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IMPULSIVE CONTROL OF RUMOURS WITH TWO BROADCASTS
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Abstract

In this paper we introduce an impulsive control model of a rumour process. The spreaders
are classified as subscriber spreaders, who receive an initial broadcast of a rumour and start
spreading it, and nonsubscriber spreaders who change from being an ignorant to being a
spreader after encountering a spreader. There are two consecutive broadcasts. The first
starts the rumour process. The objective is to time the second broadcast so that the final
proportion of ignorants is minimised. The second broadcast reactivates as spreaders either
the subscriber stiflers (Scenario 1) or all individuals who have been spreaders (Scenario 2).
It is shown that with either scenario the optimal time for the second broadcast is always
when the proportion of spreaders drops to zero.

1. Introduction

In a companion article [2], Belen and Pearce analysed the evolution from general initial
conditions of the (common) deterministic limiting version of the Daley-Kendall and
Maki-Thompson stochastic rumour models. Rumour models can be used to describe
a variety of phenomena, such as the dissemination of information, disinformation or
memes and changes in political persuasion and the stock market, for some of which the
standard assumption of a single initial spreader and no initial stiflers is inappropriate.
Results for a rumour process with general initial conditions are also relevant for the
present study, which envisages a second rumour process developing in a situation
created by a first.

In an age of mass communication, it is natural to consider the initiation of a rumour
by means of television, radio or the internet (Frost [4]). We use the generic term

"School of Mathematics, The University of Adelaide, Adelaide SA 5005, Australia; e-mail:
sbelen @ ankara.baskent.edu.tr.
2School of Mathematics and Statistics, University of South Australia, Mawson Lakes SA 5095,
Australia; e-mail: yalcin.kaya@unisa.edu.au.
3School of Mathematics, The University of Adelaide, Adelaide SA 5005, Australia; e-mail:
cpearce@maths.adelaide.edu.au.
© Australian Mathematical Society 2005, Serial-fee code 1446-1811/05

379

https://doi.org/10.1017/S1446181100008324 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100008324


380 Selma Belen, C. Yalfin Kaya and C. E. M. Pearce [2]

broadcast to refer to such an initiation. This paper envisages a control ingredient being
added to a rumour model by the introduction of one or more subsequent broadcasts,
with the intention of reducing the final proportion of the population never hearing the
rumour. The rumour process is started by a broadcast to subscribers, who constitute
the initial spreaders. Those ignorants who become spreaders after an encounter with
a spreader we term nonsubscriber spreaders. We wish to determine, for given initial
proportions of ignorants, spreaders and stiflers in the population, when to effect a
second broadcast so as to minimise the final proportion of ignorants.

Two basic scenarios are considered. In the first, the recipients of the second
broadcast are again the subscribers: a subscriber who had become a stifler is reactivated
as a subscriber spreader. In Scenario 2, the recipients of the second broadcast are all
individuals who were once spreaders.

As in [2], we describe the process in the continuum limit corresponding to a total
population size tending to infinity. The resultant differential equations with each
scenario can be expressed in state-space form, with the upward jump in subscriber
spreaders modelled by an impulsive control input. Since we are dealing with an optimal
control problem, a natural approach would be to employ a Pontryagin-like maximum
principle furnishing necessary conditions for an extremum of an impulsive control
system (see, for example, Blaquiere [3] and Rempala and Zapcyk [6]). However,
because of the tractability of the dynamical system equations, we are able to solve the
given impulsive control problem without resorting to this theory.

The distinction between subscriber and nonsubscriber spreaders is of some inde-
pendent interest. Before the second broadcast, these groups may be identified with
two types of spreaders in an ordinary rumour, those wTio were spreaders initially and
those who began as ignorants but became spreaders from an encounter with a spreader.

In Section 2 we refine the standard rumour model, studying the evolution of the
proportions of these two groups in the population. In Section 3 we formulate Scenario 1
and derive associated results. We prove that the optimal time for the second broadcast
is at the end of the first process, that is, when the proportion of spreaders in the
population drops to zero. Section 4 parallels Section 3 for Scenario 2.

The development utilises the refinement of the basic rumour presented in the
following section. An alternative approach that does not use these ideas is given
elsewhere and used to consider multiple broadcasts [5].

2. Refinement of the rumour model

In this section we consider the evolution of the proportions of subscriber and
nonsubscriber spreaders in a standard rumour model.

The Daley-Kendall model considers a population of n individuals with subpopula-
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tions of ignorants, spreaders and stiflers. Denote the respective sizes of these subpop-
ulations by i, s and r. We define in addition the respective numbers of subscriber and
nonsubscriber stiflers by st and s2, so that s = s{ + s2- There is homogeneous mixing
of individuals. The interactions which result in changes of subpopulation in time dx,
along with their associated probabilities, are as follows.

Interaction Transition Probability
i^s (i, 5i, 52, r)\-> (i — 1, 5i, s2 + 1, r) is dx + o(dx)

5, ;=± 5, (/, Si, S2, r) }-*• (/, Si — 2, S2, T + 2)

S2 ̂  52 (/, Si, 52, r) !->• (l, 5j, 52 — 2, r + 2)

S\ ̂ ^ 2 (l, S\, 52, r) (->• (/, 5i — 1, 52 — 1, r + 2) 5i52^T + o(rft)

5i?^r (/, s\, s2, r)v-> (/, 5i — 1, 52, r + 1) strdx + o{dx)
s2^r (i,si,s2,r)\-+(i,si,s2—l,r+l) s2rdx + o(dx)

We now adopt a continuum formulation appropriate for n -> oo. Let j(r), 5(r) (=
5](r) + 52(T)), r(x) denote respectively the proportions of ignorants, spreaders and
stiflers in the population at time T > 0. The evolution of the limiting form of the
model is prescribed by the deterministic dynamic equations

^ = -is, (2.1)
dx
^p- = -5, (1 - i), (2.2)
dx
^ S2(l2i) + sii, (2.3)
dx
%- = s(l - i) (2.4)
dx

with initial conditions

i(0) = a > 0, Si(0) = P >0, 52 (0) = 0 and r(0) = y > 0 (2.5)

satisfying

a + fi + y = l. (2.6)

We remark that (2.2) and (2.3) may be combined to provide

^ = -5(l-2i). (2.7)
dx

It is convenient to introduce the parameter 6 = 6(x) := i/a, the ratio of the
proportion of ignorants at time r to the initial proportion. In [2] the following
dynamics and asymptotics were established for the basic continuum rumour process.
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THEOREM 2.1. The evolution of the rumour process prescribed by (2.1), (2.7) and
(2.4) subject to (2.5) and (2.6) is given parametrically in terms of i by

s = 0 -2 ( i - c r ) + ln(i/a) (2.8)

(2.9)

and r = 1 — / — s.
The process evolves towards an asymptotic state (J'OO, 0, r^), with

i I 'oo = «oo(a, 0) as x -> oo

0 < ioo < 1/2. (2.10)

77ie parameter Q^, := ioo/cc satisfies the transcendental equation

0oo e2"<'-*•> = « " ' . (2.11)

Further, s —> 0 an<i r ( r ) f r^ = 1 — j'oo as r -> cx>.

Where we wish to indicate that s is regarded as a function of i (defined by (2.8)),
we put

s =

The dynamics of the process are specified by augmenting Theorem 2.1 with the
following result.

THEOREM 2.2. In the rumour control model prescribed by (2.1)-(2.4) with initial
conditions (2.5), (2.6) and

0, (2.12)

we have

«-""(-[£>) (213)

and

We have that st is strictly decreasing, with the asymptotics ofs\ and s2 given by

(i) lim.-^^i/j) = 0,
(ii) \im,-,lai(s2/s) = 1.
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PROOF. Equations (2.1) and (2.2) combine to yield

or

d(l) (1 2i)di
IS S

Also we have on combining (2.1) and (2.7) that

£ = — . (2-15)
di i

from which we obtain d(ln s{) = (l/s)ds + (l/s) di. Equation (2.13) now follows
on integration and use of the initial condition (2.12). Equation (2.14) now follows
from s2

 = s — S\.

That s\ is strictly decreasing follows from (2.2). Because s -> 0 as r -> oo, we
have Si -> 0 and s2 -> 0. By l'Hopital's rule,

hm — = hm , = hm — / = lim — hm —.
;-Woo 5 i->ico ds/di i-'co ( 1 - 2 / ) / ' V-i» 1 -2 i / i -w» J

The last step follows from (2.10), which also gives (i). Part (ii) follows from s = s\ +s2.

The asymptotics for s\ and s2 show that the spreader population changes in the
course of time from consisting entirely of subscribers to consisting entirely of non-
subscribers.

Suppose that the second broadcast is made when i = ib. Denote by slb and sb

respectively the proportions of subscriber spreaders and all spreaders just before that
broadcast. Also denote by s?b and sb respectively the corresponding proportions
immediately after the broadcast. Then by (2.13)

\- / —^-
L J,t S (M)J
\ (2.16)

and by (2.8)

sb = 0- 2(ib -a) + In(i6/a). (2.17)

At any time after the second broadcast

(2.18)

https://doi.org/10.1017/S1446181100008324 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100008324


384 Selma Belen, C. Yalpn Kaya and C. E. M. Pearce [6]

3. Results for Scenario 1

We now proceed to address Scenario 1 in which only the original subscribers
become spreaders again. Under this scenario s?b = f} and so

^ ) ] (3.D
The rumour process stops when 5 = 0. Let if, ix, denote respectively the final
proportion of ignorants in the population subsequent to the second broadcast and
the proportion of ignorants at the end of a single rumour process. The problem of
finding the optimum broadcast time, or equivalently the value / = ib when the second
broadcast is made, can be posed as

min if subject to s£ - 2{if - ib) + \n(if / ib) = 0, (Pi)

where

sb = 0- 2(4 - a)

THEOREM 3.1. For 0 < a < 1 — /? < 1, the minimum in Problem (Pi) is given
uniquely by ib = i,*, = ioo(b).

PROOF. Implicit differentiation with respect to ib of the constraint equation in
Problem (Pi) provides

3/6 \dib J if dib ib

From (3.1) we have

35+ _ dsb fdsb \ ( C" du\

ji;-jrb v ^ Vexpv L ««)/•
so that by (2.16)

Olb Olb

Also from (2.17) we have

dsb 1 - 2i,
, . . • (3-4)
oib ib
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Elimination of dsb/dib and ds£/dib between (3.2)-(3.4) provides

dif if 1 - ib sib

dib 1 — 2if ib sb
(3.5)

By Theorem 2.1 with initial state the state entered immediately after the second
broadcast, we have 0 < if < 1/2 and s o / / / ( I — 2if) > Oandioo < ib < a. The terms
(1 — ib)/ib and S\b/sb are also positive, so di//dib > 0 for i^, < ib < a. All three
quotients on the right in (3.5) are bounded above. By Theorem 2(i), dif /dib -> 0 as
h -*• ioo- Hence if is minimised uniquely by the choice ib = ioo- This completes the
proof.

COROLLARY 3.2. Put iM := inf{// : ib e [ioo, «]}• If the second broadcast time is
chosen to coincide with the first, the situation reduces to one of a single broadcast and
if becomes i^. Since if is strictly increasing as a function of ib, we have

L < '/ < 'oo for ib € [/«,, a].

Generally, (2.9) gives

for the first broadcast and

loo

for an optimal second broadcast. Multiplying these relations together provides

p - / J ] = e-
2". (3.6)

a
If a + 2/J < 1, this relation has a physical interpretation: the final proportion of

ignorants after two broadcasts, the second being optimally timed, is the same as that
resulting from a single broadcast with initial conditions

/(0) = a and 5(0) = 2y3.

Figure 1 presents (for a + fi — 1 with six different values of /3) graphs of the final
proportion if of ignorants after the second broadcast as a function of the proportion
ib of ignorants at the time of the second broadcast.

COROLLARY 3.3. Suppose a ->• a0 £ 0 and fi ->• 0. By (3.6), the limiting value
ofia, satisfies (itu/ao)e2(a°~'") = 1 and so iw = ioo. By Corollary 3.2, if = ioo for
choice ofib € [ioo, oc], that is, the second broadcast is ineffective at any time.
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FIGURE 1. if vs /';, for various values of ft under Scenario 1.

Intuitively this is not surprising. In the limiting case fi —> 0, the reactivation
of subscriber stiflers does not change the state, so if has the same value for every
h € [/oo. «<>]• I" t n e case a -+ 1, the limit /» « 0.203. We have accordingly the
following result.

THEOREM 3.4. In the limiting case

solution of Problem (Pi).
0, a -> or0 > 0, any ib e [/oo, «o] w a

In the limit as a -»• 0 and ^ -> )30 # 0, we have from (2.11) that ^ = e~^, so
that for any feasible time for the second broadcast

«-* <eb<\.

LEMMA 3.5. Suppose a -> 0 and 0 < /So < 1. Then lir

PROOF. Since / = a6, (2.16) can be rewritten as

(3.7)

= 1.

-a f\l/s)do],

so it suffices to show that h := li

h Jeb fa + In 6

s) d9 < oo. From (2.9),

du

enagl> In u
(3.8)
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eb
FIGURE 2. 0/ vs 0b for various values of fi under Scenario 1.

By Abramowitz and Stegun [1], Section 5.1, we may evaluate

/ ^ = Mln («*))-£, (In

where £,(*) := y + ln(lnj:) + I^l,(In*.*)/(/: • k\) and y is Euler's constant.
Hence (3.8) becomes

k-kl
(3.9)

When 9b = 1, h = 0. On the other hand, when (3.7) holds with strict inequality,
the leading term in brackets is finite. Both series in (3.9) converge absolutely. Hence
h is finite as required.

The result given by Lemma 3.5 provides an interesting contrast to Theorem 2.2 (i).

THEOREM 3.6. When a -*• 0 andfi -» ft0 ^ 0, Problem (Pi)possesses the unique

solution 6b = floo = e~P°.

PROOF. With if = aOf and ib = a9b, (3.5) becomes

aOf Of 1 — oc6b S\b

d0b - 2a6, sb
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Hence by Lemma 3.5, we have that in the limit

% = % •

which is always positive. This completes the proof.

REMARK. We may deduce from (3.10) that d20f/d9b
2 = 0 in the limit fi ->• fi0,

so that Of is linear in 9b. For a —> 0 and fi —• fi0, we have by Lemma 3.5 that the
first constraint equation in Problem (P\) becomes fiQ + \n(9f/9b) = 0. This yields
9f = e~h 9b. As may be seen in Figure 2 for the special case a + fi = 1, the slope of
the graph of 9f vs 9b has the constant value 1/e for fi -> 1. The slope is not constant
forO < fi < 1.

4. Results for Scenario 2

Under Scenario 2, we have sb = a + ft — ib and so (2.18) becomes

for any time after the second broadcast.
The optimisation problem now has a much simpler form than in Problem (Pi),

namely

min if subject to a + f} + ib-2if+ \n(if / ib) = 0. (P2)

When there are no stiflers initially in the population, that is, when a + fi = 1,
Problem (P2) is independent of fi, in contrast to Problem (Pt). Parallels to Theo-
rems 3.1, 3.4 and 3.6 for this scenario can be combined into a single result, which we
give below.

THEOREM 4.1. When o; -> ot0 with 0 < a0 < 1, ib = J'OO is the unique solution to
Problem (P2). When a ->• 0 and fi -» fiQ, with 0 < fi0 < 1, 0b - 9^ - e~^ is the
only solution.

PROOF. First suppose a -*• a0 with 0 < ao < 1. Implicit differentiation of the
constraint equation in Problem (P2) gives

oib ib
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0.6 0.8

FIGURE 3. // vs 4 for various values of f) under Scenario 2. The curve segment starting with o and ending
with + corresponds to the case /5 -» 0; the curve segment starting with o and ending with x corresponds
to (i = 0.5. The case fi -*• 1 is given by a point at the origin.

or

(4.2)

Since 0 < if < 1/2 and 0 < ib < 1, we have dif/dib > 0, which implies, given
'oo < k < <*o> that ib = I,*, is the unique solution.

Next consider a -> 0 and fi —> fi0, with 0 < fi0 < 1, and let /̂  = a6f and
j 6 = a 5fc. Substitution into (4.2) gives

= > 0 ,
30fc 6b

which implies, given e~* < 0b < 1, that 9b = Ooo — e"* is the only solution.

Figure 4 presents (for a + fi = 1 with three different values of yS) graphs of //• after
the second broadcast as a function of ib.

REMARK. AS with Scenario 1, we have d20/ /36^ — 0 and through the constraint
equation in Problem (P2) we obtain 6/ = e~^° 0b. In the limit as ft -> 1, the slope of
the graph of 9/ vs 9b has the constant value l/e, as illustrated in Figure 3.
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FIGURE 4. 0/ vs &t, for various values of p under Scenario 2.

REMARK. Consider the case when there are no stiflers initially, that is, when
a + fi = 1. In Scenario 2, there are no stiflers left immediately after the second
broadcast, all having become spreaders again. The larger the proportion of ignorants
to have encountered the rumour before the second broadcast, the larger the proportion
of stiflers present. So choosing a broadcast time with the highest proportion of stiflers
(as in Theorem 4.1), that is, at the end of the process, is intuitively reasonable in order
to achieve the lowest possible //.

The results for Scenario 1 are less obvious. Intuitively one might want the ratio s/ i
to be as large as possible at the start of a process to increase the dispersal of the rumour.
However a second broadcast at the end of the first process does not necessarily make
s/ i larger than at earlier stages of the first process.

5. Conclusions

In this paper we have introduced an impulsive control model of a rumour process.
We considered two consecutive broadcasts, the first one starting the rumour process. In
both the cases when spreaders are reactivated from the subscriber stiflers (Scenario 1)
as well as from those stiflers who once were spreaders (Scenario 2), we have shown
that the optimal time for the second broadcast to minimise the final proportion of
ignorants is always at the end of the process started by the first broadcast. In other
words, a second rumour process commences once the first process terminates.
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Some of the auxiliary results we obtained are worth mentioning here, because of
their practical significance. One result shows that the spreader population changes
from consisting entirely of subscribers to consisting entirely of nonsubscribers at the
termination of a process. This can perhaps be interpreted as to why the end of the
first process is the best time for a second broadcast. Another result implies that the
final proportion of ignorants after two broadcasts, the second being optimally timed,
is the same as that resulting from a single broadcast with twice the initial proportion
of spreaders, provided this is allowed by the physical constraints. If one considers the
initial proportion of spreaders as the "resource" available to start the process, then it
may be best to allocate as much of this resource as possible at the beginning of the
process.

Allowing general initial conditions for the basic rumour process simplified proofs
considerably in our analysis. It is natural to consider next an extension of this study
to the case with a general number of broadcasts. The setting with general initial
conditions and the results obtained in this paper form a basis for this extension.
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