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Abstract. The stability diagrams in the “pericentric distance — eccentricity” plane of initial
data are built and analyzed for Kepler-38, Kepler-47, and Kepler-64 (PH1). This completes a
survey of stability of the known up to now circumbinary planetary systems, initiated by Popova &
Shevchenko (2013), where the analysis was performed for Kepler-16, 34, and 35. In the diagrams,
the planets appear to be “embedded” in the fractal chaos border; however, I make an attempt to
measure the “distance” to the chaos border in a physically consistent way. The obtained distances
are compared to those given by the widely used numerical-experimental criterion by Holman
& Wiegert (1999), who employed smooth polynomial approximations to describe the border. I
identify the resonance cells, hosting the planets.
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The systems Kepler-16, 34, and 35 were considered by Popova & Shevchenko (2013):
stability diagrams were constructed in the plane of initial parameters “pericentric dis-
tance — eccentricity”, which showed that all three planets are situated in resonance cells
bounded by unstable resonances. Here we consider the planetary dynamics in the systems
Kepler-38, 47, and 64. The parameters of the systems were determined by Orosz et al.
(2012a), Orosz et al. (2012b), Kostov et al. (2013).

To explore the stability problem for the planetary motion, we use two stability criteria,
following Popova & Shevchenko (2013). The first one is the “escape-collision” criterion
and the second one is based on the value of the maximum Lyapunov characteristic ex-
ponent (maximum LCE). The computations are performed using the algorithms and
codes by von Bremen et al. (1997), Shevchenko & Kouprianov (2002), Kouprianov &
Shevchenko (2003), Kouprianov & Shevchenko (2005). The employed statistical method
for separation of regular and chaotic orbits was proposed by Melnikov & Shevchenko
(1998), Shevchenko & Melnikov (2003).

Holman & Wiegert (1999) obtained an empirical formula for the critical semimajor axis
(separating the chaotic and regular domains) in function of the binary mass ratio and
the binary eccentricity, for zero eccentricity planetary orbits. In Fig. 1(d) the Holman–
Wiegert acr values are given in column 2, whereas our numerical estimates a′

cr (the main
border at zero eccentricity) in column 3.

The computed stability diagrams for Kepler-38, 47, and 64 are given in Fig. 1. The
chaotic domains revealed by the maximum LCE criterion are shown in black, and those
revealed by the “escape-collision” criterion are shown in gray. Triangles are the nominal
planet positions.

Our basic conclusions are as following. (i) The planets turn out to be situated in
resonance cells between the “teeth” of instability corresponding to the resonances between
the orbital periods of the planet and binary (5/1 and 6/1 for Kepler-38b, 6/1 and 7/1 for
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Figure 1. The stability diagrams for (a) Kepler-38, (b) 47, and (c) 64. (d) The critical semimajor axis
values from Holman–Wiegert (ac r ) and from stability diagrams (a′

c r ).

Kepler-47b and 64b). Thus all the circumbinary planets are “embedded” in the fractal
chaos border in the stability diagrams. (ii) The semimajor axis critical values, given by
the Holman–Wiegert empirical criterion, may differ significantly from real ones (directly
obtained from the stability diagrams). (iii) The measured distances between the planet
locations and the nearest unstable resonant “teeth” do not exceed 6% of the planet
semimajor axes. (iv) The representative values of the Lyapunov time in the chaotic
domains for the studied planets are very small: 1–1.5 years.
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