systems are arranged in hierarchies of spacings, 
though, as the number of components increases, the 
permutations and combinations increase drastically. 
The motions in such systems can be represented 
in the first approximation by various combinations 
of 2-body motions, with the effects of other bodies 
again being added as small perturbations. Except 
under some very restrictive approximations, there 
has been no work done on these higher-order systems, 
though an extension of the 3-body results in various 
combinations would probably generate the next 
order of solution. Again there is the question of 
stability, which has not been answered for these 
systems, but the presence of large numbers of high 
multiplicity systems with old components indicates 
there must be at least some degree of stability, even 
if it is not complete. 
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DISCUSSION 

Aarseth: How did you determine the logarithmic mass factor in the stability criterion? 
Harrington: Empirically. This was a fit to stability results from numerical integration of 
triple systems with only different values of the masses. This fit is not perfect and should only 
be considered a sufficient condition for stability. 
Ovenden: The numerical statistical approach which you have discussed so clearly is a 
powerful approach to the multiple-star dynamical problem. However, a word of caution is 
necessary. All statements of probability require a definition of prior probability—in your 
case, perhaps, that all combinations of initial parameters are equally possible. But Nature 
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knows nothing of our prejudices, and the systems we find in Nature will be, according to 
our probability criterion, highly improbable. Indeed, it is precisely the improbability of 
systems found in Nature that gives us information about their origin. Has your choice of 
initial conditions been determined by astrophysical considerations? 
Harrington: Yes, initial conditions are taken from distributions suggested by observed fre­
quency distribution. 
Evans: I think this expresses the difference in our point of view. I was looking at the 
average parameters in observed systems, and you are looking at the limits theoretically 
attainable. 
Harrington: For other reasons, I suspect the limit to multiplicity may be closer to what 
you suggested earlier than what is deduced here. However, my limit may indicate there 
are one or two systems of very high multiplicity. 
Harrington: I would like to add that these small values for limits of distance ratios that 
were discussed here are the basis for my questioning the input values David Evans used 
in his review to estimate the maximum possible number of components in a stable multiple 
system. Hence, we have concluded a little wager on the subject. He is betting $5.00 that 
no one will find a hierarchical multiple system with more than 10 components in the next 
10 years, and I am betting a like amount that someone will. 
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