
A NOTE ON THE MATHIEU GROUPS 
LOWELL J. PAIGE 

1. Introduction. The principal result of this paper is the representation 
of the Mathieu group M2z as a group of 11 X 11 matrices over the Galois 
Field GF(2). This is a new representation of M2z and in §5 an indication of 
how the techniques of this result might be extended to the Mathieu group 
Mn is given. 

The results of §3 were essentially obtained by Professor E. Spanier while 
investigating another problem and it was during conversations with him 
that the present result was observed. 

2. Steiner systems and the Mathieu groups. A Steiner system 
S(p, g, r), with p < g < r, is defined on the r integers 1, 2, . . . , r and consists 
°f Q/(?) subsets i ^ of g integers each with the property that any arbitrary 
set of p integers is contained in one and only one of the subsets Hx. For example, 
the Steiner system S ( 2 , g + l , g 2 + g + l ) (g a prime) can be constructed 
by considering the points and lines of a finite projective plane with g + 1 
points on each line. 

The group G of a Steiner system S(p, q, r) consists of all those permutations 
of the symmetric group @r that permute the subsets Hx among themselves. 
Witt (1, p. 274) has shown that the Steiner systems S(4, 5, 11), S(5, 6, 12), 
S(3, 6, 22), S(4, 7, 23) and S(5, 8, 24) are unique (i.e., for fixed p, q, r, there 
exists a permutation of © r carrying Si(£, g, r) into S2(p, g, r)) and the groups 
associated with these Steiner systems are the Mathieu groups Mn, Mn, 
M22, M2z, and M24 respectively. 

3. Generation of S(4, 7, 23). Let V(n) be the vector space consisting of 
all w-tuples (xi, %2, . . . , xn)y with each xt contained in the Galois Field GF(2), 
under the usual definitions of addition and scalar multiplication. 

The distance d(x, y) between two vectors x = (xi, x2, . . . , xn) and 
y = (yu 3>2, • • • , yn) oî V(n) is defined to be the number of coordinates for 
which Xi 9e yt (i — 1, 2, . . . , n). 

A subset S(r, n) of V(n) is defined to be an exact r-covering of V(n) if and 
only if 
(i) For every vector x Ç V(n), min {d(x, s)} < r; 

seS(r,n) 

(ii) For St, s2 6 S(r, n), d(s1} s2) > 2r. 

For a fixed vector s of an exact r-covering S{r,n), the number N(r,n) 
of vectors x Ç V(n) and satisfying d(x, s) < r is obviously 
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(3-,) ,y„, „>.(») +(») + ... + (»). 

The number of vectors in an exact f-covering S(r, n) is clearly 2n/N(r, n) 
since the equation d(x, s) < r can have but one solution s in S(r, n) for every 
vector x of V(n). 

It may be possible for S(r, n) to be a linear subspace of V(n). Certainly a 
necessary condition for such a possibility is that N(r, n) divide 2n. In the 
case that n = 23 and r = 3 we have iV(3, 23) = 211 and in the following lemma 
an exact 3-covering of F(23) is obtained that is a linear subspace. 

LEMMA 3.2. Let R be the subspace of F(23) generated by the rows of the 
following rectangular array with elements in G F (2) : 

(3.3) 10000000000111100110100 
01000000000 111010101010 
00100000000111001011001 
00010000000110110001101 
00001000000 110101100011 
00000100000110011010110 
00000010000101110010011 
0 0 00000 1000101101001110 
00000000100 101011100101 
00000000010100 111111000 
0 0 0 0 0 0 0 0 0 0 110 0 0 0 0 111111 

The linear subspace T orthogonal to R is an exact 3-covering of F(23). 

Proof. The crucial part of the proof is the verification that no six columns 
of (3.3) are linearly dependent. The usual statement at this point regarding 
straightforward computations would be inappropriate. However, the verifica
tion was accomplished on the high speed computer SWAC, and the computa
tions, of necessity, will be omitted. 

Assuming the result of the previous paragraph, the proof proceeds by noting 
that, for any two vectors t\ and h of T, d(ti, t%) > 6, since otherwise there 
would exist a subset of six columns of (3.3) that would be linearly dependent. 
Now a simple numerical calculation (i.e. 211 . 212 = 223) shows that T is an 
exact 3-covering of F(23). 

We now proceed to generate S(4, 7, 23). Let Ht be the set of all integers j 
such that tj 9e 0 for the vector t = (tu t2, . . . , tn) of the linear subspace T 
of Lemma 3.2. 

THEOREM 3.4. The set of all sets Ht containing seven integers forms a Steiner 
system S(±, 7, 23). 

Proof. T is an exact 3-covering of F(23) and since no six columns of (3.3) 
are linearly dependent it is clear that every vector of F(23) with 4 non-zero 
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coordinates must be a t distance 3 from those vectors of T with 7 non-zero 
coordinates. Each vector of T with 7 non-zero coordinates is a t distance 3 
from (4) vectors with 4 non-zero coordinates and hence there are (2

4
3)/(47) = 253 

vectors in T with 7 non-zero coordinates. 
An arbi t rary set of 4 integers cannot be contained in Htl and HH (containing 

7 integers) if t\ ^ t2 because this would imply tha t there would be 6 linearly 
dependent columns of (3.3). This completes the proof of Theorem 3.4 and 
establishes the existence of a Steiner system S(4, 7, 23). 

4. A m a t r i x r e p r e s e n t a t i o n of M23. In this section an 11 X 11 matrix 
representat ion over GF(2) will be obtained for the Mathieu group if23. 

Let T be the exact 3-covering of V(2S) obtained in Lemma 3.2, and let 
S(4, 7, 23) be the Steiner system consisting of the sets Ht constructed in 
Theorem 3.4. T h e following vectors of T are linearly independent and generate 
T: 

h =(0 000001111111000000000 0) 
h =(1111110000001000000000 0) 
h =(1110001110000100000000 0) 
h =(1001101101000010000000 0) 
h =(0 101011011000001000000 0) 
h =(0 0 10110111000000100000 0) 
h =(1100100011100000010000 0) 
h =(1010011001100000001000 0) 
h =(0 11100010110 0000000100 0) 
t10 = (1001010110100000000010 0) 
/11 = (0 1001111001000000000010) 
/12 = (00111010101000000000001) 

These vectors yield subsets HH (i = 1, 2, . . . , 12) of S(4, 7, 23) and since 
M2z consists of those permutat ions of the symmetric group ©23 tha t transpose 
the subsets Hx of S(4, 7, 23) among themselves, it is possible to consider M2li 

as the group of all 23 X 23 permutat ion matrices Q which leave T invariant . 
T h u s a representation of M2z is induced on the space T and, since each Q is 
orthogonal, on the space R orthogonal to T. 

T H E O R E M 4.1. The representation p of M2% induced on R is an isomorphism. 

Proof. The kernel of p consists of those permutat ions Q t h a t leave the 
ar ray (3.3) invariant . Since no two columns of (3.3) are the same, the kernel 
of p is the identi ty. 

We thus obtain an 11 X 11 matr ix representation over GF(2) for M2z, 
and it is of interest to note t ha t this representation is irreducible. T h e referee 
has suggested the following simple proof: If p were not irreducible, there would 
exist an invariant subspace 5 of R of dimension k with 0 < k < 11. Then 
p(M2s) would be a subgroup of the group of all non-singular transformations 
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of R leaving 5 invariant. However, the order of p{M2z) is divisible by 23 and 
the order of the group of all non-singular transformations leaving S invariant, 

2HU~k)fl (2* - 2*'-1) f f (211-* - 2'-1), 

is not. This argument also proves that Miz does not have a faithful representa
tion by k X k matrices over GF(2) for any k < 11. 

5. Comments and generalizations. If the field of coefficients in 
§3 of V(n) is allowed to be the Galois field GF(pk), the same definitions of 
distance and exact r-covering S(r, n) yield the fact that there are 

N(r, n, pk) = ( * ) 4- {pk - 1) • ( j ) 4- . . . + {p* - l)' • ( * ) 

vectors of V(n) that satisfy d(x, s) < r for 5 Ç 5(r, n). 
In the case that / ; = 3, k = 1, r = 2 we find that iV(2, 11, 3) = 3 5 ; as in 

§3, it is possible to construct a 5 X 11 rectangular array over GF(3) such that 
no 4 columns are linearly dependent. The subsequent analysis of the orthogonal 
space in F ( l l ) over GF(3) leads to a Steiner system S(4, 5, 11). 

It had been hoped that the matrix representations of the Mathieu group 
obtained in this paper might lend itself to the determination of a simple set of 
generators of M23; unfortunately, this aim has not been realized. 

It should also be pointed out that the divisibility of (pk)n by N(r, n, pk), 
although necessary, is not sufficient to ensure the existence of an exact 
r-covering of V(n). For example, iV(2, 90, 2) = 212, yet a simple analysis of 
vectors having three non-zero coordinates shows that no exact 2-covering 
can exist. Here again the techniques of the present note become hopelessly 
involved in combinatorial analysis if one attempts to find new Steiner systems 
or simple groups. 
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